High-density QCD:
Exploring high-density effects in pp and p-Pb collisions

Marco van Leeuwen
Nikhef, Utrecht University

Disclaimers/apologies:
- Focus on highlighting important concepts; not on showing the latest results
- Results shows are biased towards ALICE for practical reasons

CERN-Fermilab Hadron Collider Physics Summer School
28 Aug - 6 Sep 2019
Single particle R_{AA} revisited: particle type dependence

Low p_T: increase of baryon production
Mass dependence of radial flow

$p_T > 8$ GeV: baryon, meson R_{AA} similar
as expected from parton energy loss
Jets and parton energy loss

Two new aspects to pursue

Jets: parton showers + hadronisation

Explore energy loss of multi-parton states:
Interference effects, distance dependence?

Angular distribution of photon radiation:
1) In-cone radiation: $R_{AA} = 1$, change of fragmentation
2) Out-of-cone radiation: $R_{AA} < 1$
Nuclear modification factor for jets

$R_{AA} < 1$ out to high $p_T \approx 800$ GeV

No strong p_T-dependence: suggests increase of ΔE vs E

Note: 10% energy loss for a 800 GeV jet is 80 GeV!
Where is the ‘lost energy’: Looking outside the jet cone

Momentum balance variable:

\[p_{T,\text{miss}}^{\parallel} = \sum_{\text{tracks}} p_T \cos(\varphi - \varphi_{\text{jet}}) \]

Momentum imbalance restored by hadrons at:
- large angle \(R > 0.8 \)
- small \(p_T \) < 2 GeV/c

Jet energy loss is a dramatic effect, not a minor reshuffling of particles
Gamma-jet vs jet-jet

Di-jet

Both jets can lose energy
Initial kinematics not well controlled
Asymmetry due to energy loss differences

γ-jet

Photon does not lose energy
Clean selection of initial p_T
(same can be done with Z-jet)
Gamma-jet momentum balance

60 GeV trigger photon

100 GeV trigger photon

Also allows to explore energy dependence of lost energy
Looking inside jets: recoil fragment distributions

Recoil fragment distributions: γ-jet and di-jet

Low-z: enhancement of soft fragments
High-z: di-jets: increase of hard fragments
γ-jet: suppression of hard fragments

Different energy loss bias; selection quark vs gluon jets

CMS, arXiv:1801.04895
Looking inside jets: recoil fragment distributions

Recoil fragment distributions: γ-jet and di-jet

γ-jet, $p_{T\gamma} > 60$ GeV

Low-z: enhancement of soft fragments

High-z:
- di-jets: increase of hard fragments
- γ-jet: suppression of hard fragments

Different energy loss bias; selection quark vs gluon jets
Looking inside jets: recoil fragment distributions

Recoil fragment distributions: γ-jet and di-jet

γ-jet, $p_{T\gamma} > 60$ GeV

Low-z: enhancement of soft fragments

High-z: di-jets: increase of hard fragments
γ-jet: suppressation of hard fragments

Different energy loss bias; selection quark vs gluon jets
Looking inside jets: recoil fragment distributions

Recoil fragment distributions: γ-jet and di-jet

γ-jet, $p_{T\gamma} > 60$ GeV

$\xi_\gamma = \ln \left(\frac{p_{T,\gamma}}{p_{T,h}} \right)$

Different energy loss bias; selection quark vs gluon jets

Low-z: enhancement of soft fragments

High-z: di-jets: increase of hard fragments
γ-jet: suppression of hard fragments

CMS, arXiv:1801.04895

ATLAS-CONF-2017-074
Looking inside jets: recoil fragment distributions

Recoil fragment distributions: γ-jet and di-jet

ATLAS Preliminary

Low-z: enhancement of soft fragments

High-z: di-jets: increase of hard fragments
γ-jet: suppression of hard fragments

Different energy loss bias; selection quark vs gluon jets

γ-jet, $p_{T\gamma} > 60$ GeV

Models capture trends when soft fragments are included

CMS, arXiv:1801.04895

ATLAS-CONF-2017-074
Jet substructure: Exploring the parton shower

Jet structure studied by declustering:

Momentum fraction

\[z = \frac{\text{min}(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} \]

\[z > z_{\text{cut}} \]

Larkoski et al, PRD 91, 111501

Re-wind clustering;
- remove soft splittings ‘grooming’
- select (semi-)hard splittings

Softdrop momentum fraction

\(n_{SD} \): number of splittings

\(n_{SD} \) similar in pp and PbPb

No extra splittings visible

Symmetric splittings reduced:
Formation time effect?

\(\Delta R_{\text{rec}} > 0.1 \)

\(R=0.4, p_{T_{\text{jet}}} = 80 - 120 \)

\(n_{SD} \) cut = 0.1

\(1/N_{\text{jets}} \frac{dN}{dz} \)

ALICE, arXiv:1905.02512
Production mechanism: Heavy flavour in jets

Initial expectation: color-singlet J/ψ could be produced without accompanying fragments
New insight: high-p_T J/ψ produced in jets

Similar studies ongoing with open heavy flavour
Small systems: pp and p-Pb

Exploring the limits of fluid/collective behaviour
Multiplicity production in pp

Multiplicity distribution is very broad:
- Average multiplicity small: 5-10 particles at mid rap
- Some events have > 100 particles

Very large densities also in pp!

What is the mechanism?

Single hard scattering + underlying event?
- Multiple parton interactions?
- Underlying even fluctuations?
Physics of small and large colliding systems

“pp” models
Vacuum processes amended by MPI, CR, ropes

“AA” models
Hydrodynamic models
Statistical models

“pp” models
p-Pb
Pb-Pb
Physics of small and large colliding systems

pp

p-Pb

Pb-Pb

“pp” models
Vacuum processes
amended by MPI, CR, ropes

“AA” models
Hydrodynamic models
Statistical models

“single process limit”

“thermal limit”
Physics of small and large colliding systems

“pp” models
Vacuum processes amended by MPI, CR, ropes

“single process limit”

“AA” models
Hydrodynamic models
Statistical models

Degree of complexity

“thermal limit”
Physics of small and large colliding systems

Underlying QCD is the same – different limits
Opportunity: stress test models/understanding

"AA" models
Hydrodynamic models
Statistical models

..."p-Pb
Pb-Pb

"pp" models
Vacuum processes amended by MPI, CR, ropes

"single process limit"

Degree of complexity

"thermal limit"
Example: strangeness enhancement

pp, p-Pb:
strong dependence of
strange baryon content
on multiplicity
What is the mechanism?

Baseline Pythia: no change in strange baryon content
Driven by hadronisation probability/string breaking
No final state interactions

Large systems:
Yields described by thermal model
‘phase space dominance’

Color Ropes, EPOS LHC:
Increasing density leads to larger strangeness content
Strangeness production vs multiplicity

Is the increase driven by strangeness or baryon content?

Effect increases with strangeness content: \(\Omega > \Xi > \phi \)

Very weak/no effect for single strange particles \(K, \Lambda \)

No increase of \(p/\pi \): not a pure ‘baryon effect’
Strangeness production vs multiplicity

Is the increase driven by strangeness or baryon content?

Effect increases with strangeness content:
\[\Omega > \Xi > \phi \]

Very weak/no effect for single strange particles
\[K, \Lambda \]

No increase of \(p/\pi \): not a pure ‘baryon effect’

Puzzling situation: a new insight in baryon and strangeness production/hadronisation may emerge!
Reminder: Radial flow

Spectra change from pp to Pb+Pb:
• Increase in mean p_T
• Larger effect for larger mass

First indication of collective behaviour
Pressure leads to radial flow
Same Lorentz boost (β) gives larger momentum for heavier particles
($m_p > m_K > m_\pi$)
Multiplicity dependence of spectra

Shapes of the spectra change!

