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How do we get here ?

All quantitative predictions for 
hard processes at hadron 

colliders are based on QCD

- Test the Standard Model
- Reliably predict BSM signals and the 

corresponding backgrounds



Outline

Quick introduction to QCD
- Lagrangian, Feynman rules, Colour algebra

Infrared divergences and the factorisation theorem

QCD at hadron colliders

- infrared safety, collinear factorization, DGLAP

- Parton distributions functions, Drell-Yan

Lecture 1

Lecture 2

- Jets
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Outline

Event generators
- parton showers, colour coherence,
- NLO matching, merging

Beyond fixed order: analytic resummations
- transverse-momentum resummation

Lecture 4
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QCD at higher orders

- NLO, NNLO and beyond
- NLO corrections to Drell-Yan Lecture 3



Outline

R.K.Ellis, W.J.Stirling, B.R. Webber, “QCD and Collider 
Physics”, Cambridge, 1996

J.Campbell, J.Huston, F.Krauss, “The Black book of Quantum 
Chromodynamics: a primer for the LHC era”, Oxford, 2018

General references:

More specific:

G.Salam, “Towards Jetography”, arXiv:0906.1833, EPJC67 
(2010), 637
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 QCD                Quantum - Chromo - Dynamics

Quantum theory of colour:  
It is a non abelian gauge theory with 
SU(Nc) gauge group

Completely specified given the 
number of colours Nc 

(Dµ)ij = δij∂µ − igtaijA
a
µ

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabc Ab

µAc
ν

 Covariant derivative

 Gluon field tensor

i, j = 1.....Nc

 Difference with QED: gluons are charged and interact among themselves

The QCD Lagrangian
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L = �1

4
F a
µ⌫F

µ⌫ a +

NfX

f=1

 ̄i
f

h
i�µ(Dµ)ij �mf�ij

i
 j
f

SU(Nc) color matrices

SU(Nc) structure constants



Colour
Within the quark model, the additional quantum number of color was 
initially introduced to accommodate the existence of the barion Δ++

R =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)
= Nc

X

f

Q2
f

Complete symmetry of Δ++  three-
quark state requires additional 
quantum number: colour

 Evidence of colour in e+e- collisions

 Colour quantum number not observed (hadrons are colour singlet)

Assume each quark 
has Nc colours

Quark electric 
charge

e�

e+

qf

q̄f
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α β

i j

p
i(/p + m)αβ

p2
− m2 + iϵ

δij
µ ν

a b

p
i

p2 + iϵ
dµν(p) δab

a1µ1

p1

µ2 a2

p2

a3µ3

p3

µ1 a1

p1

µ2 a2

p2

a3µ3

p3

µ4 a4

p4

−ig2

[

f ba1a2f ba3a4(gµ1µ3gµ2µ4
− gµ1µ4gµ2µ3)

+(2 ↔ 3) + (2 ↔ 4)
]

−gfa1a2a3

[

gµ1µ2(p1 − p2)
µ3

+g
µ2µ3(p2 − p3)

µ1

+g
µ3µ1(p3 − p1)

µ2

]

α β

i j

g

µ

−ig(ta)ij(γ
µ)αβ

 Gluon spin pol. tensor: 
gauge dependent

Feynman rules

Three-gluon vertex

Four-gluon vertex
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dµν(p) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−gµν + (1 − α)
pµpν

p2 + iϵ
covariant gauges

−gµν +
pµnν + pνnµ

p · n
− n2

pµ pν

(p · n)2
axial gauges

dµν(p) =
∑

λ

ε
µ
(λ)(p)εν

(λ)(p) The spin polarization tensor is

and depends on the 
gauge choice

pa b
i

p2 + iϵ
δab

a c

µ b

gfabcpµ

In covariant gauges Lorentz invariance is manifest but ghosts must be 
included to cancel effect of unphysical gluon polarizations

In physical gauges (e.g. nµAµ=0, n arbitrary direction) only two tranverse 
polarizations are present         

 more transparent physical picture: for lowest order or approximated 
calculations physical gauges make life simpler
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(we’ll never need them in these lectures !)



The calculation of Feynman diagrams is similar to 
QED: just keep into account colour factors

(T a)ij = t
a
ij (T a)bc = ifabc

Tr(tatb) = TRδab TR = 1/2

CF =
N2

c − 1

2Nc

CA = Nc

Useful relations:

(tat
a)il = CF δil

fadcf bdc
= CAδab

fundamental adjoint

Exercise:
prove the above expressions for CF and CA           
(hint: ta and I form a basis for Nc x Nc hermitian matrices)

The explicit form of colour matrices is not important in practice

[T a, T b] = ifabcT c

Tr(T a) = 0

Colour algebra
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The theory does not predict the absolute value of the coupling 
but its dependence on the scale can be predicted

 if for a given scale µ0 we have αS(µ0)<<1       

a perturbative solution of the renormalization 
group equation can be given

it is one the renormalization 
group equations

 QCD is a renormalizable gauge theory
 Ultraviolet (UV) singularities appear in loop diagrams but they can be 
removed by the renormalization procedure

