Higgs Physics - Theory
Lecture I

The Higgs boson as predicted by the Standard Model of electroweak interactions

Laura Reina

CERN-Fermilab HCP Summer School, CERN, August, 29 2019
LHC Higgs-boson physics is as important as ever!

Discovery
(2012)

After Run 2
(2019)

Much improved statistics: main production and decay modes observed.

→ **Access to Higgs couplings:** Higgs portal to new physics!
Outline of these lectures

• **Lecture 1: the Standard-Model Higgs boson.**
 → EW gauge symmetry, Higgs mechanism.
 → Higgs-boson interactions.
 → Quantum constraints.

• **Lecture 2: Higgs-boson physics at the LHC.**
 → Production and decay modes, what do they probe.
 → Theoretical predictions and their accuracy.

• **Lecture 3: from Higgs-boson properties to new physics.**
 → Probing specific extensions of the SM.
 → Probing classes of interactions within SM boundaries.
The Standard Model of particle physics

“The Standard Model is a gauge invariant quantum field theory based on the local symmetry group \(SU(3) \times SU(2) \times U(1) \).”

\[
SU(3) \rightarrow \text{strong force } (g) \\
SU(2)_L \times U(1)_Y \rightarrow \text{electroweak force } (W_{1,2,3}, B_Y) \\
(Y = T^3 - Q)
\]

particle multiplets:

\[
\begin{pmatrix}
 \nu_e \\
 e_L
\end{pmatrix}, \begin{pmatrix}
 u \\
 d_L
\end{pmatrix} \leftrightarrow \begin{pmatrix}
 u \\
 u \\
 u \\
 d \\
 d \\
 d
\end{pmatrix}
\]

\[
SU(2) \leftarrow SU(3)
\]

with some caveats:

\(\leftrightarrow \) Masses of \(Z \) and \(W \) bosons breaks gauge invariance \(\leftrightarrow \) EWSB
\(\leftrightarrow \) Fermion masses breaks gauge invariance as well.
The Higgs discovery has constrained the mechanism of EWSB.

The **EW symmetry** is spontaneously broken (SSB) to $U(1)_Q$

$$SU(2)_L \times U(1)_Y \xrightarrow{\text{SSB}} U(1)_Q \quad \begin{cases} W^\pm, Z^0 & M_W, M_Z \neq 0 \\ \gamma & m_\gamma = 0 \end{cases}$$

After which, fermions get mass through Yukawa-type interactions.
The SM Lagrangian on a mug . . .

\[\mathcal{L}_{SM} = \mathcal{L}_{QCD} + \mathcal{L}_{EW} \]

\[\mathcal{L}_{QCD} \rightarrow \text{M. Grazzini’s lectures} \]

We will focus on:

\[\mathcal{L}_{EW} = \mathcal{L}^{\text{gauge}}_{EW} + \mathcal{L}^{\text{ferm}}_{EW} + \mathcal{L}^{\text{Yukawa}}_{EW} + \mathcal{L}^{\text{scalar}}_{EW} \]

\[\mathcal{L}^{\text{gauge}}_{EW} \rightarrow 1^{\text{st}} \text{ line} \]

\[\mathcal{L}^{\text{ferm}}_{EW} \rightarrow 2^{\text{nd}} \text{ line} \]

and in particular:

\[\mathcal{L}^{\text{Yukawa}}_{EW} \rightarrow 3^{\text{rd}} \text{ line} \]

\[\mathcal{L}^{\text{scalar}}_{EW} \rightarrow 4^{\text{th}} \text{ line} \]

Very simple and very \textit{complete} \rightarrow contains all kinds of \(d = 4 \) renormalizable interactions between scalar, fermion, and vector fields.
From Global to Local: gauging a symmetry

Abelian case (→ QED)

A theory of free Fermi fields described by the Lagrangian density

$$\mathcal{L} = \bar{\psi}(x)(i\partial \psi - m)\psi(x)$$

is invariant under a global $U(1)$ transformation ($\alpha=$constant phase)

$$\psi(x) \rightarrow e^{i\alpha} \psi(x) \text{ such that } \partial_\mu \psi(x) \rightarrow e^{i\alpha} \partial_\mu \psi(x)$$

The same is not true for a local $U(1)$ transformation ($\alpha = \alpha(x)$) since

$$\psi(x) \rightarrow e^{i\alpha(x)} \psi(x) \text{ but } \partial_\mu \psi(x) \rightarrow e^{i\alpha(x)} \partial_\mu \psi(x) + ige^{i\alpha(x)} \partial_\mu \alpha(x) \psi(x)$$

