

Beam flux update

Seb Jones

Department of Physics & Astronomy University College London

February 22, 2019

UCL

Solid angle correction

- Was mentioned in last meeting that to measure absolute flux rates need difference in solid angle, ω , between S_n
- To calculate this used

$$\omega = 4 rcsin\left(rac{l imes b}{\sqrt{(l^2 + 4d^2)(b^2 + 4d^2)}}
ight)$$

- Assumes plane is perpendicular to imaginary line from S1 to centre of detector
- I, b are dimensions of detector in y z plane
- d is distance from S1 to detector

Solid angle factors

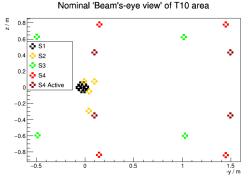
Detector	Height	Width	Distance from $S1$	Solid angle
<i>S</i> 2	0.365 m*	0.1 m	1.418 m	0.01799 sr
<i>S</i> 3	1.22 m	1.80 m	10.75 m	0.01891 sr
<i>S</i> 4	0.78 m	1.40 m	13.99 m	0.00557 sr

■ *Unsure of active area of S2

Figure 7 : Measured points on D2

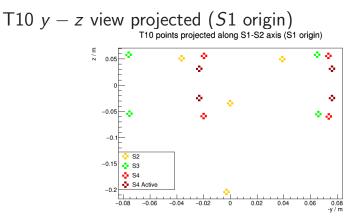
UCL

Solid angle corrections

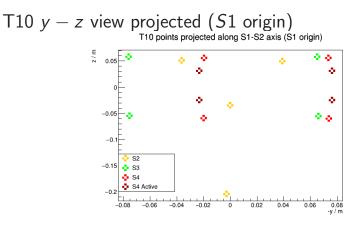

- \blacksquare Now comparing absolute rates of $S1 \times S2 \times S4$ and $S1 \times S2$
- $\blacksquare \frac{S4 \text{ solid angle}}{S2 \text{ solid angle}} = 0.310$
- All numbers given as particles per spill

N blocks	$S1 \times S2$	S1 imes S2 imes S4 corrected
0	683	670
1	1913	2145
2	2949	3194
3	3415	3258
4	5630	4710

- Note, this is a naive correction:
 - Does not take into account spatial overlap
 - Method will not work when comparing *S*1 × *S*2 × *S*4 and *S*1 × *S*2 × *S*3 − must take into account how flux changes with angle



T10 y - z view


- x direction is beam direction not shown here
- Have flipped the y coordinate to look as though we are at nominal beam origin looking down beamline
- Have calculated points representing active area of S4

- Shifted coordinate system such that S1 is at (0, 0, 0)
- Rotated about z (vertical) axis such that x axis now passes straight through S1 and S2 (1.72 degree rotation)
- Projected y, z coordinates such that y' = y/x and z' = z/x

- In this projection only 62.5% of S4 active area is covered by S2
- Apply this factor and there will appear to be many more $S1 \times S2 \times S4$ hits than $S1 \times S2$ hits
- Overestimating the active area of *S*2?