# **High-density QCD:** Exploring high-density effects in pp and p-Pb collisions

Marco van Leeuwen Nikhef, Utrecht University

Disclaimers/apologies:

- Results shows are biased towards ALICE for practical reasons

CERN-Fermilab Hadron Collider Physics Summer School 28 Aug - 6 Sep 2019



- Focus on highlighting important concepts; not on showing the latest results



### Single particle R<sub>AA</sub> revisited: particle type dependence



Low p<sub>T</sub>: increase of baryon production Mass dependence of radial flow

ALICE, arXiv:1506.07287

 $p_T > 8$  GeV: baryon, meson  $R_{AA}$  similar as expected from parton energy loss





### Jets and parton energy loss Two new aspects to pursue

### Jets: parton showers + hadronisation



Explore energy loss of multi-parton states: Interference effects, distance dependence?



Angular distribution of photon radiation:

- In-cone radiation:  $R_{AA} = 1$ , change of 1) fragmentation
- Out-of-cone radiation:  $R_{AA} < 1$ 2)









### Nuclear modification factor for jets



No strong  $p_T$ -dependence: suggests increase of  $\Delta E$  vs E

Note: 10% energy loss for a 800 GeV jet is 80 GeV !

 $R_{AA} < 1$  out to high p<sub>T</sub> ≈ 800 GeV





### Where is the 'lost energy': Looking outside the jet cone



Jet energy loss is a dramatic effect, not a minor reshuffling of particles









**Di-jet** 



Both jets can lose energy Initial kinematics not well controlled Asymmetry due to energy loss differences

### Gamma-jet vs jet-jet



Photon does not lose energy Clean selection of initial  $p_T$ 

(same can be done with Z-jet)



### Gamma-jet momentum balance



60 GeV trigger photon

Also allows to explore energy dependence of lost energy



Recoil fragment distributions:  $\gamma$ -jet and di-jet



Low-z: enhancement of soft fragments

Ζ High-z: di-jets: increase of hard fragments y-jet: suppresion of hard fragments

Different energy loss bias; selection quark vs gluon jets

CMS, arXiv:1801.04895





Recoil fragment distributions:  $\gamma$ -jet and di-jet



Low-z: enhancement of soft fragments

High-z:

CMS, arXiv:1801.04895

### $\gamma$ -jet, p<sub>T $\gamma$ </sub> > 60 GeV

- di-jets: increase of hard fragments
- y-jet: suppresion of hard fragments
- Different energy loss bias; selection quark vs gluon jets







Low-z: enhancement of soft fragments

High-z:

- di-jets: increase of hard fragments y-jet: suppresion of hard fragments
- Different energy loss bias; selection quark vs gluon jets









Low-z: enhancement of soft fragments

High-z:

- di-jets: increase of hard fragments y-jet: suppresion of hard fragments
- Different energy loss bias; selection quark vs gluon jets







Low-z: enhancement of soft fragments

High-z: di-jets: increase of hard fragments y-jet: suppresion of hard fragments

Different energy loss bias; selection quark vs gluon jets

Models capture trends when soft fragments are included





# Jet substructure: Exploring the parton shower

### Jet structure studied by declustering:

### **ALICE** Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV 0.5 Anti- $k_{\tau}$ charged jets, R = 0.4 $80 \le p_{\text{T,iet}}^{\text{ch}} < 120 \text{ GeV/}c$ 1/N<sub>jets</sub> dN/dn<sub>SD</sub> 0.4 Soft Drop $z_{cut} = 0.1$ 1-Z 0.3 Ratio to PYTHIA 2

Momentum fraction

$$z = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

 $z > z_{\rm cut}$ 

Larkoski et al, PRD 91, 111501

### Re-wind clustering;

- remove soft splittings 'grooming'
- select (semi-)hard splittings

*n*<sub>SD</sub> similar in pp and PbPb No extra splittings visible

### n<sub>SD</sub>: number of splittings







### Production mechanism: Heavy flavour in in jets

 $J/\psi$  in jets (pp collisions)



