IGFAE-LHCb highlights

Cibrán Santamarina LIP-IGFAE meeting 2019,26th April, Santiago

Size of Spanish Groups

From María José Costa-RECFA report-SPAIN LHC

ATLAS	IFAE	IFIC	UAM	Total	LHCb	ICCUB	IFIC	iGFAE	Salle_URL	Total
Seniors	10	17	4	31	Seniors	4	2	8	3	14
Postdocs	4	6	0	10	Postdocs	1	2	6	2	9
Students	7	10	3	20	Students	5	4	11	0	20

CMS	CIEMAT	IFCA	UAM	U.Oviedo	Total
Seniors	17	14	1	6	38
Postdocs	4	3	1	1	9
Students	4	7	0	5	16

MoEDAL	IFIC
Seniors	6
Postdocs	2

- People overall: 61 (ATLAS), 63 (CMS), 43 (LHCb), 8 (MoEDAL).
- Spanish representation within the collaborations in terms of M&O authors (2.4% ATLAS, 3% CMS, 4.7% LHCb, 12% MoEDAL)
- The experimental and theoretical communities collaborate via the Spanish LHC networks
 •and the CPAN (National Centre for Particle, Astroparticle and Nuclear Physics).

LHCb Upgrade

- Goal: 5x current luminosity 2×10³³ cm⁻² s⁻¹
- Double the present yield: collect 5 fb⁻¹/y in run 3 and run 4
- Improve trigger efficiency on hadronic channels and on rare decays
- Expand the scope to the lepton flavor sector, electroweak physics, QCD and exotics searches
- Actions:
 - Remove the current hardware trigger of 1MHz
 - New front-end and back-end electronics in most of the sub-detectors
 - New tracking system

IGFAE Contribution

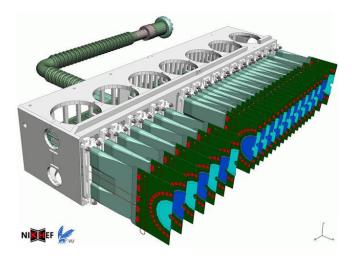
to the vertex detector

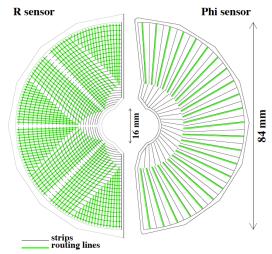
2nd joint Workshop IGFAE/LIP in High-Energy Physics -Santiago, 26 April 2018

upgrade

RICH1

ECAL HCAL


M4 M5

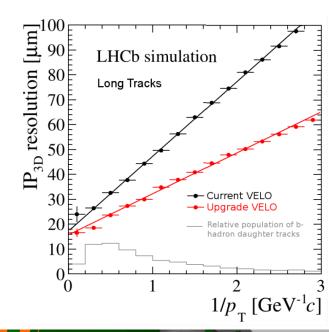

Side View

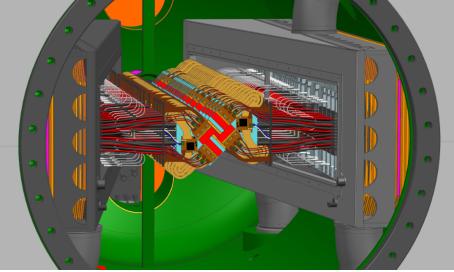
SciFi

Current VELO

- Silicon strip detector 84 sensors (R + φ measurements per module). 2048 channels (strips per sensor).
- Capable of 1 MHz readout.
- Exists in 2 retractable halves and can move. The closest distance of the active silicon to the LHC beam is 8.2 mm.
- Radiation hard,7×10¹⁴ 1MeVn_{eq}cm⁻² for full lifetime.

• CO₂ cooling.





VELO Upgrade

- **Primary tracking and vertexing detector** surrounding the collision region
 - In high vacuum (separated from the LHC vacuum by a RF foil)
- Pixel technology (currently r/φ microstrip)
 - More robust track reconstruction performance
 - Better resolution
 - Closer to beam (8.1mm to 5.1mm). <u>Retractable halves</u>.
- Faster readout (1MHz to 40MHz)
- New ASIC VeloPix, based on TimePix family
- New micro-channel evaporative CO₂ cooling
- Some figures:
 - 52 modules, 624 VeloPix ASICs
 - Detector active area 0.12 m²
 - ~41 M pixels (55x55 μm²)
 - \circ HV tolerance of 1000V
 - Trigger-less readout ~2.9 Tbit/s
 - Highly non-uniform radiation. Up to 4MGy

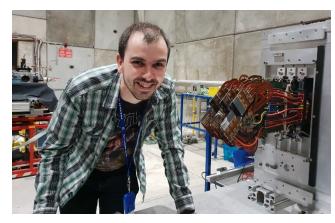
Sensors & Electronics (IGFAE/USC)

IGFAE/USC contributions to (already since 2008):