The strong coupling

• Regularization: allows to make sense of divergent loop integrals
• Subtraction: redefine the coupling αS=g2/(4π)          αS(µ2)

Renormalisation 
scale

d↵S(µ2)

d lnµ2
= �(↵S(µ

2))
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Asymptotic freedom

�(↵S) = ��0↵
2
S +O(↵3

S)At one-loop order we have

d↵S(µ2)

d lnµ2
= ��0↵

2
S

↵S(Q
2) =

↵S(Q2
0)

1 + ↵S(Q2
0)�0 lnQ2/Q2

0

α (µ2)

β

β

0

0

<

> 0

0

µ0 µ22

The behaviour crucially 
depends on the sign of the 
coefficient β0

In QED the dependence of the coupling on 
the scale has a simple physical 
interpretation

 13



The vacuum around a pointlike charge becomes 
polarized due to the emission of e+e- pairs and 
produces a screening effect e−

+

+

+

+
+

+++
+

+

+

+

+
+ −

−

−

−

−
−

−−
−

−

−

−

−

− +
++

−
−

 β0<0  : the effective coupling 
decreases with the distance

 In QCD gluons are 
charged and provide a 
positive contribution 
to β0

 for NF < 16

But:

Asymptotic freedom
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ASYMPTOTIC 
FREEDOM

 In processes with large momentum transfer we can use 
perturbation theory even if we have not solved the full theory

ΛQCD ~ scale at which the 
coupling becomes strong

 Intuitively: gluons are 
charged and spread 
colour charge over larger 
distances: anti-screening 
effect

Asymptotic freedom
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ASYMPTOTIC 
FREEDOM

 In processes with large momentum transfer we can use 
perturbation theory even if we have not solved the full theory

Nobel prize in 
Physics 2004

 D. Gross, H.D. Politzer, F. Wilczek

ΛQCD ~ scale at which the 
coupling becomes strong

 Intuitively: gluons are 
charged and spread 
colour charge over larger 
distances: anti-screening 
effect

Asymptotic freedom
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 Asymptotic  
freedom

 at large tranferred momenta hadrons 
behave as collections of free (weakly-
interacting) partons

 at small scales the interaction becomes strong but if we are not 
interested in the details of hadronic processes (consider inclusive 
enough final states)  we can use the parton picture

 produce a hard qq̄ pair at scale Q (short time 
scale τ=1/Q ) which travel far apart as free    

Parton model

e+ e-  

annihilation

e�

e+

q

q̄
 Parton model 
(LO QCD)

 hadronization

�⇤, Z
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Deep inelastic 
scattering

 Let us consider the process ep→eX

 If  Q2 < m2Z  the cross section is 
dominated by one-photon exchange

 The photon acts as a probe of the proton structure 

σ(p) ∼

∫
dzf(z) σ̂(zp)

Parton interactions in the proton characterized by a 
large time scale τ ~ 1/ΛQCD with respect to τhard ~ 1/Q

Scattering is incoherent on the single partons

p

X

 Q2= -q2=(k-k’)2  ≫ Λ2QCD

q

zp

p

q

e�
e�

X
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The question: 
does the parton picture survive when 
radiative corrections are included ?
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 Consider the O(αS) corrections to the total cross section

Real:

  e+ e- annihilation

Virtual:

Real and virtual contributions are separately divergent !
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Originate in theories with massless 
particles and are of two kinds

Physically a hard parton plus a soft gluon or two very close 
partons are indistinguishable They correspond to degenerate states

hard parton hard parton 
+soft gluon 2 collinear partons

1

(p + k)2
=

1

2EpEk(1 − cos θ)

H

q

q̄

g

Q

Q̄

H

g

g

Q

Q̄

p

k

Infrared divergences are a manifestation of long-distance effects 

  Infrared divergences

Soft: the energy of a gluon vanishes 

Collinear: two partons become parallel
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Even in QED we cannot separate an electron from an electron + a 
soft photon, or an electron from an electron plus a collinear photon 

Kinoshita-Lee-Naumberg (KLN) theorem: 
 if we limit ourself to considering quantities inclusive over 
initial and final states soft and collinear (degenerate) 
configurations infrared divergences cancel out
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Even in QED we cannot separate an electron from an electron + a 
soft photon, or an electron from an electron plus a collinear photon 

Kinoshita-Lee-Naumberg (KLN) theorem: 
 if we limit ourself to considering quantities inclusive over 
initial and final states soft and collinear (degenerate) 
configurations infrared divergences cancel out

The answer: 
intuitive parton picture survives to the 

computation of radiative corrections provided we 
consider inclusive enough processes
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Even in QED we cannot separate an electron from an electron + a 
soft photon, or an electron from an electron plus a collinear photon 

Kinoshita-Lee-Naumberg (KLN) theorem: 
 if we limit ourself to considering quantities inclusive over 
initial and final states soft and collinear (degenerate) 
configurations infrared divergences cancel out