LHCb, PRL 118, 192001 (2017)

Initial expectation: color-singlet J/ $\psi$  could be produced without accompanying fragments New insight: high-p<sub>T</sub> J/ $\psi$  produced in jets

Similar studies ongoing with open heavy flavour

### $J/\psi$ in jets (pp collisions)





### Small systems: pp and p-Pb

Exploring the limits of fluid/collective behaviour

# Multiplicity production in pp

Multiplicity distribution is very broad:

- Average multiplicity small: 5-10 particles at mid rap
- Some events have > 100 particles

**Very large densities also in pp!** 

What is the mechanism?

Single hard scattering + underlying event? Multiple parton interactions? Underlying even fluctuations?







amended by MPI, CR, ropes

"AA" models





amended by MPI, CR, ropes

### "single process limit"

"AA" models

### "thermal limit"







"single process limit"





amended by MPI, CR, ropes

"single process limit"

Underlying QCD is the same – different limits Opportunity: stress test models/understanding





### Example: strangeness enhancement



ALI-PREL-132404

Baseline Pythia: no change in strange baryon content Driven by hadronisation probability/string breaking No final state interactions

Large systems: Yields described by thermal model 'phase space dominance'

Color Ropes, EPOS LHC: Increasing density leads to larger strangeness content







### Strangeness production vs multiplicity

Is the increase driven by strangeness or baryon content?

Effect increases with strangeness content:  $\Omega > \Xi > \Phi$ 

Very weak/no effect for single strange particles Κ, Λ

No increase of  $p/\pi$ : not a pure 'baryon effect'









### Strangeness production vs multiplicity

Is the increase driven by strangeness or baryon content?

Effect increases with strangeness content:  $\Omega > \Xi > \Phi$ 

Very weak/no effect for single strange particles Κ, Λ

No increase of  $p/\pi$ : not a pure 'baryon effect'

Puzzling situation: a new insight in baryon and strangeness production/hadronisation may emerge!









### **Reminder: Radial flow**

Spectra change from pp to Pb+Pb:

- Increase in mean  $p_T$
- Larger effect for larger mass

**First indication of collective behaviour** 

Pressure leads to radial flow Same Lorentz boost ( $\beta$ ) gives larger momentum for heavier particles ( $m_p > m_K > m_{\pi}$ ) ALICE, PLB 736, 196





### Multiplicity dependence of spectra

Shapes of the spectra change!

Selection of larger multiplicity (mostly low p<sub>T</sub>) Gives strong increase at high p<sub>T</sub>

Correlation between soft processes: multiplicity and hard processes: high p<sub>T</sub>

### Ratio to MB spectra: 'modulation of p<sub>T</sub> spectra'





### Mean p<sub>T</sub> vs multiplicity — mass dependence

#### pions, kaons, protons



Increase of the mean  $p_T$  depends on mass – suggests radial flow? Trends similar to Pb-Pb, but do not match smoothly... Different mechanism?

ALICE, Phys. Rev. C 99, 024906

protons, φ, K\*





### Baryon to meson ratios vs pr

#### pp



### pp, p-Pb: baryon/meson ratio at intermediate p<sub>T</sub> depends on multiplicity

p-Pb

Pb-Pb

Pb-Pb: increase driven by radial flow





### Baryon to meson ratios vs pr

#### pp



pp, p-Pb: baryon/meson ratio at intermediate  $p_T$  depends on multiplicity Are these effects related?

p-Pb

Pb-Pb

Pb-Pb: increase driven by radial flow





### Try a different ordering: spectra ratios by particle type



Interesting pattern: baryon-meson difference. No mass dependence? NB: this divides out the mass dependence of mean- $p_T$  in minbias spectra

ALICE, PRC 99, 024906





### A propos baryon production: $\Lambda_c$ also?



ALI-DER-314630

 $\Lambda_c/D$  in pp much larger than expected from fragmentation, e<sup>+</sup>e<sup>-</sup>

 $\Lambda_c/D$  similar to  $\Lambda/K$ : Specific mechanism for low  $p_T$  baryon production in pp?