Need to introduce a covariant derivative D_μ such that

$$D_\mu \psi(x) \rightarrow e^{i\alpha(x)} D_\mu \psi(x)$$
Only possibility: introduce a vector field $A_\mu(x)$ transforming as

$$A_\mu(x) \rightarrow A_\mu(x) - \frac{1}{g} \partial_\mu \alpha(x)$$

and define a covariant derivative D_μ according to

$$D_\mu = \partial_\mu + igA_\mu(x)$$

modifying \mathcal{L} to accommodate D_μ and the gauge field $A_\mu(x)$ as

$$\mathcal{L} = \bar{\psi}(x)(i\slashed{D} - m)\psi(x) - \frac{1}{4} F^{\mu\nu}(x)F_{\mu\nu}(x)$$

where the last term is the Maxwell Lagrangian for a vector field A^μ, i.e.

$$F_{\mu\nu}(x) = \partial_\mu A_\nu(x) - \partial_\nu A_\mu(x) .$$

Requiring invariance under a local $U(1)$ symmetry has:

\rightarrow promoted a free theory of fermions to an interacting one;

\rightarrow fixed the form of the interaction in terms of a new vector field $A^\mu(x)$:

$$\mathcal{L}_{int} = -g \bar{\psi}(x)\gamma_\mu \psi(x)A^\mu(x)$$

\rightarrow no mass term $A^\mu A_\mu$ allowed by the symmetry \rightarrow this is QED.
Non-abelian case: Yang-Mills theories

Consider the same Lagrangian density

\[\mathcal{L} = \bar{\psi}(x)(i\dot{\psi} - m)\psi(x) \]

where \(\psi(x) \rightarrow \psi_i(x) \) \((i = 1, \ldots, n)\) is a \(n\)-dimensional representation of a non-abelian compact Lie group (e.g. \(SU(N)\)).

\(\mathcal{L} \) is invariant under the global transformation \(U(\alpha) \)

\[\psi(x) \rightarrow \psi'(x) = U(\alpha)\psi(x) , \quad U(\alpha) = e^{i\alpha^a T^a} = 1 + i\alpha^a T^a + O(\alpha^2) \]

where \(T^a \) \((a = 1, \ldots, d_{adj})\) are the generators of the group infinitesimal transformations with algebra,

\[[T^a, T^b] = i f^{abc} T^c \]

and the corresponding Noether’s current are conserved. However, requiring \(\mathcal{L} \) to be invariant under the corresponding local transformation \(U(x) \)

\[U(x) = 1 + i\alpha^a(x)T^a + O(\alpha^2) \]

brings us to replace \(\partial_\mu \) by a covariant derivative

\[D_\mu = \partial_\mu - igA_\mu^a(x)T^a \]
in terms of vector fields $A^a_\mu(x)$ that transform as

\[A^a_\mu(x) \rightarrow A^a_\mu(x) + \frac{1}{g} \partial_\mu \alpha^a(x) + f^{abc} A^b_\mu(x) \alpha^c(x) \]

such that

\[D_\mu \rightarrow U(x) D_\mu U^{-1}(x) \]

\[D_\mu \psi(x) \rightarrow U(x) D_\mu U^{-1}(x) U(x) \psi = U(x) D_\mu \psi(x) \]

\[F_{\mu\nu} \equiv \frac{i}{g} [D_\mu, D_\nu] \rightarrow U(x) F_{\mu\nu} U^{-1}(x) \]

The invariant form of \mathcal{L} or Yang Mills Lagrangian will then be

\[\mathcal{L}_{YM} = \mathcal{L}(\psi, D_\mu \psi) - \frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} = \bar{\psi} (i \not{D} - m) \psi - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu} \]

where $F_{\mu\nu} = F_{\mu\nu}^a T^a$ and

\[F_{\mu\nu}^a = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \]

Notice: boxed part is lines 1+2 of the mug Lagrangian!
Also notice that:

- **as in the abelian case:**
 - mass terms $A^{a,\mu} A^a_{\mu}$ are forbidden by symmetry: gauge bosons are massless.
 - the form of the interaction between fermions and gauge bosons is fixed by symmetry to be
 \[
 \mathcal{L}_{int} = -g \bar{\psi}(x) \gamma^\mu T^a \psi(x) A^{a,\mu}(x)
 \]

- **at difference from the abelian case:**
 - gauge bosons carry a group charge and therefore ...
 - gauge bosons have self-interaction.
 - the quantization procedure can be trickier (gauge fixing, ghosts).