The answer: 
intuitive parton picture survives to the 

computation of radiative corrections provided we 
consider inclusive enough processes

NOTE:

Phase space is flat
Matrix elements are 
enhanced in soft and 
collinear regions

The hadronic final state 
is typically formed by 
jets of collinear particles 
plus soft particles

 21



In order to cancel the divergences it is not necessary to integrate 
over the full phase space

According to the KLN theorem we can define a wide class of

Leading 
Order (LO):

 Measurement 
function

 Tree level 
matrix  element

Phase space

Next-to-Leading 
Order (LO): σNLO =

∫
m+1

dσ
R

+

∫
m

dσ
V

 Here one more 
parton

 Here same number of partons 
but one-loop matrix element

Fm+1(.....pi, ...pj ......) ∼ Fm(....pi + pj ....) if pi ∥ pj or pj → 0

To be sure that the presence of  F does not spoil the cancellation 
we should have: 

m number of partons at LO 
(e.g. 2jets m=2, 3jets m=3… )      

IR safe observables

�LO =

Z

m

|M(0)({pi})|2Fm({pi})dPSm

 22



Example: thrust Fm({pi}) = � (T � Tm(p1, ....pm))

Where
n

Suppose that pm+1 is the momentum of a soft gluon

It drops out from numerator and denominator, so Tm+1 → Tm

Suppose that pi || pj that is pi=z p and pj=(1-z) p

- In the numerator |pi·n|+|pj ·n|=|p ·n|
- In the denominator |pi|+|pj|=|p|

Tm+1 → Tm

Crucial ingredient: linearity

x T=1: two jet limit

T=1/2: spherical 
event

IR safe !

Tm = max

Pm
i |pi · n|Pm
i |pi|
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Partonic cross section

Parton density

Consider O(αS) corrections to the partonic cross section

q

zp

  Hard processes with initial state 
hadrons: deep inelastic scattering

p
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Virtual: Real:



In the calculation we find infrared divergences
Inclusive final state KLN cancellation of final state singularities

However in the initial state we have only one parton and we cannot sum over 
degenerate states         uncancelled collinear singularity

∼ αS(Q2)

∫ 1

0

dθ2

θ2
∼

∫ Q2

0

dk2
T

k2
T

Actually the collinear divergence would 
be regularized by a physical cutoff Q0  
of the order of the typical hadronic scale

The singularity implies the existence of long distance effects

Multiple emission αn

S
logn Q2/Q2

0 to be resummed to all orders

Both problems are solved by the FACTORIZATION THEOREM

IN SHORT: Collinear singularities can be absorbed 
in bare parton densities f0(x) → f(x, Q2)

k, ✏
✓
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Physical parton densities thus become scale dependent
This is possible only if this redefinition is independent on the hard process

d3k

2k0

∼ k0dk0d cos θ ∼ dθ
2

1

(p − k)2
∼

1

p0k0(1 − cos θ)
∼

1

θ2

Phase space:

Propagator:

Vertex: in a physical gauge 
(helicity conservation 
in the quark gluon 
vertex !)

dθ
2

1

θ2

1

θ2
θθ ∼

dθ2

θ2

dθ
2

1

θ2
θ

In a physical gauge interferences can be neglected

not singular enough !

✓ k, ✏

k
p

k

p
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.

.

2PI

2PI

f(0)

2PI

KT

KT µ
F

< µ
F

>

2PI =

General strategy: decompose diagrams in 2PI blocks (such that 
they cannot be disjoint by cutting only two lines)

2PI blocks are free of collinear 
singularities in a physical gauge

Introduce an arbitrary separation scale µF

Process dependent but finite

Universal but divergent

Reabsorb the divergent part in the 
redefinition of f(x)

analogy with renormalization
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σ(p, Q) =
∑

a

∫ 1

0

dzfa(z, µ2

F )σ̂a(zp, αS(Q2);µ2

F )

Physical cross sections cannot depend on µF     

The choice of µF is arbitrary but if µF is too different from the 
hard scale Q          log Q/ µF terms reappear that spoil the 
perturbative expansion  

Introduction of an arbitrary scale µF

Parton densities become scale dependent

Such scale dependence is associated with the 
resummation of large collinear logs     

The scale dependence is perturbatively computable

DGLAP equations   
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.

.

f(0)

 P

  P1

n

Q 2

Q 0

kn~ xn p+kT n

k1~ x1 p+kT 1

z 1

z n

f(µ2

F ) = f0 ⊗ E(µ2

F /Q2

0)

Q2 > k2

Tn > ...k2

T1 > Q2

0

f(x, Q2) = f0(x) +

∫ Q2

Q2

0

dk2
Tn

k2
Tn

∫ 1

x

dzn

zn
Pn(αS(k2

Tn), zn)f(x/zn, k2

Tn)

The important region is:   

where the maximum power of  log Q2/Q2

0

is generated        iterative structure

Taking derivative with respect to Q2  

Q2
∂f(x, Q2)

∂Q2
=

∫ 1

x

dz

z
P (αS(Q2), z)f(x/z, Q2)

First order differential 
equation: can be solved if 
f(x,Q2)  is known at a 
reference scale Q0      

∑

n

  DGLAP equations
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Q 2

   f

  Pab

x/z

x

a

b

b

f

Q2

x

a

a

Q2
∂

∂Q2 = Probability to find 
parton a in parton b at 
scale Q2

Pab(αS(Q2), z)

Pab(αS, z) =
αS

2π
P

(0)
ab

(z) +
(αS

2π

)2
P

(1)
ab

(z) +
(αS

2π

)3
P

(2)
ab

(z) + .....