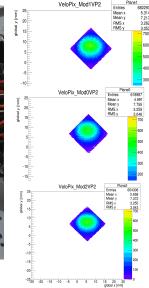
- Sensors:
 - Technology choice (strips vs pixels)
 - R&D, sensor design, prototype construction
 - Radiation resistance certification (neutron irradiations).
- Front-end electronics qualification (VeloPix ASIC):
 - Design and construction ASIC PCB carrier, Needle Probe Card
 - HV, High Speed Data Tapes and Vacuum Feed Through testing PCBs
 - Electronic Design Review (<u>https://indico.cern.ch/event/725985/</u>)
 - Radiation hardness:
 - Single Event Effects studies
 - Total Ionization Dose certification (up to 400 Mrad) in the USC X-ray facility.
 - Testing and quality assurance

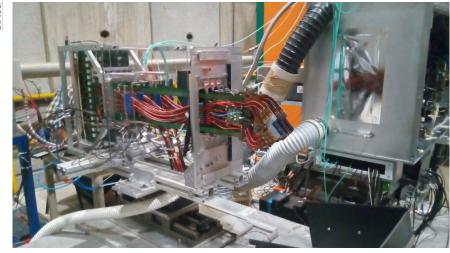
• Back-end electronics and firmware development:

- Workshop for the integration of VELO detector in the LHCb framework
- 2 RO setups, based on Intel and Xilinx FPGAs, running at IGFAE/USC



VELO Upgrade: 1st full readout chain test-beam

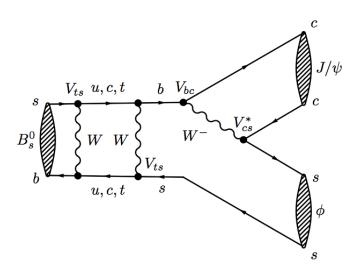



Front-end electronics expert (IGFAE/USC) VELO DAQ and firmware coordinator

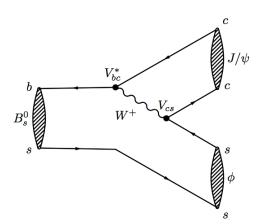
Back-end electronics expert (IGFAE/USC) Main firmware developer

$B_{ m s}^{0} ightarrow J/\psi\phi$

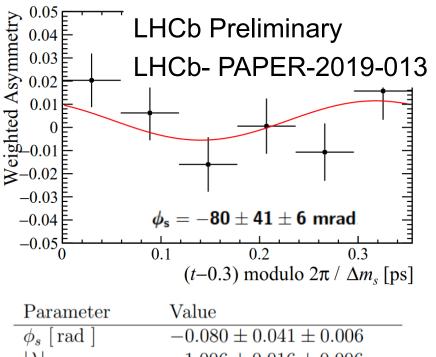
The time dependent asymmetry of $B^0_s \to (c\overline{c})(s\overline{s})$ decays is given by:


 $A_{CP}(t) = \frac{\Gamma_{B_s^0(t) \to J/\psi\phi} - \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}}{\Gamma_{B_s^0(t) \to J/\psi\phi} + \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}} = \frac{-\Im\lambda_{J/\psi\phi} \sin \Delta mt}{\cosh \frac{1}{2} \Delta \Gamma t + \Re\lambda_{J/\psi\phi} \sinh \frac{1}{2} \Delta \Gamma t}$

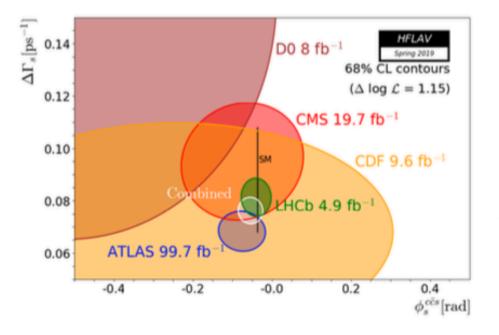
Where


$$\lambda_{J/\psi\phi} = \left(\frac{q}{p}\right)_{B_s^0} \left(\eta_{J/\psi\phi} \frac{\bar{A}_{J/\psi\phi}}{A_{J/\psi\phi}}\right) = (-1)^l \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right)$$

$$\Im \lambda_{J/\psi\phi} = (-1)^l \sin(-2\beta_s)$$


Which means we can access to β_s in time dependent analyses of these modes.

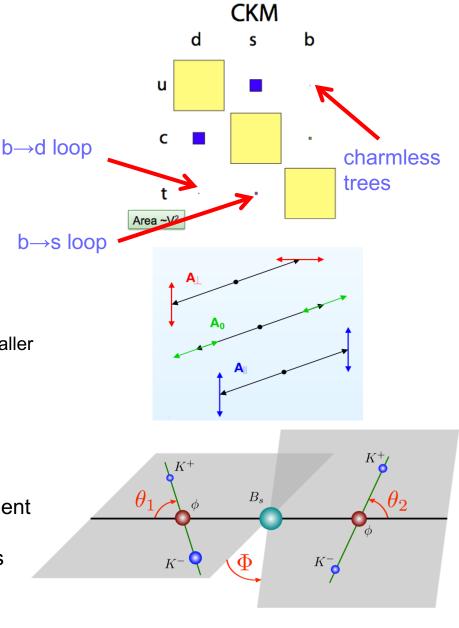
- Theoretically clean: $\phi_s^{SM} = -0.0368^{+0.00096}_{-0.00068}$ [rad] [UTfit]
- Updated measurement with 2015 and 2016 data
- Improved tagging power at (4.73 ± 0.34)% (3.73% in Run1)
- Coordinated by V. Chobanova
- Miriam Lucio PhD (happened today)