Can we build a massive gauge theory?
Feynman rules, Yang-Mills theory:

\[\frac{p}{a} \rightarrow \frac{i \delta^{ab}}{\not{p} - m} \]

\[i \gamma^\mu (T^{c})_{ij} \]

\[\frac{k}{\mu,a} \rightarrow \frac{-i}{k^2} \left[g_{\mu \nu} - (1 - \xi) \frac{k_{\mu} k_{\nu}}{k^2} \right] \delta^{ab} \]

\[g f^{abc} \left(g^{\beta \gamma} (q - r)^\alpha + g^{\gamma \alpha} (r - p)^\beta + g^{\alpha \beta} (p - q)^\gamma \right) \]

\[-i g^2 \left[f^{abe} f^{cde} (g^{\alpha \gamma} g^{\beta \delta} - g^{\alpha \delta} g^{\beta \gamma}) + f^{ace} f^{bde} (\cdots) + f^{ade} f^{bce} (\cdots) \right] \]
Spontaneous Breaking of a Gauge Symmetry

Higgs mechanism, abelian case: abelian gauge theory (one vector field $A^\mu(x)$) coupled to one complex scalar field $\phi(x)$:

$$\mathcal{L} = \mathcal{L}_A + \mathcal{L}_\phi$$

where

$$\mathcal{L}_A = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} = -\frac{1}{4} (\partial^\mu A^\nu - \partial^\nu A^\mu)(\partial_\mu A_\nu - \partial_\nu A_\mu)$$

and ($D^\mu = \partial^\mu + ig A^\mu$)

$$\mathcal{L}_\phi = (D^\mu \phi)^* D_\mu \phi - V(\phi) = (D^\mu \phi)^* D_\mu \phi - \mu^2 \phi^* \phi - \lambda (\phi^* \phi)^2$$

\mathcal{L} invariant under local $U(1)$ symmetry:

$$\phi(x) \rightarrow e^{i\alpha(x)} \phi(x)$$

$$A^\mu(x) \rightarrow A^\mu(x) + \frac{1}{g} \partial^\mu \alpha(x)$$

Mass term for A^μ breaks the $U(1)$ gauge invariance (same as before).
Can we build a gauge invariant massive theory? Yes.

Consider the potential of the scalar field:

\[V(\phi) = \mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2 \]

where \(\lambda > 0 \) (to be bounded from below), and observe that:

\[\mu^2 > 0 \rightarrow \text{unique minimum: } \phi^* \phi = 0 \]

\[\mu^2 < 0 \rightarrow \text{degeneracy of minima: } \phi^* \phi = \frac{-\mu^2}{2\lambda} \]
\(\mu^2 > 0 \rightarrow \) electrodynamics of a massless photon and a massive scalar field of mass \(\mu \) \((g = -e)\).

\(\mu^2 < 0 \rightarrow \) when we **choose a minimum**, the original \(U(1) \) symmetry is spontaneously broken or hidden.

\[
\phi_0 = \left(-\frac{\mu^2}{2\lambda} \right)^{1/2} = \frac{v}{\sqrt{2}} \quad \rightarrow \quad \phi(x) = \phi_0 + \frac{1}{\sqrt{2}} (\phi_1(x) + i\phi_2(x))
\]

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \frac{1}{2} g^2 v^2 A^\mu A_\mu + \frac{1}{2} (\partial^\mu \phi_1)^2 + \mu^2 \phi_1^2 + \frac{1}{2} (\partial^\mu \phi_2)^2 + gv A_\mu \partial^\mu \phi_2 + \ldots
\]

Side remark: The \(\phi_2 \) field actually generates the correct transverse structure for the mass term of the (now massive) \(A^\mu \) field propagator:

\[
\langle A^\mu(k) A^\nu(-k) \rangle = \frac{-i}{k^2 - m_A^2} \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{k^2} \right) + \ldots
\]
More convenient parameterization (unitary gauge):

\[
\phi(x) = \frac{e^{i\chi(x)/v}}{\sqrt{2}} (v + H(x)) \quad \overset{U(1)}{\longrightarrow} \quad \frac{1}{\sqrt{2}} (v + H(x))
\]

The \(\chi(x) \) degree of freedom (“would-be” Goldstone boson) is rotated away using gauge invariance, while the original Lagrangian becomes:

\[
\mathcal{L} = \mathcal{L}_A + \frac{g^2 v^2}{2} A^\mu A_\mu + \frac{1}{2} \left(\partial^\mu H \partial_\mu H + 2\mu^2 H^2 \right) + \ldots
\]

which describes now the dynamics of a system made of:

- a massive vector field \(A^\mu \) with \(m_A^2 = g^2 v^2 \);
- a real scalar field \(H \) of mass \(m_H^2 = -2\mu^2 = 2\lambda v^2 \): the Higgs field.

\[\downarrow\]

Total number of degrees of freedom is balanced
(2 vector + 2 scalar d.o.f) \(\rightarrow \) (3 vector+1 scalar d.o.f.)
Higgs mechanism, non-abelian case: several vector fields $A^a_\mu(x)$ and several (real) scalar field $\phi_i(x)$:

\[
\mathcal{L} = \mathcal{L}_A + \mathcal{L}_\phi \quad , \quad \mathcal{L}_\phi = \frac{1}{2}(D^\mu \phi)^2 - V(\phi) \quad , \quad V(\phi) = \mu^2 \phi^2 + \frac{\lambda}{2} \phi^4
\]