Solving DGLAP equation using          allows us to resum Leading Logarithmic 
(LL) contributions

P
(0)
ab

αn

S
logn Q2/Q2

0

With         we resum Next-to-leading terms (NLL) and so onP
(1)
ab

Probabilistic interpretation:

Convolution                conservation of longitudinal momentum

Dokshitzer (1977)
Gribov, Lipatov (1972)
Altarelli-Parisi (1977)

Curci, Furmanski, 
Petronzio (1980) Moch, Vermaseren, Vogt (2004)
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+

(

11

6
CA −

2

3
TR nF

)

δ(1 − z)

P
(0)
qq (z) = CF

[

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

P
(0)
gg (z) = 2CA

[

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]

P
(0)
gq (z) = CF

[

1 + (1 − z)2

z

]

P
(0)
qg (z) = TR

[

z
2 + (1 − z)2

]

∫ 1

0

f(z)

(1 − z)+
≡

∫ 1

0

f(z) − f(1)

1 − z

+ distribution 
defined as
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Solving DGLAP equation

Consider for simplicity the case of non-singlet (q-q̅)

Q2
∂f(x, Q2)

∂Q2
=

∫ 1

x

dz

z
Pqq(αS(Q2), z)f(x/z, Q2)

fN =

∫ 1

0

f(x)xN−1dx

(f ⊗ g)(x) =

∫ 1

x

dz

z
f(z)g(

x

z
)

(f ⊗ g)N =

∫ 1

0

(f ⊗ g)(x) xN−1dx

=

∫ 1

0

dxxN−1

∫ 1

x

dz

z
f(z)g

(x

z

)

=

∫
zN−1 tN−1dt dzf(z) g(t) = fN gN

Define Mellin moments

In Mellin space DGLAP becomes

Q2
∂fN (Q2)

∂Q2
= γN,qq

(

αS(Q2)
)

fN (Q2)

DGLAP equation 
is diagonal

Anomalous dimension
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Exercise: compute 

Real: 

Use Sudakov parametrization:

kµ
= zpµ

+ k
µ
T +

k2
− k2

T

2zp · n
nµ

(p − k)µ = (1 − z)pµ
− k

µ
T −

k2

T

2(1 − z)p · n
nµ

Work in axial gauge

and check that P
real
qq (z) = CF

1 + z2

1 − z

Compute A from real by 
using fermion number 
conservation 

∫ 1

0

Pqq(x)dx = 0

Extract the leading contribution in 1/k2

P
virt

qq
= A δ(1 − z)

Virtual:

must be of the form

integral of valence (q-q̅) 
quark density (N=1 moment) 
cannot depend on Q2

gauge vector

P
(0)
qq
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kT · p = kT · n = 0



Scaling violations are:

γab(N) =

∫ 1

0

Pab(x)xN−1 The small x region corresponds to small N, 
whereas x→1 selects large N

γgg ∼

2CA

N − 1
N small

as N→∞

Main effect of increase in Q2 is shift of 
partons from larger to smaller x

γaa → −2Ca log N

  Scaling violations

 34

xN�1 ⇠ ⇥(1/N � (1� x))N large:

Positive at small x

Slightly negative at large x

Q2

x 1
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“Structure function” F2(x,Q2)
measured at HERA

The Parton model would predict F2 to 
depend only on x=Q2/2pq

Bjorken scaling

Scaling violations nicely consistent with 
DGLAP picture



In hadron collisions all phenomena are QCD related but we must 
distinguish between hard and soft processes

x1p1 x2p2

h2h1

Only hard scattering events can be controlled via 
the factorization theorem

Hard subprocess

Soft underlying event

Production of low pt 
hadrons: most common 

events

QCD at hadron colliders
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Hard processes are identified by the presence of a hard scale Q

This can be for example the invariant mass of a lepton pair, the transverse 
momentum of a jet or of a heavy quark...