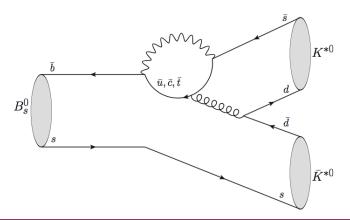


$\phi_s [rad]$	$-0.080 \pm 0.041 \pm 0.006$
$ \lambda $	$1.006 \pm 0.016 \pm 0.006$
$\Gamma_s - \Gamma_d \text{ [ps}^{-1} \text{]}$	$-0.0041 \pm 0.0024 \pm 0.0015$
$\Delta \Gamma_s \ [\mathrm{ps}^{-1}]$	$0.0772 \pm 0.0077 \pm 0.0026$
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.705 \pm 0.059 \pm 0.018$
$ A_{\perp} ^2$	$0.2457 \pm 0.0040 \pm 0.0019$
$ A_0 ^2$	$0.5186 \pm 0.0029 \pm 0.0024$
$\delta_{\perp} - \delta_0$	$2.64 \pm 0.13 \pm 0.10$
$\delta_{\parallel} - \delta_0$	$3.061^{+0.084}_{-0.073} \pm 0.037$

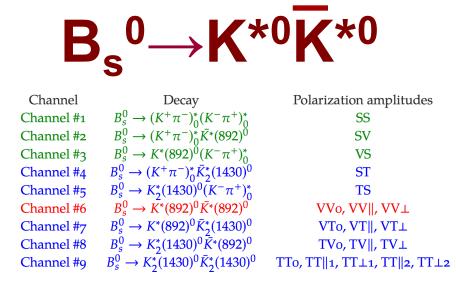
 $= -2\beta_s$

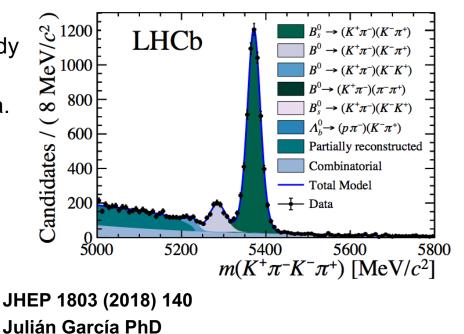
Combined with latest ATLAS results


New HFLAV average $\phi_s = -0.0544 \pm 0.0205$ $\Delta\Gamma_s = 0.0762 \pm 0.0033 \,\mathrm{ps}^{-1}$

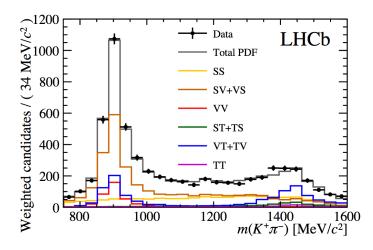

Charmless $B \rightarrow V_1 V_2$

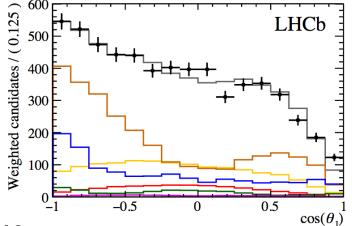
- Suppressed compared to charmed:
 - b \rightarrow u tree.
 - b \rightarrow s, b \rightarrow d loops.
- More sensitive to NP.
- Mediated by three smallest CKM matrix elements.
- V_1 and V_2 : angular momentum L = 0,1,2.
- High longitudinally polarization expected:
 - Additional effects (rescattering) could produce smaller polarizations.
- Angular pdf depends on:
 - Polarization fractions: $|A_0|^2$, $|A_{||}|^2$, $|A_{\perp}|^2$
 - Strong phases: δ_{\parallel} , δ_{\perp}
 - If final state is common to B_s^0 and B_s^0 :
 - CP-violating phase: $\phi_{(s)}$ in time dependent analyses.
 - If final state is not common to the B mesons CP: asymmetries.





- Time dependent analysis.
- Paradigm: new particles may enter the loop.
- Original approach:
 - Extended m(Kπ) range: 750–1600
 MeV/c²:
 - Scalar: K₀^{*}(1430)⁰ + Non Res
 - Vector: *K**(892)⁰
 - Tensor: K₂*(1430)⁰
- 3×3=9 decay channels. Commonφ_s^{dd̄} phase assumed. SM predicts it to be 0.
- Tagged, time-dependent, angular and 2-body invariant mass analysis.
- More than 6000 candidates with Run-1 data.

