Integrability in gauge and string theory

Riccardo Borsato

Joint Workshop LIP/IGFAE, 26 April 2019

Motivation: new tools for quantum field theory and gravity

Holographic duality: gauge theory ↔ gravity

Exact methods from integrability

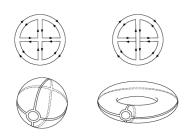
An **interacting** solvable QFT

Plan

Maximally supersymmetric gauge theory in 4D

• String theory on $AdS_5 \times S^5$

• **Deformations** preserving integrability


Gauge theory

\mathcal{N} =4 super Yang-Mills

gauge group SU(N), coupling constant g_{YM} scalar+fermions+gauge bosons with **maximal susy in 4D**

Conformal: $\beta(g_{YM}) = 0$

Planar limit:

 $g_{\rm YM} \rightarrow 0, \ N \rightarrow \infty$ while 't Hooft coupling $\lambda \equiv N g_{\rm YM}^2$ is fixed

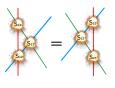
picture stolen from Alfonso's review [arXiv:1310.4319]

The spin chain

$$\mathfrak{su}(2)$$
 sector \supset scalar fields $\mathop{\Phi}_{,}\mathop{\bar{\Phi}}_{\uparrow}$ of $\mathcal{N}=4$ SYM

$$\mathcal{O}(x) = \mathsf{Tr}[\mathbf{\Phi}\mathbf{\Phi}\mathbf{\bar{\Phi}}\mathbf{\bar{\Phi}}\mathbf{\Phi}\mathbf{\bar{\Phi}}\dots\mathbf{\Phi}\mathbf{\bar{\Phi}}\mathbf{\bar{\Phi}}\mathbf{\Phi}]$$

[Minahan, Zarembo 02]

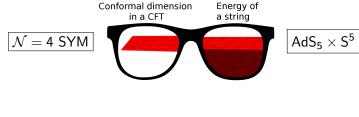

Anomalous dimension at 1-loop: operators mix and the mixing matrix is the Hamiltonian of **Heisenberg's XXX spin chain**!

Higher-loop corrections ⇒ **long-range** interactions

For similar methods applied to QCD see [arXiv:1012.4000]

Magnon excitations interact with **factorised S-matrix**

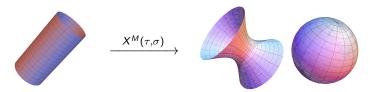
$$e^{ip_kL}\prod_{j\neq k}S(p_k,p_j)=1$$


Bethe eqs

S-matrix fixed at **all loops** from supersymmetry and analyticity

Exact spectrum in λ and L (size of the chain) from "Thermodynamic Bethe Ansatz" or "Quantum Spectral Curve"

String theory


[Maldacena 97]

 $\lambda \ll 1$ weakly-coupled gauge theory / $\lambda \gg 1$ classical string

$$S = -\frac{\sqrt{\lambda}}{4\pi} \int d\tau d\sigma \ \gamma^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN} + \text{fermions}$$

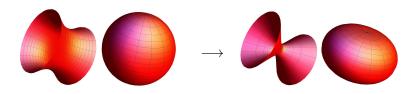
$$ds^{2} = G_{MN} \ dX^{M} dX^{N} = ds_{AdS_{5}}^{2} + ds_{S_{5}}^{2}$$

Hamiltonian in light-cone gauge for 8 bosons + 8 fermions

$$\mathbf{H} = \mathbf{H}_2 + \frac{1}{\lambda}\mathbf{H}_4 + \frac{1}{\lambda^2}\mathbf{H}_6 + \dots$$

Same S-matrix of spin-chain but expanded at $\lambda \sim \infty$

(Classical integrability)


Deformations

Integrability **beyond** spectrum of AdS_5/CFT_4

• Higher point-functions

Lower dimensional dualities
e.g. AdS₄/CFT₃, AdS₃/CFT₂

• **Deformations** of AdS_5/CFT_4

Break isometries of target space of string

Some deformations \sim twisted boundary conditions for the string

Deformations of the gauge theory?

On the gauge theory we can break e.g. **supersymmetry**, **conformal invariance**

In certain cases, deformations correspond to **non-commutative** gauge theories

Extension of the integrability methods to the deformed models?