The corresponding cross section can be written as

⇤(P1, P2) =
�

i,j

⇥
dx1dx2fi/h1(x1, µ

2
F )fj/h2(x2, µ

2
F )⇤̂ij(p1, p2, �S(µR), Q2;µ2

F , µ2
R)

p1 = x1P1 p2 = x2P2

fi/h(x, µ2
F )

x1

x2

h2

h1

X

F (Q)i

j

Parton distributions: 
universal but not 

perturbatively 
computable

�̂ij

Hard partonic cross section:
process dependent but 

perturbatively computable

fi/h1

fj/h2

 37
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According to the factorization theorem, the initial state collinear singularities
can be absorbed in the parton distribution functions as in the case of DIS

The partonic cross section can be computed in QCD perturbation theory as

⇤̂ij = �k
S

⇤

n

��S

⇥

⇥n
⇤n

ij

Different hard processes will contribute with different leading powers k:

- Vector boson production: k=0
- Jet production, heavy quark production: k=2

x1

x2

h2

h1

a

b X

F (Q)
Note that the 

generally speaking the 
factorization theorem

in hadron collisions does not 
have a solid proof as in DIS
(where Operator Product 

Expansion can be advocated) 
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The spectrum of the two hadrons provides two beams of incoming partons

The spectrum of longitudinal momenta is determined by the parton distributions

The centre of mass of the partonic interaction is normally boosted with respect 
to the laboratory frame

It is useful to classify the final state according to variables 
that transform simply under longitudinal boosts

We introduce the rapidity y and the azimuthal angle φ

y =
1

2
ln

E + pz

E − pz

pµ = (E, px, py, pz) = (mT cosh y, pT sin �, pT cos �, mT sinh y)

mT =
�

m2 + p2
T

Rapidity differences are boost invariant

Kinematics
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Varying Q and y Sensitivity to different x1 and x2

x1,2 = Q/
√

S e±y
x1x2S = Q2

x1 x2

Q2

y

h2h1

At large rapidities we have two 
competitive effects:
- small x enhancement of gluon 
and sea quark distributions
- large x suppression

The large x suppression always “wins”:  

The bulk of the events is 
concentrated in the central 
rapidity region (y not too large)

 40

ymax = lnQ/
p
S



10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
100

101

102

103

104

105

106

107

108

109

fixed
targetHERA

x1,2 = (M/14 TeV) exp(±y)
Q = M

LHC parton kinematics

M = 10 GeV

M = 100 GeV

M = 1 TeV

M = 10 TeV

66y = 40 224
Q

2    
(G

eV
2 )

x

Varying Q and y

Sensitivity to different x1,x2

x1,2 = Q/
√

S e±yx1x2S = Q2

In practice the rapidity is often replaced by the pseudorapidity

� = � ln tan(⇥/2)

It coincides with the rapidity in 
the massless limit 

LHC probes a kinematical region 
never reached before
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Determined by global fits to different data sets

 Parametrize at input scale 

xf(x, Q2

0) = Axα(1 − x)β(1 + ϵ
√

x + γx + .....)

Q0 = 1 − 4 GeV

Impose momentum sum rule:

Then fit to data to obtain the parameters

Standard procedure:

Evolve to desired Q2 and compute physical observables

Main groups: MSTW (now MMHT), CTEQ, NNPDF

and also: HERA, ABM….

Parton Distribution Functions

 42

X

a

Z 1

0
dxxfa(x,Q

2
0) = 1



Typical behaviour of parton densities in the proton: Q=2 GeV

All densities vanish as x→1 the 
gluon vanishing fastest

At x→0

- Strong rise of the gluon, which becomes dominant

- Also sea quarks increase driven by the gluon through 
g→qq̄ splitting

- Valence quarks vanish

u and d quarks peaked at 
x=0.2-0.3
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Typical behaviour of parton densities in the proton: Q=100 GeV

All densities vanish as x→1 the 
gluon vanishing fastest

At x→0

u and d quarks peaked at smaller 
x, gluon and sea dominant

- Strong rise of the gluon, which becomes dominant

- Also sea quarks increase driven by the gluon through 
g→qq̄ splitting

- Valence quarks vanish
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DIS:

Drell-Yan

Fixed target: valence quark densities 
(u-ū, d-d̄)

HERA:

quark densities 

Typical processes:

pp collisions: sensitive to antiquarks and sea 
densities

pp̄ collisions: sensitive to flavour 
asymmetries of valence quarks

q

q̄

V

h1

h2

Gluon and see quarks at small x
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The NNPDF approach

The fitting procedure relies on the choice of the functional form, which 
introduces a bias in the fit

The classical approach to PDF fitting is based on the choice of a (relatively) 
simple parametrization

The NNPDF approach generates Monte Carlo replicas of the 
experimental data

No need to rely on standard 
error propagation

More realistic error estimate

Fit PDFs by using a set of 
neural networks on each replica

Most recent efforts devoted to understand theory uncertainties
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Typical 
datasets1 TeV

100 GeV

Fixed target

HERA

(NNPDF3.1)



Good consistency in the well constrained region 50-500 GeV
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The Drell-Yan mechanism was historically the first process where parton 
model ideas developed for DIS were applied to hadron collisions

x1

x2

h2

h1

a

b X

Drell,Yan (1970)

��

l+

l�

σ(p1, p2;Q
2) =

∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fh1,a(x1, µ
2

F ) fh2,b(x2, µ
2

F )

×σ̂ab(x1p1, x2p2, αS(Q2), µ2

F )

The hard scale is given by the 
invariant mass Q² of the lepton pair

The Drell-Yan process

It lead to the discovery of W 
and Z bosons at CERN !
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The Drell-Yan mechanism was historically the first process where parton 
model ideas developed for DIS were applied to hadron collisions

x1

x2

h2

h1

a

b X

Drell,Yan (1970)

��

l+

l�

Same parton densities 
measured in DIS !

