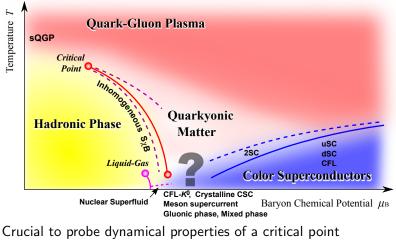






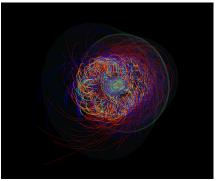
# Maximilian Attems


### arXiv:1807.05175, Phys.Rev.Lett. 121 (2018)

Collaborators: Yago Bea (UB), Jorge Casalderrey-Solana (Oxford, UB), David Mateos (UB), Miguel Zilhao (CENTRA)

2nd joint workshop IGFAE/LIP

# Motivation I - QCD phase diagram


RHIC and FAIR colliders search for the critical point, the endpoint of the phase transition between QGP and Hadrons:



[Fukushima, Hatsudo 2010]

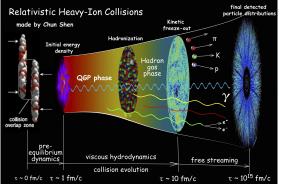
# Motivation II - model building

## Quark-Gluon Plasma:



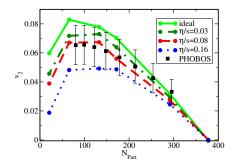
LHC reconstructed event from the first heavy ion collisions [ALICE 2010]

# Black Holes:

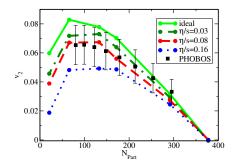



First Black Hole image (M87) [Event Horizon Telescope Collaboration 2019]

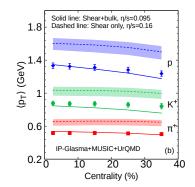
## gauge/gravity correspondence:


bridge between physical phenomena in gauge theories and gravity.

# Introduction Heavy-Ion collision - the 'little bang'

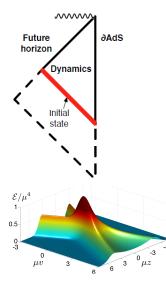



Stages of HI collision:
 1) Out of equilibrium
 2) Quark-Gluon Plasma
 3) Hot Hadron Gas


How can we describe the first stage at strong coupling? How long is the first stage? LHC Data indicates  $\leq 10^{-23}$  s What determines when hydro becomes applicable? What are the initial conditions for the Quark-Gluon-Plasma?  $> 10 \mathrm{y}$  success of viscous hydrodynamics



shear viscosity over entropy density ratio  $\eta/s \approx 0.08$  $\rightarrow$  nearly perfect fluid [Romatschke 2007]  $> 10 \mathrm{y}$  success of viscous hydrodynamics

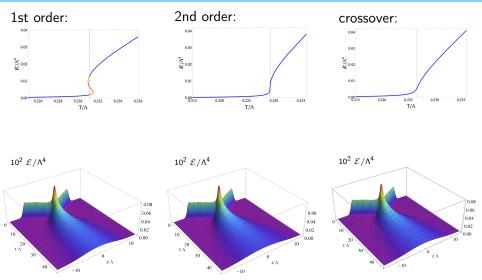



shear viscosity over entropy density ratio  $\eta/s \approx 0.08$  $\rightarrow$  nearly perfect fluid [Romatschke 2007]



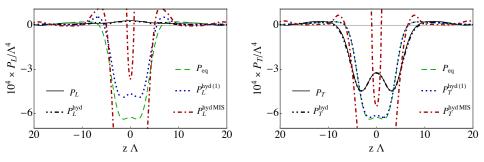
Hydro simulation agreement improves with bulk viscosity  $\zeta$  [Denicol *et al.* 2015]

# Out-of-equilibrium challenges




Strong coupling toolkit for out of equilibrium dynamics:

Fast hydrodynamization with first shockwave collisions in the characteristic formulation  $t_{\rm hyd} < 10^{-23}$  although very anisotropic  $\frac{P_T}{P_L}\Big|_{t_{\rm hyd}} \gg 1$  at hydrodynamization [Chesler, Yaffe 2011]


EoSization: seen in first non-conformal temperature scan new non-conformal relaxation time scale (= when ideal equation of state applies) [MA et al. 2016/2017]

# Collisions near a critical point



Discovers long-lived, quasi-static blob of energy at mid-rapidity, with slow down of the dynamics, no remnants [MA et al. 2018]


Müller-Israel-Stewart-type hydrodynamics fails to describe the pressure evolution at mid rapidity in the formed blob ( $t\Lambda = 50$ ):



Well described by the constitutive relations of second-order hydrodynamics that include all spatial second-order gradients.

# Pressure evolution near a critical point

Differences to QCD: no dynamical baryon charge density, no conserved order parameter, fluctuations  $1/N_c^2$  suppressed Similarities to QCD: vanishing speed of sound, large bulk viscosity



Need of a new causal hydrodynamics formulation near CP with suppressed first order gradients, but large second-order purely spatial gradients.

- New example of the applicability of hydrodynamics to systems with large gradients in energy densities - even in non-trivial phase structure
- First simulation of holographic heavy-ion collisions near a critical point
- Fluid slows down near CP to a long-lived, quasi-static blob
- MIS hydrodynamics fails near a critical-point
  missing 2nd order spacial derivatives
- More studies on the way: spinodal instability, baryonic matter