Selection of larger multiplicity (mostly low p_T)
Gives strong increase at high p_T

Correlation between **soft processes**: multiplicity and **hard processes**: high p_T

Ratio to MB spectra: ‘modulation of p_T spectra’
Mean p_T vs multiplicity — mass dependence

Increase of the mean p_T depends on mass — suggests radial flow?

Trends similar to Pb-Pb, but do not match smoothly…

Different mechanism?
Baryon to meson ratios vs p_T

pp, p-Pb:

baryon/meson ratio at intermediate p_T depends on multiplicity

Pb-Pb: increase driven by radial flow
Baryon to meson ratios vs p_T

pp

- ALICE Preliminary pp $\sqrt{s} = 7$ TeV
 - V0M Class I, $\langle dN_{ch}/d\eta \rangle = 21.3$
 - V0M Class X, $\langle dN_{ch}/d\eta \rangle = 2.3$

(V0M Multiplicity Classes)

- ALICE p-Pb $\sqrt{s_{NN}} = 5.02$ TeV
 - 0-5%, $\langle dN_{ch}/d\eta \rangle = 45.1$
 - 60-80%, $\langle dN_{ch}/d\eta \rangle = 9.8$

(V0A Mult. Classes - Pb side)

- ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
 - 0-5%, $\langle dN_{ch}/d\eta \rangle = 1601.0$
 - 60-80%, $\langle dN_{ch}/d\eta \rangle = 55.5$

p-Pb

Pb-Pb

Pb-Pb: increase driven by radial flow

pp, p-Pb:
baryon/meson ratio at intermediate p_T depends on multiplicity

Are these effects related?
Try a different ordering: spectra ratios by particle type

Interesting pattern: baryon-meson difference. No mass dependence?

NB: this divides out the mass dependence of mean-p$_T$ in minbias spectra

ALICE, PRC 99, 024906
A propos baryon production: Λ_c also?

Λ_c/D in pp much larger than expected from fragmentation, e^+e^-

Λ_c/D similar to Λ/K:
Specific mechanism for low p_T baryon production in pp?
Charm production and Multiple Parton Interactions

Multiple parton interactions produce multiple c-cbar pairs
J/ψ vs multiplicity — recent results

Multiple parton interactions in Pythia

Comparison to data

Forward vs mid-rapidity

Models with MPIs reproduce the observed trends
Two-particle correlations in pp and Pb+Pb

Near-side long range correlation: indicates early time origin
Two-particle correlations in pp and Pb+Pb

Near-side long range correlation: indicates early time origin
Seen in high-multiplicity pp and p+Pb events
Two-particle correlations

High-multiplicity p+p

Clear change in shape from low multiplicity to high multiplicity:
no near-side peak in low multiplicity events
Away-side also affected: well described by dipole term (cos (2 $\Delta \phi$))
Smooth evolution from pp to p+Pb: effect stronger in p+Pb

High-multiplicity p+Pb

ATLAS-CONF-2016-026
Extracting the double-ridge/flow

Central - Peripheral = Double ridge

Use peripheral to subtract jet contribution from central

Remaining signal almost symmetric between near- and away-side: looks like v_2 (+ smaller contributions from higher harmonics)
v_2 from di-hadron correlations in p+Pb

Similar ‘mass ordering’ observed for v_2 from two-particle correlations in p+Pb

Is this also pressure-driven?
Elliptic flow in p-Pb: heavy flavours

Charmed particle also carry azimuthal asymmetries: not a soft underlying event effect

No v_2 for beauty?