σ(p1, p2;Q
2) =

∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fh1,a(x1, µ
2

F ) fh2,b(x2, µ
2

F )

×σ̂ab(x1p1, x2p2, αS(Q2), µ2

F )

The hard scale is given by the 
invariant mass Q² of the lepton pair

The Drell-Yan process

It lead to the discovery of W 
and Z bosons at CERN !
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QED limit: ⇤ =
4
3
⇥

�2

ŝ

Average over number of colours Quark electric charge

p1 =
�

s

2
(x1, 0, 0, x1)

p2 =
⇥

s

2
(x2, 0, 0,�x2)

x1 x2

Q2

y

h2h1

y =
1
2

ln
E + pz

E � pz
=

1
2

ln
x1

x2

Kinematics
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d�̂qq̄

dQ2
=

�0

Nc
Q2

q �(ŝ�Q2)

�(q(p1)q̄(p2) ! l+l�) =
4

3
⇡
↵2

ŝ

1

Nc
Q2

q

�0 =
4

3
⇡
↵2

Q2

x1 = Q/
p
s ey

x2 = Q/
p
s e�y



In the parton model the parton distributions functions are independent of 
the scale

by constructing an adimensional quantity the Drell-Yan cross section
exhibits scaling in the variable τ=Q2/s

This scaling is completely analogous to the Bjorken scaling of DIS structure 
functions and is verified experimentally to a good approximation

Note that to test it one has to study                   at fixed τ

Scaling

 51

Q4 d�

dQ2
=

4

3
⇡
↵2

Nc
⌧

Z 1

0
dx1dx2�(x1x2 � ⌧)

X

q

Q2
q(fq(x1)fq̄(x2) + (q $ q̄)) =

4

3
⇡
↵2

Nc
⌧F(⌧)

Q4 d�

dQ2



The parton model neglects parton transverse momenta

dx f(x)� dk2
T dx P (kT, x)

�
d2kT P (kT, x) = f(x)

Lepton pair has zero transverse momentum in LO QCD

Assume:

with

Consider a simple model in which: P (kT, x) = h(kT)f(x)

1
⇥

d2⇥

d2pT
=

�
d2kT1d

2kT2 �(2)(kT1 + kT2 � pT)h(kT1)h(kT2)

x1 =
�

� exp(y)

x2 =
⇥

� exp(�y)
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d2�

dQ2dy
=

�0

Nc s

hX

q

Q2
q(fq(x1)fq̄(x2) + (q $ q̄))

i



Historically the relative 
abundance of Drell-Yan 
lepton pairs with large 
transverse momenta 
provided one of the 
evidences that the parton 
model was incomplete

Transverse momentum is not generated only by 
“intrinsic” motion of the quarks in the hadrons 

but also by hard gluon radiation

h(kT) =
b

�
exp(�b k2

T )

⇥kT ⇤ =
�

�/4b � 760 MeV

Assuming a Gaussian 
distribution

the data correspond to

indeed of the order of the
typical hadronic mass scale !

Dilepton spectrum from the
CFS collaboration (1981)

Hard radiation
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At higher energies the photon 
contribution must be 
supplemented with Z exchange

In practice lepton pair production 
around mZ

is often analyzed using the 
narrow width approximation

1
(ŝ�mZ)2 + m2

Z�2
Z

⇥ ⇥

mZ�Z
�(ŝ�m2

Z)

The normalization is fixed by the  condition that the two distributions have the 
same integral

Z production
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Since in the W→ lν decay the neutrino momentum is not reconstructed the W 
invariant mass cannot be measured

At LO, however the W has zero transverse momentum

The transverse momentum of the charged lepton carries information on mW

��

e�

�̄e1
�

d�

dp2
Te

=
3

m2
W

�
1� 4p2

Te

m2
W

⇥�1/2 �
1� 2p2

Te

m2
W

⇥

1
⇥

d⇥

d cos ��
=

3
8
(1 + cos2 ��) angular distribution of the charged 

lepton in the W rest frame

strong peak at        
(Jacobian peak)

In practice the peak is smeared by 
finite-width effects and QCD radiationpTe = mW /2

cos �� =
�

1� 4p2
Te

m2
W

⇥1/2

W production
mW measurement more difficult
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mT =
�

2pl
T pmiss

T (1� cos �)

W production: transverse mass

At LO                and

azimuthal angle between electron and 
neutrino momenta

⇥ = �
mT = 2pTe

pTe = pmiss
T

imply         

The transverse mass distribution 
has also a jacobian peak at mT = mW

The advantage of the transverse mass is that it 
is less sensitive to the W transverse momentum 
with respect to the electron pT