($\mu^2 < 0$, $\lambda > 0$) invariant under a non-Abelian symmetry group G:

\[
\phi_i \longrightarrow (1 + i\alpha^a t^a)_{ij} \phi_j \quad t^a \overset{t^a = iT^a}{\longrightarrow} (1 - \alpha^a T^a)_{ij} \phi_j
\]

(s.t. $D_\mu = \partial_\mu + gA^a_\mu T^a$). In analogy to the Abelian case:

\[
\frac{1}{2}(D_\mu \phi)^2 \longrightarrow \ldots + \frac{1}{2} g^2 (T^a \phi)_i (T^b \phi)_i A^a_\mu A^{b\mu} + \ldots
\]

\[
\phi_{\text{min}} \overset{\phi \rightarrow \phi_0}{\longrightarrow} \ldots + \frac{1}{2} g^2 (T^a \phi_0)_i (T^b \phi_0)_i A^a_\mu A^{b\mu} + \ldots = m^2_{\mu
u}
\]

\[
\begin{align*}
T^a \phi_0 &\neq 0 \quad \longrightarrow \quad \text{massive vector boson + (Goldstone boson)} \\
T^a \phi_0 &= 0 \quad \longrightarrow \quad \text{massless vector boson + massive scalar field}
\end{align*}
\]
Classical \rightarrow Quantum:

$V(\phi) \rightarrow V_{eff}(\varphi_{cl})$

The stable vacuum configurations of the theory are now determined by the extrema of the Effective Potential:

$$V_{eff}(\varphi_{cl}) = -\frac{1}{VT} \Gamma_{eff}[\phi_{cl}] \ , \ \phi_{cl} = \text{constant} = \varphi_{cl}$$

where

$$\Gamma_{eff}[\phi_{cl}] = W[J] - \int d^4y J(y) \phi_{cl}(y) \ , \ \phi_{cl}(x) = \frac{\delta W[J]}{\delta J(x)} = \langle 0|\phi(x)|0 \rangle_J$$

$W[J] \rightarrow$ generating functional of connected correlation functions
$\Gamma_{eff}[\phi_{cl}] \rightarrow$ generating functional of 1PI connected correlation functions

$V_{eff}(\varphi_{cl})$ can be organized as a loop expansion (expansion in \hbar), s.t.:

$$V_{eff}(\varphi_{cl}) = V(\varphi_{cl}) + \text{loop effects}$$

SSB \rightarrow non trivial vacuum configurations
The R_ξ gauges: nature of would-be Goldstone bosons made explicit.

Consider the abelian case:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^\mu \phi)^* D_\mu \phi - V(\phi)$$

upon SSB:

$$\phi(x) = \frac{1}{\sqrt{2}} ((v + \phi_1(x)) + i\phi_2(x))$$

$$\uparrow$$

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} (\partial^\mu \phi_1 + gA^\mu \phi_2)^2 + \frac{1}{2} (\partial^\mu \phi_2 - gA^\mu (v + \phi_1))^2 - V(\phi)$$

Quantizing using the gauge fixing condition:

$$G = \frac{1}{\sqrt{\xi}} (\partial_\mu A^\mu + \xi g v \phi_2)$$

in the generating functional

$$Z = C \int \mathcal{D}A \mathcal{D}\phi_1 \mathcal{D}\phi_2 \exp \left[\int d^4x \left(\mathcal{L} - \frac{1}{2} G^2 \right) \right] \det \left(\frac{\delta G}{\delta \alpha} \right)$$

($\alpha \rightarrow$ gauge transformation parameter)
\[
\mathcal{L} - \frac{1}{2} G^2 = -\frac{1}{2} A_\mu \left(-g^{\mu\nu} \partial^2 + \left(1 - \frac{1}{\xi} \right) \partial^\mu \partial^\nu - (gv)^2 g^{\mu\nu} \right) A_\nu
\]

\[
\frac{1}{2} (\partial_\mu \phi_1)^2 - \frac{1}{2} m_{\phi_1}^2 \phi_1^2 + \frac{1}{2} (\partial_\mu \phi_2)^2 - \frac{\xi}{2} (gv)^2 \phi_2^2 + \cdots
\]

\[+ \]

\[
\mathcal{L}_{ghost} = \bar{c} \left[-\partial^2 - \xi (gv)^2 \left(1 + \frac{\phi_1}{\nu} \right) \right] c
\]

such that:

\[
\langle A^\mu(k)A^\nu(-k) \rangle = \frac{-i}{k^2 - m_A^2} \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{k^2} \right) + \frac{-i\xi}{k^2 - \xi m_A^2} \left(\frac{k^\mu k^\nu}{k^2} \right)
\]

\[
\langle \phi_1(k)\phi_1(-k) \rangle = \frac{-i}{k^2 - m_{\phi_1}^2}
\]

\[
\langle \phi_2(k)\phi_2(-k) \rangle = \langle c(k)\bar{c}(-k) \rangle = \frac{-i}{k^2 - \xi m_A^2}
\]

Goldtone boson \(\phi_2 \), \(\Longleftrightarrow \) longitudinal gauge bosons
Glashow-Weinberg-Salam Model, i.e. the SM:
Spontaneously broken Yang-Mills theory based on $SU(2)_L \times U(1)_Y$.

