

VH (H->bb) at ATLAS

Valerio Dao on behalf of the ATLAS collaboration CERN

CMS FTAG workshop - Dubrovnik

30-04-2019

Hbb decay

Higgs boson physics represents the new and fresh playground at Run2 of the LHC to understand the consistency of the SM and explore new physics effects

Largest Higgs boson decay mode for m_H=125 GeV: 58%:

- direct probe of Higgs boson-to-quark interactions (together with ttH)
- most accessible decay to quarks

 Higgs boson width in SM: 4 MeV

Largest contribution to Higgs boson decay width:

- key ingredient in absolute decay rate analysis
- deviation from SM behaviour could easily accommodate room for new physics (invisible decays)
- + preferential $H \rightarrow$ bb coupling in some beyond the Standard Model (BSM) scenarios

Hbb: how?

+ gluon fusion:

- overwhelming multi-jet background
- only limited to very high p⊤
- Vector Boson Fusion: 1/10 of total cross section
 - forward jets topology helps reduce the background
 - fully hadronic final state still maintains many experimental difficulties (trigger)
- VH production: 1/20 of total cross section
 - can use leptonic decays of V for triggering/background reduction
 - GOLDEN H->bb channel at hadronic machines
- ttH: 1/100 of total cross section
 - can rely on leptonic decays of top quarks for triggering/ background reduction
 - complicated combinatorics: difficult to extract a mass peak already for the signal

Dao Valerio

ATLAS VHbb: history

Source: https://twiki.cern.ch/twiki/bin/viewauth/LhcMachine/LhcCoordinationMain

Dao Valerio

VH production

A "golden channel" for H->bb:

- production xSection predicted quite precisely from the theory point of view: NNLO QCD + NLO EWK
- + can exploit leptonic decay leptonic decays of vector boson for an easy triggering / background reduction
- mostly fully reconstructed/low multiplicity final state
- ♦ (WH+ZH)*Br(H->bb) ~ 1.3 pb —> ~100k Higgs events in 80 fb⁻¹:
 - need to add V->II' BR + reconstruction + tight event selection to make the signal more visible
- ATLAS MC:
 - + qq->VH : Powheg (MiNLO) + Pythia8 [NLO EWK applied parametrically as a function of V p_T]
 - gg->ZH : Powheg + Pythia8 : LO+PS

Phys. Lett. B 786 (2018) 59

3 main channels: very different way to reconstruct the vector boson candidate

0-lepton:

- + mainly Z->vv but also W-> τ
- ♦ V p_T = MET

1-lepton (**l=e**,μ):

- mainly W->lv
- ♦ V p_T = p_T(I,MET)

2-lepton (*l*=e,μ):

- same flavour, mainly Z->II
- ♦ V p_T = p_T II

- Common aspects among channels:
 - triggering on vector boson object: MET trigger (0L, 1L-μ), single lepton trigger (1L-e, 2L)
 - + exactly 2 central ($|\eta|$ <2.5) b-tagged jets (70% b-jet efficiency)
 - categorising events as a function of additional jets
- Hight V p_T selection strongly suppresses certain background topologies:

- Chosen cut values:
 - 0-Lepton: V pT > 150 GeV [imposed by MET trigger]
 - + 1-Lepton: V pT > 150 GeV [considerably reduced multi-jet background]
 - 2-Lepton: V pT > 75 GeV [split signal region at 150 GeV]
- Overall acceptance for signal: 1-7%

• Exactly 2 central ($|\eta|$ <2.5) b-tagged jets (70% b-jet efficiency):

- using MV2c10 tagger (c rej : ~10, light rej : ~0.5%)
- excellent tagging performance reduces combinatorics to a minimum
- very high light jet rejection: vast majority of the background contains 2 true b-jets
- good c-jet rejection needed to suppress ttbar (more later)
- Improving *m_{bb}* resolution on top of default Anti-kt R=0.4 calorimeter jet reconstruction performance:
 - adding soft muon (when found inside the jet cone) to jet 4-momentum: +13%
 - additional scaling of jet momentum (p_T correction) to compensate from missing neutrino: +5%
 - kinematic likelihood fit to constrain jet response: only if topology allows