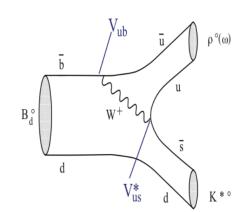


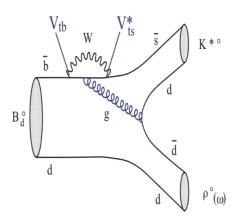


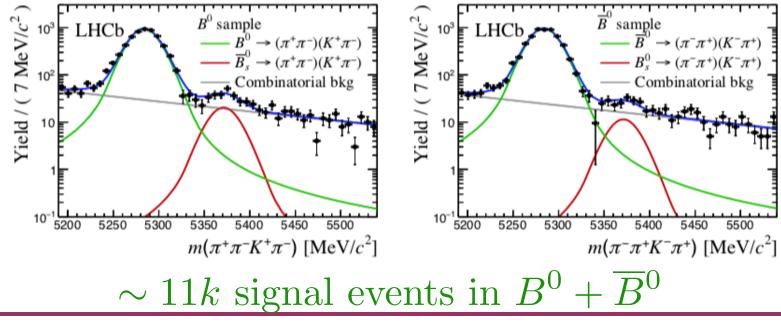
 $B^0 \rightarrow K^{*0} \overline{K}^{*0}$

- First measurement of $\phi_s^{d\bar{d}}$, using $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ decays (including $B_s^0 \rightarrow K^{*0}\overline{K^{*0}}$), $\phi_s^{d\bar{d}} = -0.10 \pm 0.13 \pm 0.14$ rad. [JHEP 1803 (2018) 140]
- CP-asymmetry determination:
 |λ| = 1.035 ± 0.034 ± 0.089.
- Compatible with SM.
- Additional 37 observables, including polarization amplitudes. Confirmed low longitudinal VV polarization:

$$f_L = 0.208 \pm 0.032 \pm 0.046$$

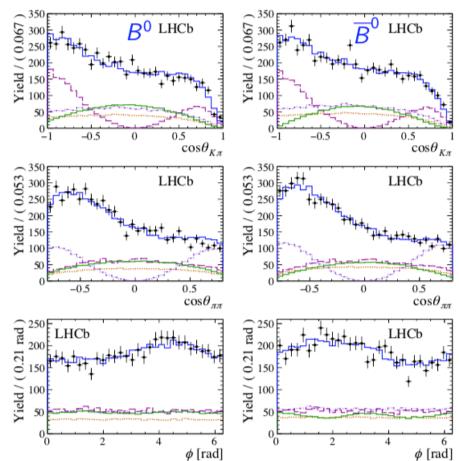



JHEP 1803 (2018) 140

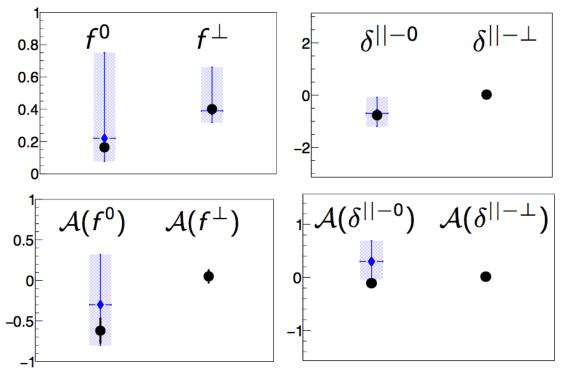


*0 <u>arXiv:1812.07008</u> María Vieites PhD

- Proceeds via:
 - A doubly Cabibbo suppressed tree
 - A gluonic $b \rightarrow s$ penguin
- Vector partner of $B^0 \rightarrow K\pi$
- Self tagged mode!
- World largest data sample by more than one order of magnitude increase from precedent studies.
- Triple products very sensitive to BSM.

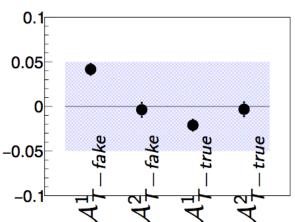


arXiv:1812.07008


María Vieites PhD

VV: $\rho K^*, \omega K^*$ VS: $\rho(K\pi), \omega(K\pi)$ SV: $[f_0(500), f_0(980), f_0(1370)]K^*$ SS: $[f_0(500), f_0(980), f_0(1370)](K\pi)$

- 5D model (2-body invariant masses + helicity angles):
 - 14 amplitudes describing $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays in the quasi-two-body approach using the Isobar model.
- Amplitude fit:
 - Un-binned ML fit simultaneous in year and trigger categories for B⁰ and anti-B⁰ (8 subsamples) using MultiNest.
 - LHCb acceptance accounted for with simulation.
- Systematic uncertainties:
 - Dominant: VV channels, $B^0 \rightarrow a_1(1260)^-K^++$ pollution; S-waves, parameters in the mass propagators and experimental resolution.

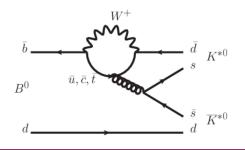


Fit results (stats. and syst. uncertainties included)

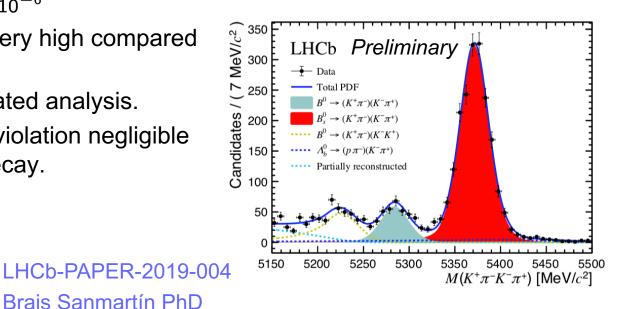
Theoretical predictions (QCDF) with uncertainties Nucl.Phys.B774:64,2007

Strong and weak phase differences $(\delta^{||-\perp})$ between perpendicular and parallel polarization amplitudes found to be very small, in agreement with theory prediction.