NB: If         is small                                     leave the transverse mass invariant 
to first order

pW
T pTe,� = ±p + pW

T /2

Define now
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W charge asymmetry
An important observable in W hadroproduction is the asymmetry in the 
rapidity distributions of the W bosons

In pp̅ collisions the W+ and W- are 
produced with equal rates but
W+ (W-) is produced mainly in the 
proton (antiproton) direction

A(yW ) =
d�(W+)

dyW
� d�(W�)

dyW

d�(W+)
dyW

+ d�(W�)
dyW

These asymmetries are mainly due to the fact that, on average, the u quark 
carries more proton momentum fraction than the d quark
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W charge asymmetry
An important observable in W hadroproduction is the asymmetry in the 
rapidity distributions of the W bosons

In pp collisions the W+ and W- are 
produced with different rates but 
W+ and W- rapidity distributions 
are forward-backward symmetric
W- distribution is central, whereas 
W+ is produced at larger rapidities

These asymmetries are mainly due to the fact that, on average, the u quark 
carries more proton momentum fraction than the d quark

A(yW ) =
d�(W+)

dyW
� d�(W�)

dyW

d�(W+)
dyW

+ d�(W�)
dyW
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A(y) =

dσ(W+)
dy

−

dσ(W−)
dy

dσ(W+)
dy

+ dσ(W−)
dy

u

ū = u

d

W
− If u in the proton is 

faster than d
W

+

In pp ̄collisions:

The W asymmetry

is a measure of u(x1)d(x2) − d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)

probes the relative shape of 
u and d quarks

W+ (W-)   produced mainly in p (p̅) 
direction

d̄ = d

W charge asymmetry
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in the proton in the proton

Anastasiou et al (2003)



measure the charged lepton asymmetryIn practice W→lν      

u d̄

e+ �

Angular momentum conservation: the e+ is mainly
produced in the direction of the antiquarkW

In the case of pp̄ collisions the W boson tends to follow the colliding up quark

Scattering angle in the W rest frame
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The V-A decay acts in the 
opposite direction and tends 

to dilute the effect in the 
lepton asymmetry



It is common to discuss QCD at high-energy in terms of partons

But quarks and gluons are never really visible since, immediately 
after being produced they fragment and hadronize

A jet is a collimated spray of energetic hadrons 
and is one of the most typical manifestation of 

QCD at high energy

By measuring its energy and direction one can get a handle on the 
the original parton

Jets
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How to define a jet ? A proper jet definition requires:

- a jet algorithm

- a recombination scheme

Jet algorithm: a set of rules for grouping particles into jets
usually involves a set of parameters that specify how close two 
particles must be to belong to the same jet

Recombination scheme: indicates what momentum must 
be assigned to the combination of two particles (the 
simplest is the sum of the 4-momenta)
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There are two broad 
categories of
jet algorithms: { 1) cone algorithms

2) sequential recombination algorithms

1) cone algorithms
they are based on a “top-bottom” approach: rely on the idea that 
QCD branching and hadronization do not change the energy flow

2) sequential recombination algorithms
they are based on a “bottom-up” approach: repeatedly recombine
the closest pair of particles according to some distance measure

G.Sterman, S.Weinberg (1977)
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The cone algorithms used in practice are “iterative cones” (IC) and were 
mostly used at the Tevatron

A seed particle i sets some initial direction, then one draws a circle around 
the seed of radius R in rapidity (or pseudorapidity) and azimuth, taking all j 
such that

�R2
ij = (yi � yj)2 + (�i � �j)2 < R2

The direction of the resulting sum is then taken as a new seed 
and the procedure is iterated until a stable cone is found

Questions:

Questions:

- How to choose the seeds ?
- What should be done when cones obtained by iterating two different seeds 
share some particles ?

Cone algorithms
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Overlapping cones:

First solution: progressive removal approach

- Start from the particle with the largest transverse momentum
- Once a stable cone is found, call it a jet
- Remove all the particles contained in the cone 
- Iterate

The use of the hardest particle as seed make these algorithms collinear unsafe

Second solution: split-merge approach

- Find all the stable cones (protojets) starting from ALL the particles as 
seeds (often a threshold in pT is assumed)

- Run a split-merge procedure to merge a pair of cones if more than a fraction 
f of the softer cone’s transverse momentum is shared by the harder cone

(often referred to as UA1-type cone algorithms)

The use of seeds make these algorithms infrared unsafe
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Iterative cone algorithms with progressive removal are collinear unsafe

pT

R R

{
1 jet

{ {
2 jets

In the first configuration the hardest parton is the central one and if the 
cone is large enough we get one jet

In the second configuration the central quark has split in a collinear qg pair

The number of jets should be insensitive to such a collinear splitting 
but now the hardest parton is the left one and we get two jets

Infrared and collinear safety
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In practice detectors provide a regularization to the collinear unsafety, but 
how this happens depends on the detector details and a jet cross section 
should be independent on them



Iterative cone algorithms with split-merge are infrared unsafe

a) In an event with 2 hard partons both acts as seeds and give a two jet configuration

b) A soft gluon acts as a seed and may give a new stable cone: a one jet 
configuration is found after the split-merge procedure

The algorithm is infrared unsafe and the jet cross section is divergent !