- $SU(2)_L \rightarrow$ weak isospin group, gauge coupling g:
 - three generators: $T^i = \sigma^i / 2$ ($\sigma^i =$ Pauli matrices, $i = 1, 2, 3$)
 - three gauge bosons: W^μ_1, W^μ_2, and W^μ_3
 - $\psi_L = \frac{1}{2}(1 - \gamma_5)\psi$ fields are doublets of $SU(2)$
 - $\psi_R = \frac{1}{2}(1 + \gamma_5)\psi$ fields are singlets of $SU(2)$
 - mass terms not allowed by gauge symmetry

- $U(1)_Y \rightarrow$ weak hypercharge group ($Q = T_3 + Y$), gauge coupling g':
 - one generator \rightarrow each field has a Y charge
 - one gauge boson: B^μ

Example: first generation

$$L_L = \begin{pmatrix}
\nu_{eL} \\
e_L \\
\nu_{eR} \\
e_R
\end{pmatrix}_Y = -1/2 \quad \begin{array}{c}
(\nu_{eR})_Y = 0 \\
(e_R)_Y = -1
\end{array}$$

$$Q_L = \begin{pmatrix}
u_L \\
u_R \\
\frac{2}{3} \\
\frac{1}{3}
\end{pmatrix}_Y = -1/3 \quad \begin{array}{c}
u_R)_Y = 2/3 \\
(d_R)_Y = -1/3
\end{array}$$

\[
L_L = \begin{pmatrix}
u_{eL} \\
e_L \\
\nu_{eR} \\
e_R
\end{pmatrix}_Y = -1/2 \quad \begin{array}{c}
(\nu_{eR})_Y = 0 \\
(e_R)_Y = -1
\end{array}$$

\[
Q_L = \begin{pmatrix}
u_L \\
u_R \\
\frac{2}{3} \\
\frac{1}{3}
\end{pmatrix}_Y = -1/3 \quad \begin{array}{c}
u_R)_Y = 2/3 \\
(d_R)_Y = -1/3
\end{array}$$
Three fermionic generations, summary of gauge quantum numbers:

\[
\begin{align*}
Q^i_L &= \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} t_L \\ b_L \end{pmatrix} & \quad SU(3)_C & SU(2)_L & U(1)_Y & U(1)_Q \\
u^i_R &= u_R \begin{pmatrix} c_R \\ t_R \end{pmatrix} & 3 & 2 & \frac{1}{6} & \frac{2}{3} \\
d^i_R &= d_R \begin{pmatrix} s_R \\ b_R \end{pmatrix} & 3 & 1 & -\frac{1}{3} & -\frac{1}{3}
\end{align*}
\]

\[
\begin{align*}
L^i_L &= \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} & 1 & 2 & -\frac{1}{2} & 0 \\
\nu^i_R &= \begin{pmatrix} \nu_{eR} \\ \nu_{\mu R} \\ \nu_{\tau R} \end{pmatrix} & 1 & 1 & -1 & -1
\end{align*}
\]

where a minimal extension to include \(\nu^i_R\) has been allowed (notice however that it has zero charge under the entire SM gauge group!)
Lagrangian of fermion fields

For each generation (here specialized to the first generation):

\[
\mathcal{L}_{\text{EW}}^{\text{ferm}} = \bar{L}_L (i \not\! \! \! \partial) L_L + \bar{e}_R (i \not\! \! \! \partial) e_R + \bar{\nu}_e R (i \not\! \! \! \partial) \nu_e R + \bar{Q}_L (i \not\! \! \! \partial) Q_L + \bar{u}_R (i \not\! \! \! \partial) u_R + \bar{d}_R (i \not\! \! \! \partial) d_R
\]

where in each term the covariant derivative is given by

\[
D_\mu = \partial_\mu - ig W_\mu^i T^i - ig' \frac{1}{2} Y B_\mu
\]

and \(T^i = \sigma^i / 2\) for L-fields, while \(T^i = 0\) for R-fields \((i = 1, 2, 3)\), i.e.