### **Charm production and Multiple Parton Interactions**

### $J/\psi$ vs multiplicity: measured



#### Phys.Lett. B712 (2012) 165-175

#### $J/\psi$ vs multiplicity: PYTHIA 6.4



Pythia 6.4: single hard scattering + underlying event

Multiple parton interactions produce multiple c-cbar pairs







### $J/\psi$ vs multiplicity – recent results

#### Multiple parton interactions in Pythia



ALI-PREL-132836

#### Comparison to data

Forward vs mid-rapidity

Models with MPIs reproduce the observed trends



### Two-particle correlations in pp and Pb+Pb



### p+p low multiplicity p+p high multiplicity N<sub>trk</sub> > 110 <mark>1 d<sup>2</sup>N<sup>μαι</sup> N</mark>trig dΔη dΔφ 1.8 2 **2** 1 < p<sub>T</sub> < 3 GeV 0 Dn -2 0 Dn -2

Near-side long range correlation: indicates early time origin





### Two-particle correlations in pp and Pb+Pb



### p+p low multiplicity p+p high multiplicity N<sub>trk</sub> > 110 1 d<sup>2</sup>N<sup>μαι</sup> N<sub>trig</sub> dΔη dΔφ 1.8 2 **2** 1 < p<sub>T</sub> < 3 GeV 0 Dn ·2 U Dn -2

Near-side long range correlation: indicates early time origin Seen in high-multiplicity pp and p+Pb events







### **Two-particle correlations**

ATLAS-CONF-2016-026

#### High-multiplicity p+Pb



- Clear change in shape from low multiplicity to high multiplicity: no near-side peak in low multiplicity events Away-side also affected: well described by dipole term (cos (2  $\Delta \phi$ ))
  - Smooth evolution from pp to p+Pb: effect stronger in p+Pb



### Extracting the double-ridge/flow



Remaining signal almost symmetric between near- and away-side: looks like v<sub>2</sub> (+ smaller contributions from higher harmonics)

Use peripheral to subtract jet contribution from central



### v<sub>2</sub> from di-hadron correlations in p+Pb



ALI-PUB-52116

PLB 726,164

- Similar 'mass ordering' observed for v<sub>2</sub> from two-particle correlations in p+Pb
  - Is this also pressure-driven?



### Elliptic flow in p-Pb: heavy flavours

### $J/\psi v_2$ in p-Pb and Pb-Pb



Charmed particle also carry azimuthal asymmetries: not a soft underlying event effect No v<sub>2</sub> for beauty?

ATLAS, <u>arXiv:1909.01650</u>

Heavy flavour decay muons: charm and beauty





Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size:  $R > \lambda$ 

Would not expect azimuthal asymmetries in pp and p-Pb



Fits to data: thermalisation times  $\tau \approx 0.1$ -1 fm/c

Heiselberg and Levy, nucl-th/9812034, W Lin et al,

pQCD calculation:  $\tau \ge 6.9$  fm/c

Baier et al, PLB 502, 51, PLB 539, 46



Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size:  $R > \lambda$ 

Would not expect azimuthal asymmetries in pp and p-PbTurns out to be too strict: asymmetries generated in kinetic transport with  $R < \lambda$ Density tomographyHeiselberg and Levy, nucl-th/98



Fits to data: thermalisation times  $\tau \approx 0.1$ -1 fm/c

Heiselberg and Levy, nucl-th/9812034, W Lin et al,

#### pQCD calculation: $\tau \ge 6.9$ fm/c

Baier et al, PLB 502, 51, PLB 539, 46



**Naive expectation:** need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size:  $R > \lambda$ 

Would not expect azimuthal asymmetries in pp and p-Pb **Turns out to be too strict:** asymmetries generated in kinetic transport with  $R < \lambda$ Density tomography Heiselberg and Levy, nucl-th/9812034,



Fits to data: thermalisation times  $\tau \approx 0.1$ -1 fm/c

Turns out to be too strict: (viscous) hydro describes non-thermal systems

#### pQCD calculation: $\tau \ge 6.9$ fm/c

W Lin et al,

Baier et al, PLB 502, 51, PLB 539, 46

Naive expectations can be bypassed in nature...



Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size:  $R > \lambda$ 

Would not expect azimuth **Turns out to be too strict:** asymmetries Density J. Since

2) Thermalisation time:  $\tau > - \tau >$ 

Turns out to be too strict: (viscous) hydro describes non-thermal systems

Naive expectations can be bypassed in nature...



Baier et al, PLB 502, 51, PLB 539, 46



**Naive expectation:** need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size:  $R > \lambda$ 

Would not expect azimuth Turns out to be too strict: asymmetries

2) Thermalisation time: Fits to data: therman

Naive expectations can be bypassed in nature...

Active field of research — brings together foundations of hydrodynamics, transport theory, and even string theory



Baier et al, PLB 502, 51, PLB 539, 46

**Turns out to be too strict**: (viscous) hydro describes non-thermal systems



### Flow without a liquid

Can you have flow with a few scatterings? 'anisotropic escape' mechanism





More particles moving in ±x-direction

Initially isotropic momentum distribution

Kurkela, Wiedemann, Wu, <u>arXiv:1803.02072</u>

Scattering randomises directions; more scatterings to 'out-of-plane'

Anisotropic density converted into anisotropic momentum distribution by few scatterings Kurkela, Wiedemann, Wu, arXiv:1805.04031





## Flow without a liquid

Can you have flow with a few scatterings? 'anisotropic escape' mechanism





Initially isotropic momentum distribution

Scattering randomises directions; more scatterings to 'out-of-plane'

Anisotropic density converted into anisotropic momentum distribution by few scatterings Small systems: kinetic transport, equal to viscous hydro



## Flow without a liquid



Other mechanisms/pictures being discussed: string shoving, CGC  $\Rightarrow$  more field-based; to some extent just a different language?



### Flow-like effects in pp require substructure 'constituents', strings, etc



J.S. Moreland, N Phys. A982, 503





#### Flow-like effects in pp require substructure 'constituents', strings, etc



input: multiplicity, mean p<sub>T</sub>, v<sub>n</sub> in PbPb and p-Pb

J.S. Moreland, N Phys. A982, 503

Bayesian fit + gaussian emulator: probe large parameter space Output: full covariance matrix 15 parameters





### Flow-like effects in pp require substructure 'constituents', strings, etc



input: multiplicity, mean p<sub>T</sub>, v<sub>n</sub> in PbPb and p-Pb

Output: full covariance matrix 15 parameters





#### Flow-like effects in pp require substructure 'constituents', strings, etc



input: multiplicity, mean  $p_T$ ,  $v_n$  in PbPb and p-Pb

Shows that we are sensitive to nucleon substructure 'configuration space picture of the proton'

Output: full covariance matrix 15 parameters





### **Proton substructure from UPCs**



Should compare and contrast conclusions from flow/final state and EM interactions



### Final state interactions, but no energy loss?

### Light flavor hadrons



Model curves: effect of parton energy loss However: spectra shapes change at low to intermediate  $p_T$  in high multiplicity collisions

#### Heavy flavour: D meson

For all particle types:  $R_{pPb} = 1$ , no (large) energy loss



### Summary/conclusions

- Jets: tool to study angular distributions of radiated energy
  - Access to underlying dynamics
- High-multiplicity pp and p-Pb show features similar to Pb-Pb collisions:
  - Elliptic flow
  - Increased strange baryon production
- Mechanisms:
  - Multiple parton interactions

  - Final state effects in pp: approach QGP formation? • Flow generation more effective than expected with R ~  $\lambda$



## Switching off the flow: e+e-

J-Y Lee



### High-multiplicity events





### Low T; 'multi-jet'

High T; 'di-jet'



 $\Delta \phi$