2 jets 1 jet

Midcone fix: search for additional stable cones by iterating from midpoints

Presented as IR safe and widely used in Run II at the Tevatron but still 
unsafe for three hard patron configurations
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Solution: find all stable cones through some exact procedure SIScone

G.Salam, G.Soyez (2007)Slow when number of particles to be clustered is large



   Sequential recombination algorithms find their roots in e+e- experiments

Go beyond just finding the jets: they assign a sequence to the clustering 
procedure that is somewhat connected to the branching at parton level 

   Much simpler to state than cone algorithms

Examples:

- Jade algorithm
- kT algorithm
- Cambridge-Achen algorithm
- anti-kT

 

Sequential algorithms
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 The first sequential recombination algorithm was introduced by the JADE 
collaboration in the 80’s

1. For each pair ij compute the distance:

yij =
2EiEj(1� cos �ij)

Q2

2. Find the minimum ymin of all yij

3. If  ymin is below a threshold ycut recombine i and j in a single particle 
(pseudojet) and go back to 1.

4. If not declare all remaining particles as jets and terminate

Q total energy

Jade
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It depends on a single parameter ycut: reducing  ycut resolves more jets

The JADE algorithm is infrared and collinear safe: soft and collinear 
splitting give very small yij and thus are recombined first

However the presence of EiEj in the distance let two soft particles moving in 
opposite directions to be recombined in the same jet

This is against physical intuition ! 
We expect a jet to be limited in angular reach

Another consequence is a complication in higher order logarithmic 
contributions to y23 that cannot be resummed to all orders

We may define the variable yn(n+1) as the value of ycut at which a n jet event 
becomes n+1-jet like

Jade
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The kT algorithm in e+e+ collisions is identical to the JADE algorithm except 
for the distance measure, which is

yij =
2min(E2

i , E2
j )(1� cos �ij)
Q2

In the collinear limit                and the numerator becomes�ij � 1 (min(Ei, Ej)�ij)2

It’s nothing but the squared transverse momentum of i relative to j
(i being the softer particle)           that’s why it is called  kT algorithm

In this way the distance between two soft and back to back particles
is larger than that between a soft particle and a hard one close in angle

S.Catani et al. (1991)

The kT algorithm in e+e- collisions

The clustering sequence retains useful approximate information of the
QCD branching process
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In hadronic collisions there are two difficulties to face:

The total energy Q is not defined

besides the divergences involving outgoing particles, there are divergences
between final state and incoming particles

S.Catani et al. (1993)
S.D.Ellis and D.Soper (1993)

diB = p2
Tidij = min(p2

Ti, p
2
Tj)

�R2
ij

D2

�R2
ij = (yi � yj)2 + (�i � �j)2

1. Compute all the distances       and

2. Find the minimum.

3. If it is a      recombine i and j and return to 1.

4. If it is a        declare i to be a final state jet, remove it and return to 1.

dij

diB

dij diB

Inclusive kT algorithm:

The kT algorithm in hadron collisions
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Arbitrarily soft particles can become jets in their own

A minimum transverse momentum for jets should be specified

The parameter D determines what it is called a jet:
Suppose i has no particles at a distance smaller than D:

    dij will be larger than diB for any j harder than i

The kT algorithm has been advocated by theorists because of its good 
properties

Experimentalists have questioned the use of the algorithm because of its 
speed limit (the clustering time for N particles naively increases as N³) 
and because it tends to produce rather irregular jets

The issue of speed is crucial in high-multiplicity environments 
like LHC or heavy-ion collisions

The algorithm has been reformulated by using techniques borrowed 
from computational geometry: in this way it scales as N lnN

M.Cacciari, G.Salam (2006)
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It works like the inclusive kT algorithm but using ΔRij as distance measure

It works by recombining the pair of particles with smallest ΔRij and 
repeating the procedure until all the clusters are separated by  ΔRij > R

The final objects are called jets

The clustering hierarchy is in angle rather than in transverse momentum

makes possible to look at the jet at different angular resolutions

G.Salam et al. (2008)

The Cambridge/Achen algorithm

Important for “filtering”, “trimming” and “pruning” techniques
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Like the kT algorithm it tends to produce rather irregular jets



M.Cacciari, G.Salam, G.Soyez (2008)

dij = min(p2p
Ti, p

2p
Tj)

�R2
ij

D2
diB = p2p

Ti

Define a family of algorithms each characterized by an integer p

p=1  kT algorithm

p=0  Cambridge-Aachen

What about p=-1 ? It seems a rather odd choice but...

A sequential recombination algorithm is the perfect cone algorithm !

Now the default for ATLAS and CMS experiments

It produces regular (circular) jets

Soft particles tend to cluster with hard ones long before they cluster among 
themselves

The anti-kT algorithm
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G.Salam (2009)



Inclusive jet cross section
 77