\[
D_{\mu,L} = \partial_\mu - \frac{ig}{\sqrt{2}} \begin{pmatrix} 0 & W^+_\mu \\ W^-_\mu & 0 \end{pmatrix} - \frac{i}{2} \begin{pmatrix} g W^3_\mu - g' Y B_\mu & 0 \\ 0 & g W^3_\mu - g' Y B_\mu \end{pmatrix}
\]

\[
D_{\mu,R} = \partial_\mu + ig' \frac{1}{2} Y B_\mu
\]

with

\[
W^\pm = \frac{1}{\sqrt{2}} (W^1_\mu \pm iW^2_\mu)
\]
$\mathcal{L}_{\text{EW}}^\text{ferm}$ can then be written as

$$\mathcal{L}_{\text{EW}}^\text{ferm} = \mathcal{L}_{\text{kin}}^\text{ferm} + \mathcal{L}_{\text{CC}} + \mathcal{L}_{\text{NC}}$$

where

$$\mathcal{L}_{\text{kin}}^\text{ferm} = \bar{L}_L(i\slashed{\partial})L_L + \bar{e}_R(i\slashed{\partial})e_R + \ldots$$

$$\mathcal{L}_{\text{CC}} = \frac{g}{\sqrt{2}} W^+_{\mu} \bar{\nu}_e L \gamma^\mu e_L + W^-_{\mu} \bar{e}_L \gamma^\mu \nu_e L + \ldots$$

$$\mathcal{L}_{\text{NC}} = \frac{g}{2} W^3_{\mu} [\bar{\nu}_e L \gamma^\mu \nu_e L - \bar{e}_L \gamma^\mu e_L] + \frac{g'}{2} B_{\mu} [Y(L)(\bar{\nu}_e L \gamma^\mu \nu_e L + \bar{e}_L \gamma^\mu e_L)$$

$$+ Y(e_R)\bar{\nu}_e R \gamma^\mu \nu_e R + Y(e_R)\bar{e}_R \gamma^\mu e_R] + \ldots$$

where

$$W^\pm = \frac{1}{\sqrt{2}} (W^1_{\mu} \mp iW^2_{\mu}) \rightarrow \text{mediators of Charged Currents}$$

W^3_{μ} and $B_{\mu} \rightarrow \text{mediators of Neutral Currents}.$

$$\Downarrow$$

However neither W^3_{μ} nor B_{μ} can be identified with the photon field $A_{\mu},$ because they couple to neutral fields.
Rotate W_μ^3 and B_μ introducing a weak mixing angle (θ_W)

\[W_\mu^3 = \sin \theta_W A_\mu + \cos \theta_W Z_\mu \]
\[B_\mu = \cos \theta_W A_\mu - \sin \theta_W Z_\mu \]

such that the kinetic terms are still diagonal and the neutral current Lagrangian becomes

\[\mathcal{L}_{NC} = \bar{\psi} \gamma^\mu \left(g \sin \theta_W T^3 + g' \cos \theta_W \frac{Y}{2} \right) \psi A_\mu + \bar{\psi} \gamma^\mu \left(g \cos \theta_W T^3 - g' \sin \theta_W \frac{Y}{2} \right) \psi Z_\mu \]

for $\psi^T = (\nu_{eL}, e_L, \nu_{eR}, e_R, \ldots)$. One can then identify ($Q \rightarrow$ e.m. charge)

\[eQ = g \sin \theta_W T^3 + g' \cos \theta_W \frac{Y}{2} \]

and, e.g., from the leptonic doublet L_L derive that

\[\begin{cases}
\frac{g}{2} \sin \theta_W - \frac{g'}{2} \cos \theta_W = 0 \\
-\frac{g}{2} \sin \theta_W - \frac{g'}{2} \cos \theta_W = -e
\end{cases} \quad \rightarrow \quad g \sin \theta_W = g' \cos \theta_W = e \]
\[A_\mu = -ieQ_f \gamma^\mu \]
\[W_\mu = \frac{ie}{2\sqrt{2}s_w} \gamma^\mu (1 - \gamma_5) \]
\[Z_\mu = ie\gamma^\mu (v_f - a_f \gamma_5) \]

where

\[v_f = -\frac{s_w}{c_w} Q_f + \frac{T_f^3}{2s_W c_W} \]
\[a_f = \frac{T_f^3}{2s_W c_W} \]
Lagrangian of gauge fields

\[\mathcal{L}_{EW}^{\text{gauge}} = -\frac{1}{4} W_\mu^a W^{a,\mu\nu} - \frac{1}{4} B_\mu B^{\mu\nu} \]

where

\[B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]
\[W_\mu^a = \partial_\mu W_\nu^a - \partial_\nu W_\mu^a + \epsilon^{abc} W_\mu^b W_\nu^c \]

in terms of physical fields:

\[\mathcal{L}_{EW}^{\text{gauge}} = \mathcal{L}_{kin}^{\text{gauge}} + \mathcal{L}_{EW}^{3V} + \mathcal{L}_{EW}^{4V} \]