Heavy flavour decay muons: charm and beauty

ATLAS, arXiv:1909.01650
Limits on hydrodynamic behaviour

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: \(R > \lambda \)

Would not expect azimuthal asymmetries in pp and p-Pb

2) Thermalisation time: \(\tau > \frac{\lambda}{v} \)

Fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

pQCD calculation: \(\tau \approx 6.9 \text{ fm/c} \)

Heiselberg and Levy, nucl-th/9812034,
W Lin et al,

Baier et al, PLB 502, 51, PLB 539, 46
Limits on hydrodynamic behaviour

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: \(R > \lambda \)

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries generated in kinetic transport with \(R < \lambda \)

Density tomography

2) Thermalisation time: \(\tau > \frac{\lambda}{v} \)

Fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

pQCD calculation: \(\tau \approx 6.9 \text{ fm/c} \)

Baier et al, PLB 502, 51, PLB 539, 46

Heiselberg and Levy, nucl-th/9812034, W Lin et al,
Limits on hydrodynamic behaviour

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: \[R > \lambda \]

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries generated in kinetic transport with \(R < \lambda \)

Density tomography

Baier et al., PLB 502, 51, PLB 539, 46

2) Thermalisation time: \[\tau > \frac{\lambda}{v} \]

Fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

Turns out to be too strict: (viscous) hydro describes non-thermal systems

pQCD calculation: \(\tau \approx 6.9 \text{ fm/c} \)

Heiselberg and Levy, nucl-th/9812034,

W Lin et al.

Naive expectations can be bypassed in nature…
Limits on hydrodynamic behaviour

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: \(R > \lambda \)

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries generated in kinetic transport with \(R < \lambda \)

Density tomography \(\tau \gtrsim 6.9 \text{ fm/c} \)

Density fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

Closely related, since \(v \approx c = 1 \)

Heiselberg and Levy, nucl-th/9812034, W Lin et al,

2) Thermalisation time: \(\tau > \lambda \)

Fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

pQCD calculation: \(\tau \approx 6.9 \text{ fm/c} \)

Baier et al, PLB 502, 51, PLB 539, 46

Turns out to be too strict: (viscous) hydro describes non-thermal systems

Naive expectations can be bypassed in nature…
Limits on hydrodynamic behaviour

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: \(R > \lambda \)

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries generated in kinetic transport with \(R < \lambda \)

Density time: \(\tau > \lambda \)

Fits to data: thermalisation times \(\tau \approx 0.1-1 \text{ fm/c} \)

\[\text{pQCD calculation: } \tau \approx 6.9 \text{ fm/c} \]

Baier et al, PLB 502, 51, PLB 539, 46

Turns out to be too strict: (viscous) hydro describes non-thermal systems

Naive expectations can be bypassed in nature...

Active field of research — brings together foundations of hydrodynamics, transport theory, and even string theory
Flow without a liquid

Can you have flow with a few scatterings?
‘anisotropic escape’ mechanism

Initially isotropic
momentum distribution

More particles moving in $\pm x$-direction

Scattering randomises directions; more scatterings to ‘out-of-plane’

Anisotropic density converted
into anisotropic momentum distribution by few scatterings

Kurkela, Wiedemann, Wu, arXiv:1805.04031

Kurkela, Wiedemann, Wu, arXiv:1803.02072
Flow without a liquid

Can you have flow with a few scatterings?
‘anisotropic escape’ mechanism

Initially isotropic momentum distribution

More particles moving in ±x-direction

Kurkela, Wiedemann, Wu, arXiv:1803.02072

Scattering randomises directions; more scatterings to ‘out-of-plane’

Anisotropic density converted into anisotropic momentum distribution by few scatterings

Kurkela, Wiedemann, Wu, arXiv:1805.04031

Small systems: kinetic transport, equal to viscous hydro

Transverse size: \(\gamma = \frac{R}{l_{\text{mfp}}} \)

Viscous hydro \(\eta/s=0.8 \)

Ideal hydro

Full transport

Single hit

\(-\frac{\gamma}{\delta^2} \)}
Flow without a liquid

Can you have flow with a few scatterings? ‘anisotropic escape’

More particles moving in ±x-direction

Kurkela, Wiedemann, Wu, arXiv:1803.02072

Two parallel strings in AMPT

Formation time is important

Two-particle correlations

Shows a clear signal in a transport calculation

Other mechanisms/pictures being discussed: string shoving, CGC
⇒ more field-based; to some extent just a different language?
Deriving proton substructure

Flow-like effects in pp require substructure
‘constituents’, strings, etc

J.S. Moreland, N Phys. A982, 503
Deriving proton substructure

Flow-like effects in pp require substructure: ‘constituents’, strings, etc.