	Observable	QCDF from Ref. [4]	pQCD from Ref. $[11]$	This work
$f^0_{ ho K^*}$	CP average CP asymmetry	$\begin{array}{c} 0.22\substack{+0.03+0.53\\-0.03-0.14}\\ -0.30\substack{+0.11+0.61\\-0.11-0.49}\end{array}$	$\begin{array}{c} 0.65\substack{+0.03}_{-0.03}\substack{+0.03\\-0.03}\substack{-0.04}\\ 0.0364\substack{+0.012\\-0.011} \end{array}$	$0.164 \pm 0.015 \pm 0.016$ $-0.62 \pm 0.09 \pm 0.12$
$f_{\rho K^*}^\perp$	CP average CP asymmetry	$0.39^{+0.02+0.27}_{-0.02-0.07}$	$\begin{array}{c} 0.169\substack{+0.027\\-0.018}\\ -0.0771\substack{+0.0197\\-0.0186}\end{array}$	$0.401 \pm 0.016 \pm 0.027$ $0.050 \pm 0.039 \pm 0.066$
$\delta_{\rho K^*}^{ -0}$	Strong phase [rad] Weak phase [rad]	$-0.7^{+0.1+1.1}_{-0.1-0.8}$ $0.30^{+0.09+0.38}_{-0.09-0.33}$	$-1.61^{+0.02}_{-3.06} \\ -0.001^{+0.017}_{-0.018}$	$-0.772 \pm 0.085 \pm 0.047$ $-0.109 \pm 0.085 \pm 0.047$
$\delta_{\rho K^*}^{ -\perp}$	Strong phase [rad] Weak phase [rad]	$\equiv 0$ $\equiv 0$	$\begin{array}{c} 0.01\substack{+0.02\\-4.3}\\-0.003\substack{+0.025\\-0.024}\end{array}$	$\begin{array}{c} 3.160 \pm 0.035 \pm 0.034 \\ 0.014 \pm 0.035 \pm 0.034 \end{array}$



Int.J.Mod.Phys.A19:2505,2004


- U-spin partner of $B_s^0 \rightarrow K^{*0}K^{*0}$ decay.
 - Can be used to control penguin pollution from subleading amplitudes
- First LHCb analysis of $B^0 \rightarrow K^{*0}K^{*0}$.
 - Evidence by BaBar with $\mathcal{B} = (1.28 \stackrel{+ 0.35}{- 0.30} \pm 0.11) \times 10^{-6}$ $f_L = 0.80 \stackrel{+ 0.10}{- 0.12} \pm 0.06$
 - Also analyzed by Belle with ${\cal B}=(0.26\ {}^{+\ 0.33}_{-\ 0.29}\ {}^{+\ 0.10}_{-\ 0.08}) imes 10^{-6}$
- Longitudinal polarization very high compared with $B_s^{0} \rightarrow K^{*0}K^{*0}$.
- Untagged and time-integrated analysis.
- Assuming ΔΓ ~ 0 and CP violation negligible in the mixing and in the decay.

 $\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}\cos\theta_{1}\mathrm{d}\cos\theta_{2}\mathrm{d}\phi\mathrm{d}m_{1}\mathrm{d}m_{2}} = \frac{9}{8\pi} \sum_{i=1}^{6} \sum_{j\geq i} \mathcal{R}e[A_{i}A_{j}^{*}F_{ij}\delta_{\eta_{i}\eta_{j}}]$ $F_{ij} = \Phi_{4}(m_{1}, m_{2})f_{i}f_{j}^{*}(2 - \delta_{ij})$ $\frac{\frac{\mathrm{i}}{|1|}A_{0}|}{\frac{1}{|2|}A_{||}} \frac{f_{i}}{\frac{1}{\sqrt{2}}} \sin\theta_{1}\sin\theta_{2}\cos\phi\mathcal{M}_{1}(m_{1})\mathcal{M}_{1}(m_{2})}{\frac{1}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\sin\phi\mathcal{M}_{1}(m_{1})\mathcal{M}_{1}(m_{2})}$

 $-\frac{1}{\sqrt{6}}(\cos\theta_1\mathcal{M}_1(m_1)\mathcal{M}_0(m_2)-\cos\theta_2\mathcal{M}_0(m_1)\mathcal{M}_1(m_2))\\-\frac{1}{\sqrt{6}}(\cos\theta_1\mathcal{M}_1(m_1)\mathcal{M}_0(m_2)+\cos\theta_2\mathcal{M}_0(m_1)\mathcal{M}_1(m_2))$