See talk from C. Pollard

for comparison with rejection see E. Schopf's thesis

VHbb: backgrounds

Different background composition in each channel

- V+jet [Sherpa 2.2.1 (0,1j,2j @ NLO + 3j,4j @LO)]: dominated by Z+bb, W+bb
 Z+hf: 0L and 2L, W+hf: 0L and 1L
- ttbar [Powheg+Pythia8]: present in every channel
 - very different topology of selected events between 0L/1L and 2L channels
- Resonant VZ, Z->bb [Sherpa 2.2.1] background: used to validate the analysis procedure
- Single top [Powheg+Pythia8] and QCD multi-jet background: subdominant contributions only in 1L

Multivariate discriminant

250

300

0-lepton

 $\equiv E_{\rm T}^{\rm miss}$

Х

Х

Х

Х

 \times

Х

Х

 \times

350

1-lepton

 \times

 \times

 \times

 \times

 \times

Х

Х

Х

Х

 \times

 \times

Only in 3-jet events

 \times

 \times

🔶 Data

tī

Diboson

Single top

Multijet

Uncertainty ····· Pre-fit background

VH, $H \rightarrow b\overline{b} \times 70$

400

450

p^v_T [GeV]

2-lepton

Х

 \times

Х

Х

Х

Х

Х

Х

 \times

 \times

 \times

W+jets

Z+jets

VH, H → bb (μ=1.16)

- using TMVA boosted decision tree [AdaBoost, nTree~200, maxDepth 4-6]
- discriminant trained in each analysis region
- rebinning algorithm to improve sensitivity (and reduce number of bins)

Dao Valerio

 \times

Х

VHbb: regions overview

		Categories					
Channel	SB/CB	$75 \mathrm{GeV}$	$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV} \mid p_{\mathrm{T}}^{V} > 150 \text{ GeV}$				
		2 jets	3 jets	2 jets	3 jets		
0-lepton	SR	-	-	BDT	BDT		
1-lepton	SR	-	-	BDT	BDT		
2-lepton	SR	BDT	BDT	BDT	BDT		
1-lepton	W + HF CR	-	_	Yield	Yield		
2-lepton	$e\mu~{ m CR}$	m_{bb}	m_{bb}	Yield	m_{bb}		

b

ā

✤ 8 SRs, 6 CRs

- WCR in 1-lepton: disentangle W+jets and ttbar in 1-lepton
 - m_{bb} <75 GeV : reduce signal contamination
 - mtop >225 : reduce ttbar contamination
 - 77% purity: need extrapolation to SR
- top CRs in 2-lepton: exactly the same selection but e+µ final state
 - 99% pure in ttbar, no signal contamination
 - practically no theoretical extrapolation between CR and SR
- Normalisations extracted directly from BDT in SR: top in 1L, Z+HF in 2L
- Other backgrounds have MC-based normalisation

Mtop

VH-bb: fit model

Warning: slightly simplified version, only 1 jet multiplicity bin shown

Dao Valerio

Putting it all together

Dao Valerio

VHbb: results

Signal strength	Signal strength	Significance	
Signal Strengen	Signal Strength	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	3.1	3.3
1-lepton	$1.09_{-0.42}^{+0.46}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16_{-0.25}^{+0.27}$	4.3	4.9

$$\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25}$$

Run2 signal significance:

4.9 s.d. obs. , 4.3 s.d. exp.