where

\[\mathcal{L}_{kin}^{\text{gauge}} = -\frac{1}{2} (\partial_\mu W_\nu^+ - \partial_\nu W_\mu^+)(\partial^\mu W^{-\nu} - \partial^\nu W^{-\mu}) \]
\[-\frac{1}{4} (\partial_\mu Z_\nu - \partial_\nu Z_\mu)(\partial^\mu Z^{-\nu} - \partial^\nu Z^{-\mu}) - \frac{1}{4} (\partial_\mu A_\nu - \partial_\nu A_\mu)(\partial^\mu A^{-\nu} - \partial^\nu A^{-\mu}) \]
\[\mathcal{L}_{EW}^{3V} = (3\text{-gauge-boson vertices involving } ZW^+W^- \text{ and } AW^+W^-) \]
\[\mathcal{L}_{EW}^{4V} = (4\text{-gauge-boson vertices involving } ZZW^+W^-, AAW^+W^-, AZW^+W^-, \text{ and } W^+W^-W^+W^-) \]
\[
\begin{align*}
\frac{k}{\mu} & = \frac{-i}{k^2 - M_V^2} \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{M_V^2} \right) \\
W_\mu^+ & = i e C_V \left[g_{\mu\nu}(k^+_\nu - k^-\mu) + g_{\nu\rho}(k^-\mu - k_V\rho) + g_{\rho\mu}(k_V - k^+_\nu) \right] \\
W^-_\mu & = i e^2 C_{VV'} \left(2g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho} \right)
\end{align*}
\]

where

\[
C_\gamma = 1 \quad , \quad C_Z = -\frac{c_W}{s_W}
\]

and

\[
C_{\gamma\gamma} = -1 \quad , \quad C_{ZZ} = -\frac{c_W^2}{s_W^2} \quad , \quad C_{\gamma Z} = \frac{c_W}{s_W} \quad , \quad C_{WW} = \frac{1}{s_W^2}
\]
The Higgs sector of the Standard Model: $SU(2)_L \times U(1)_Y \xrightarrow{SSB} U(1)_Q$

Introduce one complex scalar doublet of $SU(2)_L$ with $Y = 1/2$:

$$
\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \leftrightarrow \mathcal{L}^{SSB}_{EW} = (D^\mu \phi)^\dagger D_\mu \phi - \mu^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2
$$

where $D_\mu \phi = (\partial_\mu - igW^a_\mu T^a - ig'Y_\phi B_\mu), (T^a = \sigma^a/2, a = 1, 2, 3)$.

The SM symmetry is spontaneously broken when $\langle \phi \rangle$ is chosen to be (e.g.):

$$
\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \text{ with } v = \left(\frac{-\mu^2}{\lambda} \right)^{1/2} \quad (\mu^2 < 0, \lambda > 0)
$$

The gauge boson mass terms arise from:

$$
(D^\mu \phi)^\dagger D_\mu \phi \rightarrow \cdots + \frac{1}{8} (0 \ v) \left(gW^a_\mu \sigma^a + g' B_\mu \right) \left(gW^{b\mu} \sigma^b + g' B^\mu \right) \begin{pmatrix} 0 \\ v \end{pmatrix} + \cdots
$$

$$
\rightarrow \cdots + \frac{1}{2} \frac{v^2}{4} \left[g^2 (W^1_\mu)^2 + g^2 (W^2_\mu)^2 + (-gW^3_\mu + g' B_\mu)^2 \right] + \cdots
$$
And correspond to the weak gauge bosons:

\[
W^\pm_\mu = \frac{1}{\sqrt{2}} (W^1_\mu \mp iW^2_\mu) \quad \rightarrow \quad M_W = g\frac{v}{2}
\]

\[
Z_\mu = \frac{1}{\sqrt{g^2 + g'^2}} (gW^3_\mu - g'B_\mu) \quad \rightarrow \quad M_Z = \sqrt{g^2 + g'^2} \frac{v}{2}
\]

while the linear combination orthogonal to \(Z_\mu\) remains massless and corresponds to the photon field:

\[
A_\mu = \frac{1}{\sqrt{g^2 + g'^2}} (g'W^3_\mu + gB_\mu) \quad \rightarrow \quad M_A = 0
\]

Notice: using the definition of the weak mixing angle, \(\theta_w\):

\[
\cos \theta_w = \frac{g}{\sqrt{g^2 + g'^2}} \quad , \quad \sin \theta_w = \frac{g'}{\sqrt{g^2 + g'^2}}
\]

the \(W\) and \(Z\) masses are related by:

\[
M_W = M_Z \cos \theta_w
\]
The scalar sector becomes more transparent in the unitary gauge:

\[
\phi(x) = e^{i \frac{x}{v} \vec{\chi}(x) \cdot \vec{\tau}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \xrightarrow{SU(2)} \phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}
\]

after which the Lagrangian becomes

\[
\mathcal{L} = \mu^2 H^2 - \lambda v H^3 - \frac{1}{4} H^4 = -\frac{1}{2} M_H^2 H^2 - \sqrt{\lambda} M_H H^3 - \frac{1}{4} \lambda H^4
\]

