

Dead time correction

Seb Jones

Department of Physics & Astronomy University College London

April 9, 2019

S3 dead time correction - recap

- Currently, we are not sure of UToF (S1, S2, S3) deadtime – measurements of proton & MIP flux are incorrect
- Proton/MIP ratio is fairly constant across spill (see right)ratio plots should be ok
- Would like to find a way to correct the absolute *S*3 flux plots

3 | 14

A possible solution – recap

Angular distribution of T10 (S1 origin)

- Given previous slide, S3 fluxes should be correct up to a factor
- Need a signal present in UToF & DToF (negligible deadtime) data
- Use S1 + S2 coincidences
 - Were fed directly into DToF TDC no S4 hit required and no UToF deadtime
 - Also have these in UToF data, in coincidence with S3 hits
 - S2 completely shadowed by S3 no geometric effects (see above)

Results - recap

■ Here are number of S1 + S2 coincidences recorded in each filesystem for each number of blocks

N. blocks	DToF	UToF	Ratio
0	97,722	9,268	0.0948
1	259,579	36,707	0.1414
2	417,054	63,495	0.1522
3	396,519	64,264	0.1621
4	11,461,429	1,037,454	0.0905
	0 1 2 3	0 97,722 1 259,579 2 417,054 3 396,519	0 97,722 9,268 1 259,579 36,707 2 417,054 63,495 3 396,519 64,264

■ People were concerned about ratio for 4 block data, doesn't fit pattern.

Spill profiles – 1 block data

- Above are spills from 1 block data used in table previously
- Red is utof data, Black is dtof data
- Utof appears to cut out about 0.25s after spill start
- Right is utof/dtof against dtofapparent negative correlation

Spill profiles – 4 block data

- Above are spills from 4 block data used in table
- Red is utof, Black is dtof
- Utof appears to cut out \sim 0.25s after spill start
- Right is utof/dtof against dtof
- Think situations like LH plot produce spills with low utof/dtof values

Relation between number of DToF & UToF $S1 \cap S2$ hits

■ For each run, make a cut at $y = \frac{UToF}{DToF} = 0.06$ and plot straight line through points

Relation between number of DToF & UToF $S1 \cap S2$ hits

Little discernible correlation for 0 block case (above left) – use average ratio over run to perform scaling

Relation between number of DToF & UToF $S1 \cap S2$ hits

Correction process

- For each spill:
 - Count number of $S1 \cap S2$ hits as recorded in DToF
 - Calculate weight from the fitted line on previous slides
 - Weight events recorded in UToF data by 1 over this factor

Comparisons with old plots - MIP distribution

Without dead time correction

With dead time correction

Comparisons with old plots - Proton distribution

Without dead time correction

With dead time correction

Comparisons with old plots - Proton momentum

Without dead time correction

With dead time correction

Comparisons with old plots - Proton momentum

Without dead time correction

With dead time correction