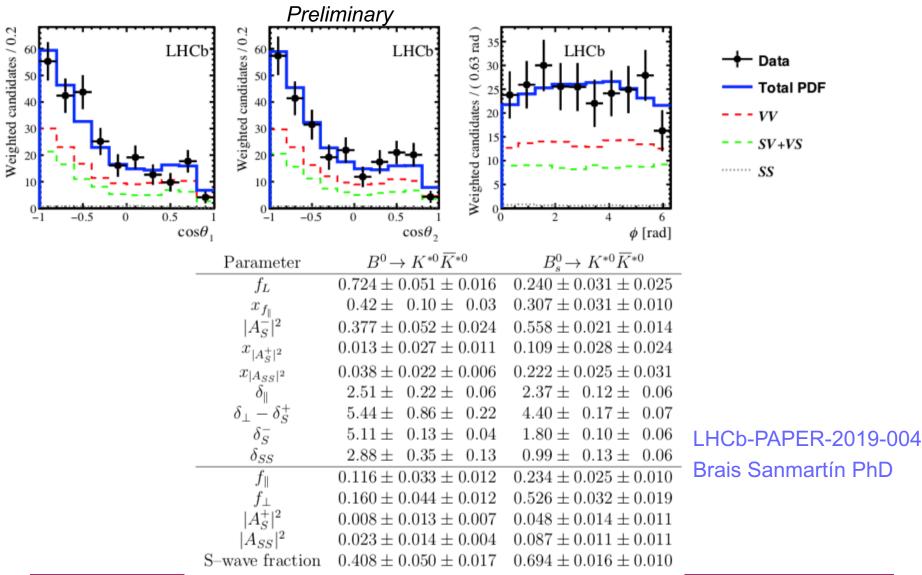
 $-\frac{1}{3}\mathcal{M}_{0}(m_{1})\mathcal{M}_{0}(m_{2})$

2nd joint Workshop IGFAE/LIP in High-Energy Physics -Santiago, 26 April 2018

Cibrán Santamarina Ríos

4

5


6

 A_{s}^{+}

 A_{s}^{-}

Ass

2nd joint Workshop IGFAE/LIP in High-Energy Physics -Santiago, 26 April 2018

Cibrán Santamarina Ríos

- The accumulated candidates sample is about seven times larger than the precedent ones.
- $f_L = 0.724 \pm 0.051$ (stat.) ± 0.016 (syst.).
- The decay branching fraction is determined improving the previous statistical uncertainty by a factor 2:

 $\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0}) = (8.0 \pm 0.9 \,(\text{stat}) \pm 0.4 \,(\text{syst})) \times 10^{-7}$

• The previous two measurements, in conjunction with the $B_s^0 \rightarrow K^{*0}K^{*0}$ results allow to estimate the longitudinal branching fraction ratio:

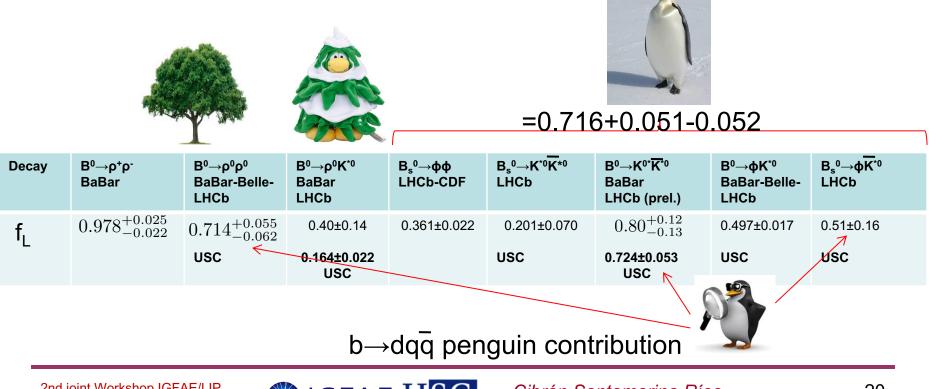
$$R_{sd} = \frac{\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})f_L(B^0_s \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})f_L(B^0 \to K^{*0}\overline{K}^{*0})}\frac{1-y^2}{1+y\cdot\cos\phi_s}$$

 $R_{sd} = 3.48 \pm 0.32 \,(\text{stat}) \pm 0.19 \,(\text{syst}) \pm 0.08 \,(f_d/f_s) \pm 0.02 \,(y, \phi_s) = 3.48 \pm 0.38$

• There is a theoretical prediction for it:

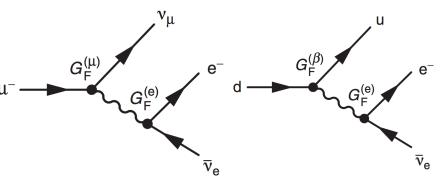
$$R_{sd}^{\rm theory} = 16.4 \pm 5.2$$

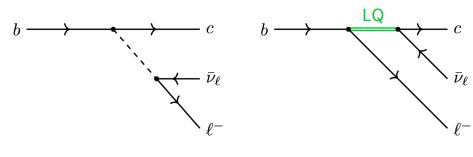
LHCb-PAPER-2019-004

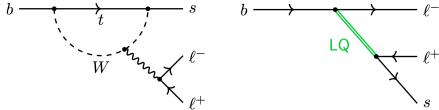

Brais Sanmartín PhD

S. Descotes-Genon, J. Matias, and J. Virto, Phys.Rev.D76(2007)074005,arXiv:0705.0477.

Polarization Summary of B \rightarrow V_1 V_2

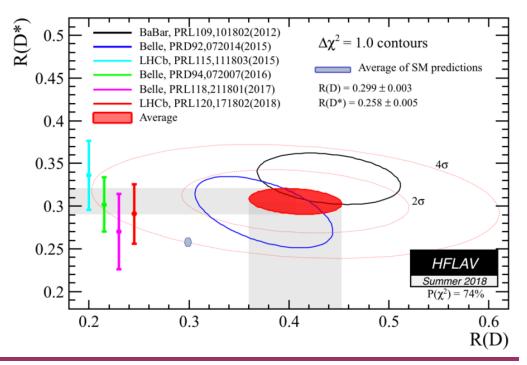

- Large Longitudinal polarization confirmed in b \rightarrow u tree dominated decays (f_L~1).
- Penguin decays show intermediate-small longitudinal polarization fractions.
 - Exception in $B^0 \rightarrow K^{0*}\overline{K}^{*0}$.
 - Polarization puzzle.
 - Would $b \rightarrow dq\bar{q}$ show higher f_L than $b \rightarrow sq\bar{q}$ penguins?





Lepton Flavor Universality

- In the SM the weak interaction to charged leptons and the corresponding neutrino is μ⁻ universal (G^(e) = G^(μ) = G^(τ)).
 - − Confirmed with high precision in $Z^0 \rightarrow I^+I^-$
- NP: could violate LU.
 - Charged Higgs.
 - Heavy W (W').
 - Leptoquarks...
- Lepton universality tests in tree-level decays.
 - Abundant $b \rightarrow clv$ semileptonic decay.
 - Well known in the SM.
 - Possible NP coupling mainly to 3rd family.
- Lepton universality tests in rare (loop-level) decays.
 - b \rightarrow sll
 - Forbidden at tree-level in SM
 - Sensitive to NP contributions in loops

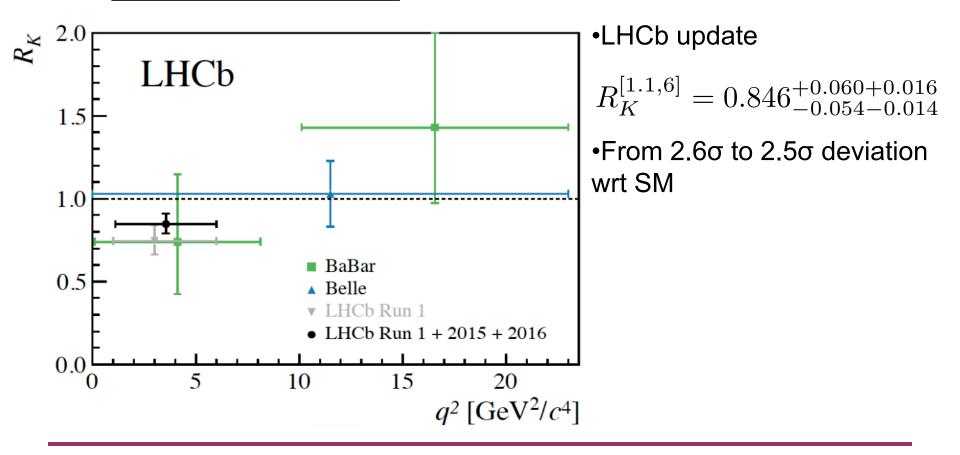

Lepton Flavor Universality

Test of LFU at tree level. Sensitive to charged Higgs bosons and leptoquarks

$$R(D^{(*)}) = \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)+} \boldsymbol{\tau}^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)+} \boldsymbol{\mu}^- \bar{\nu}_{\mu})}$$

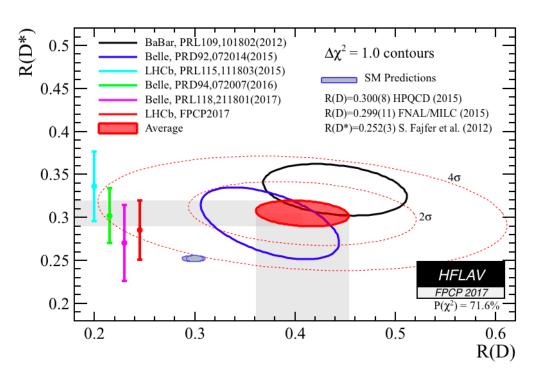
BaBar had. tag $0.332 \pm 0.024 \pm 0.018$ Belle had. tag $0.293 \pm 0.038 \pm 0.015$ Belle sl.tag $0.302 \pm 0.030 \pm 0.011$ Belle hadronic tau $0.270 \pm 0.035 \pm 0.027$ LHCb muonic tau $0.336 \pm 0.027 \pm 0.030$ LHCb hadronic tau $0.291 \pm 0.019 \pm 0.029$ Average $0.306 \pm 0.013 \pm 0.007$ SM Pred. average 0.258 ± 0.005 PRD 95 (2017) 115008 0.257 ± 0.003 JHEP 1711 (2017) 061 0.260 ± 0.008 JHEP 1712 (2017) 060 0.257 ± 0.005 HFLAV Summer 2018 0.3 0.2 R(D*)

