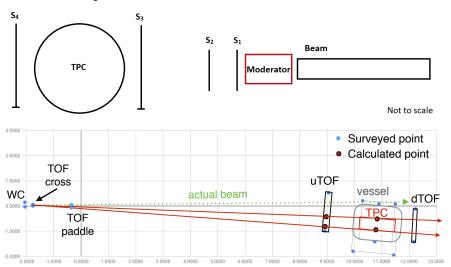


Beam flux update


Seb Jones

Department of Physics & Astronomy University College London

February 15, 2019

Beam area layout reminder

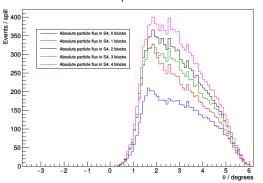
Paper Plan: Figures of Merit

- ToF measurement (including momentum measurement)
- Flux measurement (including proton:pion ratio measurement)
- · In each case
 - S3/S4
 - Varying moderator blocks
 - (And varying particle type for the flux measurement)

Runs used for analysis

- For different numbers of moderator blocks wanted to have same beam conditions
- Beam being bent away from TPC
- No electron target
- 0.8 GeV/c beam momentum
 - 0 blocks: Data_2018_8_31_b2_800MeV_0block.root 273 spills
 - 1 block: Data_2018_9_1_b4_800MeV_1block_bend4cm.root 253 spills
 - 2 blocks: Data_2018_9_1_b2_800MeV_2block_bend4cm.root 266 spills
 - 3 blocks: Data_2018_9_1_b3_800MeV_3block_bend4cm.root 212 spills
 - 4 blocks: Data_2018_9_1_b8_800MeV_4block_bend4cm.root 3822 spills
- These should be runs should have most visible proton peak
- Corresponding DsToF runs used

Angle definitions



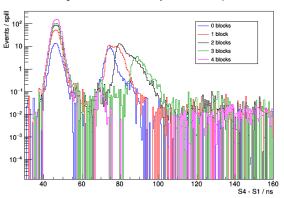
- Measure 'off-axis' angles as angle from S1 and nominal beam axis (y = z = 0)
- \blacksquare x is beam direction, z is vertical
- lacktriangleright θ is angle in x-y plane
- $lacktriangle \phi$ is angle in x-z plane

S4 flux measurement

Absolute particle flux in S4

- In S4, data-taking was continuous no trigger
- Available timing point combinations: S4, $S1 \times S2$ and $S1 \times S2 \times S4$
- Drop-off at ~ 1 is due to inefficiency of bars at the ends attempting to use cosmic ray flux to quantify this

$S1 \times S2$ flux

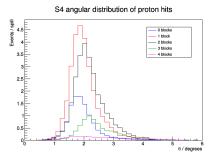

- This is as measured in the DsToF files
- No spatial or particle type information for this measurement

N blocks	Hits per spill
0	683
1	1913
2	2949
3	3415
4	5630

$S1 \times S2 \times S4$ flux

Background subtracted and efficiency corrected S4 ToF spectrum

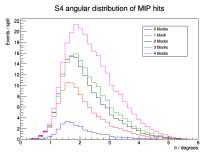
■ Define a hit as being when $30 < t_{S4} - t_{S1} < 160$ ns


$S1 \times S2 \times S4$ flux – absolute rates

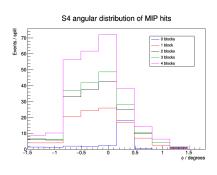
 Using the cut defined on the previous slide, the rates for various numbers of moderator blocks are as follows

N blocks	Hits per spill
0	208
1	665
2	990
3	1010
4	1460

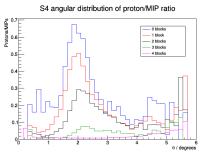
$S1 \times S2 \times S4$ flux – protons



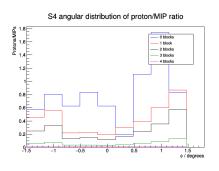
S4 angular distribution of proton hits


- Angles are as defined previously
- Proton peak not visible for 4 block case on previous slide

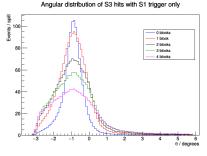
$S1 \times S2 \times S4$ flux – MIPs

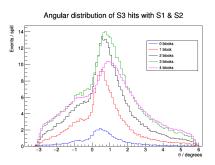


Angles are as defined previously



$S1 \times S2 \times S4$ flux - Proton/MIP ratio




Angles are as defined previously

$S1 \times S3$ and $S1 \times S2 \times S3$ flux

- \blacksquare For S3, data taken when there is a hit in S1 and S3
- Available timing point combinations: $S1 \times S3$ and $S1 \times S2 \times S3$
- In general, fluxes a lot lower than those seen in *S*4, probably due to constraint of requiring *S*1 hit

Next steps

- Similar to *S*4 data need to do angular distributions of protons and MIPs using both timing and amplitude cuts
- Have done this for the $S1 \times S2 \times S3$ case but not for $S1 \times S3$