- signal compatibility across channels: 80%
- WH-ZH correlation: ~1%

VHbb:	results	(2)
-------	---------	-----

Source of une	σ_{μ}	
Total		0.259
Statistical		0.161
$\operatorname{Systematic}$		0.203
Experimenta	l uncertainties	
Jets		0.035
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
Leptons		0.009
	<i>b</i> -jets	0.061
b-tagging	c-jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up	0.007	
Luminosity	0.023	

Theoretical and modelling uncertainties

0.094

0.0704

Signa

Floating normalisations	0.035
Z + jets	0.055
W + jets	0.060
$t\overline{t}$	0.050
Single top quark	0.028
Diboson	0.054
Multi-jet	0.005

MC statistical

 Analysis systematically dominated : syst. component represent ~80% of total error [does not mean that it will not shrink with luminosity]

 Detector systematics effects dominated by flavour tagging [sensitivity to c-jet mis-tag from ttbar events]

- Signal modelling systematics: dominated by Parton Shower acceptance effects
 - do not impact the significance of the measured signal
- Similar contribution from *modelling uncertainty* of various processes:
 - + W+jets: W p⊤ shape uncertainty
 - **Z+jets**: m_{bb} shape uncertainty
 - diboson: mbb lineshape

MC statistics: heavily relying on generator filters at different level to provide enough statistics (huge CPU investment)

A more intuitive analysis

- fitting mbb instead of MVA discriminant:
 - additional splitting in Vpt: 200 GeV
 - Additional upper cut on dRbb: 1.2 3.0
 - additional selection on 1L/2L to reduce ttbar background

Dao Valerio

Important Run2 milestones

Run1+Run2 significance:

5.4 s.d. obs. , 5.5 s.d. exp.

!!! OBSERVATION of H->bb !!!

Run2 significance: 5.3 s.d. obs. , 4.8 s.d. exp.

2

1.5

VH

-Stat.

√s=13 TeV, 79.8 fb⁻¹

(Stat., Syst.)

 $\begin{pmatrix} +1.26 & +0.32 \\ -0.85 & , -0.14 \end{pmatrix}$

+0.53 +0.28

(_0.50 , _0.22

+0.16 +0.21

-0.16 , -0.19

 $(\begin{array}{c} +0.15 & +0.18 \\ -0.15 & , \ -0.17 \end{array})$

4

4.5

5

 μ_{VH}

Tot.

+1.30

-0.87

+0.60

-0.54

+0.27

-0.25

+0.24

-0.23

3.5

0.94

1.03

1.17

1.13

3

2.5

!!! OBSERVATION of VH production !!!

VH (H->bb) plays a LEADING role in the measurement of the Hbb Br as well as VH production mode

- From inclusive signal strength to Simplified Template cross section (STXS)
- Re-interpreting observation result, measuring cross section in bins of V p_T separately for WH and ZH production:
 - *experimentally:* better resolution on V p_T than on Higgs p_T
 - reduces amount of extrapolation to inclusive result
 - following analysis categorisation: split at 250 exploits BDT shape

- From inclusive signal strength to Simplified Template cross section (STXS)
- Re-interpreting observation result, measuring cross section in bins of V p_T separately for WH and ZH production:
 - experimentally: better resolution on V p⊤ than on Higgs p⊤
 - reduces amount of extrapolation to inclusive result
 - following analysis categorisation: split at 250 exploits BDT shape

First STXS in VH (H->bb):

- + all bins have obs./exp. significance between 1 and 2 sigma
- still dominated by statistical uncertainty
- + correlation between neighbouring V pt bins due to lack of proper data splitting
- High pT bins particularly suited to study effects from new physics

beyond coupling modifiers

 EFT approach: consider modification to SM through dim 6 operators

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$$

Effect of operators usually increases with V pT

Fitting one coefficient at the time

Dao Valerio

 very high p⊤ regime is the only solution to counteract overwhelming QCD multi jet background

- LargeR jet selection:
 - + leading Akt R=1.0 trimmed jets (f=0.05) with $p_T>450$ GeV, $|\eta|<2.0$

 - + at least 2 ghost-matched VR track jets (p_T>10 GeV): an implicit substructure requirement
 - leading 2 VR jets satisfying 77% b-tag WP
- Continuum QCD background estimation:
 - (from MC studies) tagging requirements do not bias jet mass distribution for m_J>70 GeV
 - use signal free 0-tag region to determine analytical fit functions [+ bias studies etc]

Dao Valerio

Summary and Conclusions

- The update of the VH (H->bb) analysis with partial Run2 dataset was the key ingredient to meet to important milestones for the ATLAS experiment:
 - observation of H->bb decay
 - observation of VH production
- A robust and conservative analysis will serve as a starting point for future improvements:
 - 80% more data already on tape
 - shifting attention to differential information
 - improvements in MC modelling and ML techniques
 - pushing into high p_T (boosted) regime to increase sensitivity to new physics

Dao Valerio

BackUp

"would you like to know more?"

