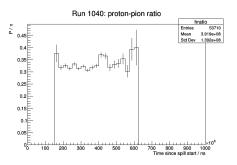


Dead time correction

Seb Jones


Department of Physics & Astronomy University College London

April 12, 2019

S3 dead time correction – recap

- Currently, we are not sure of UToF (S1, S2, S3) deadtime – measurements of proton & MIP flux are incorrect
- Proton/MIP ratio is fairly constant across spill (see right)
 ratio plots should be ok
- Would like to find a way to correct the absolute S3 flux plots

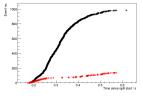
- Given previous slide, S3 fluxes should be correct up to a factor
- Need a signal present in UToF & DToF (negligible deadtime) data
- Use S1 + S2 coincidences
 - Were fed directly into DToF TDC no S4 hit required and no UToF deadtime
 - Also have these in UToF data, in coincidence with S3 hits
 - S2 completely shadowed by S3 no geometric effects (see above)

S. Jones (UCL)

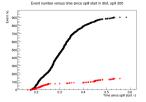
HPTPC Analysis

April 12, 2019 3 | 1

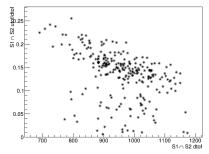
Results – recap


■ Here are number of *S*1 + *S*2 coincidences recorded in each filesystem for each number of blocks

N. blocks	DToF	UToF	Ratio	
0	97,722	9,268	0.0948	
1	259,579	36,707	0.1414	
2	417,054	63,495	0.1522	
3	396,519	64,264	0.1621	
4	11,461,429	1,037,454	0.0905	

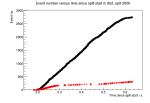

 People were concerned about ratio for 4 block data, doesn't fit pattern.

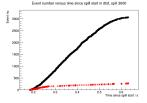
Spill profiles - 1 block data



vent number versus time since spill start in dtof, spill 15

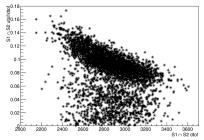
- Above are spills from 1 block data used in table previously
- Red is utof data, Black is dtof data
- Utof appears to cut out about 0.25s after spill start
- Right is utof/dtof against dtof
 - apparent negative correlation


Utof/Dtof S1
S2: Data_2018_9_1_b4_800MeV_1block_bend4cm



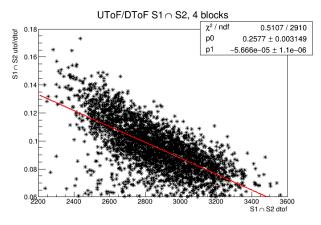
Spill profiles - 4 block data

Event number versus time since split furt in died, split 1000

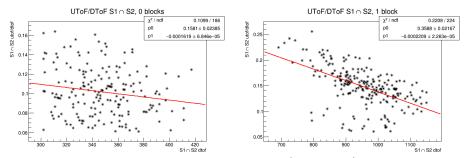


Above are spills from 4 block data used in table

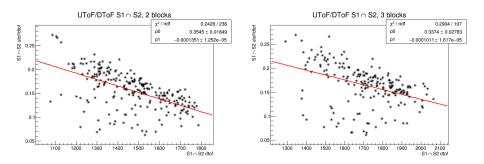
- Red is utof, Black is dtof
- Utof appears to cut out ~ 0.25s after spill start
- Right is utof/dtof against dtof
- Think situations like LH plot produce spills with low utof/dtof values


Utof/Dtof S1
S2: Data_2018_9_1_b8_800MeV_4block_bend4cm

UCL


Relation between number of DToF & UToF $S1 \cap S2$ hits

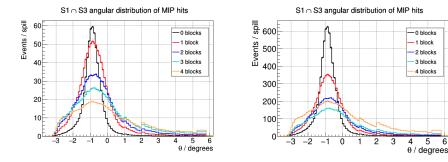
For each run, make a cut at $y = \frac{UT_oF}{DT_oF} = 0.06$ and plot straight line through points


Relation between number of DToF & UToF $S1 \cap S2$ hits

Little discernible correlation for 0 block case (above left) – use average ratio over run to perform scaling

Relation between number of DToF & UToF $S1 \cap S2$ hits

HPTPC Analysis



Correction process

- For each spill:
 - Count number of $S1 \cap S2$ hits as recorded in DToF
 - Calculate weight from the fitted line on previous slides
 - Weight events recorded in UToF data by 1 over this factor

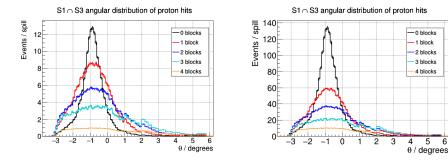
Comparisons with old plots - MIP distribution

Without dead time correction

0 blocks

1 block

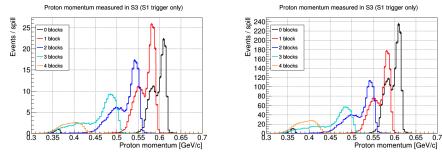
2 blocks


3 blocks

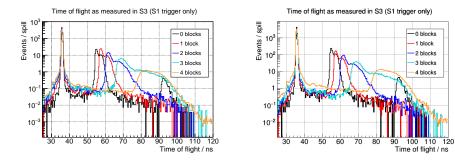
4 blocks

5

6

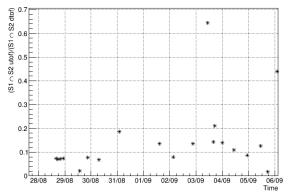

Comparisons with old plots – Proton distribution

Without dead time correction


Comparisons with old plots – Proton momentum

Without dead time correction

Comparisons with old plots – Proton momentum



Without dead time correction

$S1 \cap S2$ utof $/S1 \cap S2$ dtof over run

 $S1 \cap S2$ (utof / dtof) for each utof run

■ Most runs around what was seen previously (0.09 - 0.16)