Bayesian fit + gaussian emulator: probe large parameter space
Output: full covariance matrix 15 parameters

Input: multiplicity, mean p_T, v_n in PbPb and p-Pb
Deriving proton substructure

Flow-like effects in pp require substructure ‘constituents’, strings, etc

Bayesian fit + gaussian emulator: probe large parameter space
Output: full covariance matrix 15 parameters

Number of constituents

Constituent width, radius

input: multiplicity, mean \(p_T \), \(v_n \) in PbPb and p-Pb

No strong preference for a specific constituent number

J. S. Moreland, N Phys. A982, 503
Deriving proton substructure

Flow-like effects in pp require substructure ‘constituents’, strings, etc

Bayesian fit + gaussian emulator: probe large parameter space
Output: full covariance matrix 15 parameters

Number of constituents

Constituent width, radius

input: multiplicity, mean p_T, v_n in PbPb and p-Pb

Shows that we are sensitive to nucleon substructure ‘configuration space picture of the proton’

J.S. Moreland, N Phys. A982, 503
Proton substructure from UPCs

Coherent and incoherent exclusive J/ψ in ep

\[\gamma p \rightarrow J/\psi p, Q^2 = 0 \text{ GeV}^2 \]

Coherent: average

\[\frac{d\sigma^{\gamma p \rightarrow Vp}}{dt} \sim |\langle A^{\gamma p \rightarrow Vp} \rangle|^2 \]

Incoherent: RMS

\[\frac{d\sigma^{\gamma p \rightarrow Vp^*}}{dt} \sim \langle |A^{\gamma p \rightarrow Vp}|^2 \rangle - \langle A^{\gamma p \rightarrow Vp} \rangle^2 \]

Dissociative increase more slowly than elastic consistent with HERA data

Different angle: Spatial size, fluctuations measured by coherent/incoherent interactions

Should compare and contrast conclusions from flow/final state and EM interactions
Final state interactions, but no energy loss?

For all particle types: $R_{pPb} = 1$, no (large) energy loss

Model curves: effect of parton energy loss

However: spectra shapes change at low to intermediate p_T in high multiplicity collisions
Summary/conclusions

• Jets: tool to study angular distributions of radiated energy
 • Access to underlying dynamics

• High-multiplicity pp and p-Pb show features similar to Pb-Pb collisions:
 • Elliptic flow
 • Increased strange baryon production

• Mechanisms:
 • Multiple parton interactions
 • Final state effects in pp: approach QGP formation?
 • Flow generation more effective than expected with $R \sim \lambda$
Switching off the flow: e^+e^-

High-multiplicity events

Low T; ‘multi-jet’

High T; ‘di-jet’

No evidence of long-range correlations beyond Pythia expectation

10 < N < 20

ALEPH e^+e^- thrust axis

$10 < N_{\text{thr}} < 20$

$|\eta| < 5.0$

$0.0 < p_T < 100.0 \text{ GeV}$

Thrust Axis

N ≥ 35

ALEPH e^+e^- thrust axis

$35 < N_{\text{thr}} < 999$

$|\eta| < 5.0$

$0.0 < p_T < 100.0 \text{ GeV}$

Thrust Axis

J-Y Lee

ALEPH e$^+$e$^-$, $\sqrt{s}=91\text{ GeV}$

10 < N_{thr} < 20

$|\eta| < 5.0$

$0.0 < p_T < 100.0 \text{ GeV}$

Thrust Axis

1.6 < $\Delta \eta$ < 3.0

No evidence of long-range correlations beyond Pythia expectation