Three degrees of freedom, the \(\chi^a(x) \) Goldstone bosons, have been reabsorbed into the longitudinal components of the \(W^\pm_\mu \) and \(Z_\mu \) weak gauge bosons. One real scalar field remains:

the Higgs boson, \(H \), with mass \(M_H^2 = -2\mu^2 = 2\lambda v^2 \)

and self-couplings:

\[
H \quad H = -3i \frac{M_H^2}{v}
\]

\[
H \quad H = -3i \frac{M_H^2}{v^2}
\]
From \((D^\mu \phi)^\dagger D_\mu \phi \rightarrow\) Higgs-Gauge boson couplings:

\[H = 2i \frac{M^2_V}{v} g^{\mu\nu}, \]

\[= 2i \frac{M^2_V}{v^2} g^{\mu\nu}. \]

Notice: The entire Higgs sector depends on only two parameters, e.g. \(M_H\) and \(v\).

\(v\) measured in \(\mu\)-decay:

\[v = (\sqrt{2}G_F)^{-1/2} = 246 \text{ GeV} \rightarrow \text{SM Higgs Physics depends on } M_H \]

Run 1+2 (combined): \(M_H = 125.09 \pm 0.24 (\pm 0.21) \text{ GeV} \)
Also: remember Higgs-gauge boson loop-induced couplings:

Surprisingly important in Higgs-boson phenomenology!
Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms $m_{Q_i} Q^i_L u^i_R, \ldots$, but all fermions are massive.

Fermion masses are generated via gauge invariant Yukawa couplings:

$$\mathcal{L}_{Yukawa}^{EW} = -\Gamma_{u}^{ij} \bar{Q}^i_L \phi^c u^j_R - \Gamma_{d}^{ij} \bar{Q}^i_L \phi d^j_R - \Gamma_{e}^{ij} \bar{L}^i_L \phi l^j_R + h.c.$$ such that, upon spontaneous symmetry breaking:

$$\mathcal{L}_{Yukawa}^{EW} = -\Gamma_{u}^{ij} \bar{u}^i_L \frac{v + H}{\sqrt{2}} u^j_R - \Gamma_{d}^{ij} \bar{d}^i_L \frac{v + H}{\sqrt{2}} d^j_R - \Gamma_{e}^{ij} \bar{l}^i_L \frac{v + H}{\sqrt{2}} l^j_R + h.c.$$

$$= - \sum_{f,i,j} \bar{f}^i_L M_f^{ij} f^j_R \left(1 + \frac{H}{v}\right) + h.c.$$

where

$$M_f^{ij} = \Gamma_f^{ij} \frac{v}{\sqrt{2}}$$

is a non-diagonal mass matrix.
Upon diagonalization (by unitary transformation U_L and U_R)

$$M_D = (U_L^f)^\dagger M_f U_R^f$$

and defining mass eigenstates:

$$f'_L = (U_L^f)_{ij} f_L^j \quad \text{and} \quad f'_R = (U_R^f)_{ij} f_R^j$$

the fermion masses are extracted as

$$\mathcal{L}_{EW}^{\text{Yukawa}} = \sum_{f,i,j} \bar{f}'_L [(U_L^f)^\dagger M_f U_R^f] f'_R \left(1 + \frac{H}{v} \right) + \text{h.c.}$$

$$= \sum_{f,i} m_f \left(\bar{f}'_L f'_R + \bar{f}'_R f'_L \right) \left(1 + \frac{H}{v} \right)$$

$$\bar{f} \quad \quad \quad \quad H \quad = -i \frac{m_f}{v} = -i y_f$$

\[\]
In terms of the new mass eigenstates the quark part of \mathcal{L}_{CC} now reads

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \bar{u}'_L [(U^u_L)^\dagger U^d_R] \gamma^\mu d^j_L + \text{h.c.}$$

where

$$V_{CKM} = (U^u_L)^\dagger U^d_R$$

is the Cabibbo-Kobayashi-Maskawa matrix, origin of flavour mixing in the SM → G.Wilkinson’s lectures
LHC Run 1+Run 2: first measurements of Higgs couplings

Higgs couplings to gauge bosons measured to 10-15% level.
Higgs couplings to 3^{rd}-generation fermions measured at 20-30% level.
First bound on Higgs self-coupling ($\kappa_\lambda = \lambda_3^{} / \lambda_3^{SM}$)

$-11.8 \leq \kappa_\lambda \leq 18.8$ (95% CL) [CMS, PRL 122, 121803]

$-5.0 \leq \kappa_\lambda \leq 12.0$ (95% CL) [ATLAS, arXiv:1906.02025]
SM Higgs-boson decay branching ratios and width

These curves include: **tree level** + **QCD and EW loop corrections**.

- Can you make sense of these plots?
- You have all the building blocks to calculate them! How do your results compare with the plots above?
- You can also use automated tools (see e.g. HDECAY, and its extensions).
- Observe difference between light and heavy Higgs.