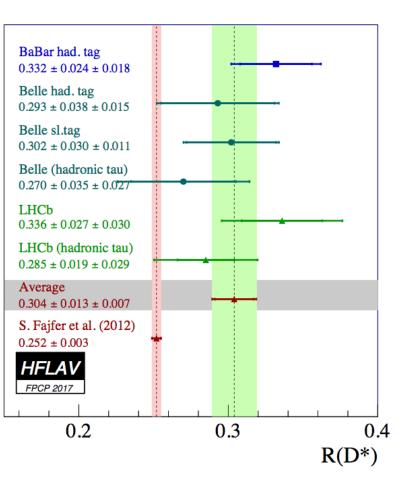
- Measurement of the ratio of the $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$ and $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$ branching fractions using three-prong tau-lepton decays, **Phys. Rev. Lett. 120, 17802 (2018).**
- Test of lepton flavour universality by the measurement of the $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ branching fraction using three-prong decays, *Phys. Rev. D* 97, 072013 (2018).
- Review of Lepton Universality tests in B decays. J.Phys. G46 (2019) no.2, 023001.



Lepton Universality in rare decays, R_K

$$R_{K} \equiv \frac{B(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-})}{B(B^{+} \rightarrow K^{+} e^{+} e^{-})}$$


- Theoretically clean
- Stringent test of LFU



Summary of R_D and R_{D*}

- Average of different final states an experiments.
- Including additional measurements, discrepancy of 4.1σ. With SM.
- Possible BSM scenarios (H⁺, W', LQs).

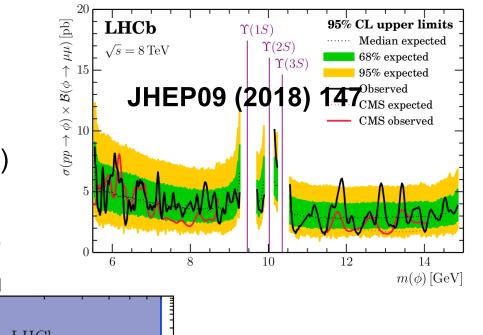
Proton-lead collisions

2 Nuclear modification factor. $R_{pPb}^{ch}(\eta=4)$ rcBK-MC, min bias rcBK-MC, Npart >10 For a incoherent superposition of nucleoncme= 5 TeV rcBK-MC, LO+inelastic term α=0.1 nucleon collisions $R_{pPb} = 1$ 1.5 1.5 EPS09 nPDF Study **prompt charged** particle production. Charged particle multiplicities can yield information on Cold Nuclear Matter effects (CNM) in p-Pb 0.5 0.5 collisions. **CNM** effects are also expected in **Pb-Pb** collisions LHCb can access uncovered phase space regions ⁰ 2 6 8 10 12 pt (GeV/c) Three different observables can be measured in different ranges Pb+p configuration (backward) p+Pb configuration (forward) $R_{n\text{Pb}}, 1.5 < \eta < 4.5$ Beam 2: Beam 1: Beam 1: Beam 2: Pb-ions protons Pb-ions protons $E_{Ph} = 1.58 TeV$ $E_n = 4 TeV$ $E_{Ph} = 1.58 TeV$ $E_n = 4 TeV$ $R_{\rm Pbp}, \ 2.5 < \eta < 5.5$ Pb Ph $R_{\rm FB} = \frac{R_{p\rm Pb}}{R_{\rm Pbn}}, \ 2.5 < \eta < 4.5$

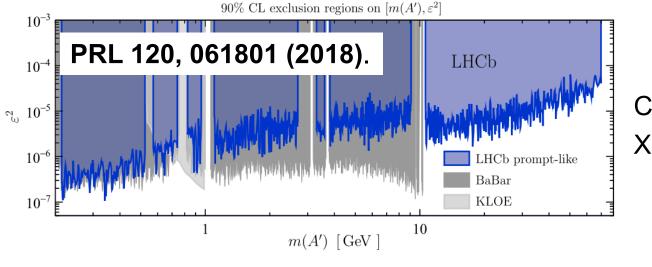
2nd joint Workshop IGFAE/LIP in High-Energy Physics -Santiago, 26 April 2018

1016/j.ppnp.2014.01.004

Albacete


Marquet

BSM searches


Exotica

BSM Higgses (→ WP2 de ERC-StG)

Dark photons, Axion Like Particles...

Carlos Vázquez PhD Xabier Cid coordination

Rare decays (kaon et al.)

•Expertise in identification, online tracking and trigger.

- Low pt muon trigger (~80 MeV)
 - Use LHCb as a leading experiment in kaons/hyperons (ERC-StG)

PERIOD	Efficiency
	(К → µµ)
2011	~ 1%
2012	~2.4 %
Run-II (expected)	~18 %
Full sw trigger	O(100%)

Summary

- The LHCb upgrade is ongoing.
 - Santiago is deeply committed to the new VELO commissioning.
 - Also construction and instalation.
 - Involvement in the HLT upgrade proposed also.
- LHCb Santiago has a wide physics program at LHCb.
 - It has produced many results, some of them among the most cited.