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

Selection	0-lepton	1-le	pton	2-lepton
Selection		e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	$\begin{array}{l} 1 \ tight \ electron \\ p_{\rm T} > 27 \ {\rm GeV} \end{array}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$ $\geq 1 {\rm ~lepton}$ with $p_{\rm T} > 27 {\rm ~GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	_
$m_{\ell\ell}$	—		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jets	Exactly $2 / E_2$	xactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$		> 20 GeV > 30 GeV for	for $ \eta < 2.5$ 2.5 < $ \eta < 4.5$	
b-jets		Exactly 2	b-tagged jets	
Leading b-tagged jet $p_{\rm T}$		> 43	$5 \mathrm{GeV}$	
H_{T}	> 120 GeV (2 jets), >150 GeV (3 jets)		_	_
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	_
$\Delta \phi (ec{E}_{ m T}^{ m miss}, ec{bb})$	$> 120^{\circ}$			_
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	_
p_{T}^{V} regions	> 150	0 GeV		$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, > 150 \text{ GeV}$
Signal regions		$m_{bb} \ge 75 { m ~GeV}$ or	r $m_{ m top} \leq 225~{ m GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	_	$m_{bb} < 75~{\rm GeV}$ an	d $m_{\rm top}>225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order
Signal, mass set to	b 125 GeV and $b\bar{b}$ branching fraction	tion to 58%			
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(*) [77]	Рутніа 8.212 [68]	AZNLO [78]	NNLO(QCD)+ NLO(EW) [82–88]
$qq ightarrow ZH ightarrow u u b ar{b}/\ell \ell b ar{b}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO $^{(\star)}$	Рутніа 8.212	AZNLO	$NNLO(QCD)^{(\dagger)} + NLO(EW)$
$gg ightarrow ZH \ ightarrow u u b ar{b}/\ell \ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]
Top quark, mass s	et to $172.5 \mathrm{GeV}$				
$tar{t}$ s-channel t-channel Wt	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]
Vector boson + je	ts				
$W \to \ell \nu Z/\gamma^* \to \ell \ell Z \to \nu \nu$	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO
Diboson					
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO

CERN

H->bb: VH

Validating the MVA analysis: V+Z->bb is irreducible background with a peak in mbb

- Same region definition
- Same event selection
- Same analysis model
- BDT is retrained (with the SAME variables) for diboson
 VS background separation

Dao Valerio

All bins in the analysis arranged according to S/B

+ Observed significance: >7 σ

$$u_{VZ}^{bb} = 1.20^{+0.20}_{-0.18} = 1.20 \pm 0.08(\text{stat.})^{+0.19}_{-0.16}(\text{syst.})$$

observation of diboson production in VZ->II'bb final state

- Signal strength compatible with SM prediction:
 - nominal MC is Sherpa 2.2 (NLO prediction)
 - systematic uncertainties dominated by signal acceptance term (Sherpa VS Powheg)

VH H->bb: ranking

2 b-jets + 2jets (+photon):

80

100

120

140

160

180

m_{bb} [GeV]

200

CERN

 the photon reduces bkgd and ease triggering

H->bb: VBF

m_{bb} [GeV]

33

H->bb: VBF triggers

$\begin{array}{c c} \label{eq:result} \end{tabular} \begin{tabular}{ c c c } \hline \mathbb{L}_1 & \geq 2 \mbox{ central jets with $E_{\rm T}$ > 20 ${\rm GeV}$} \\ \hline \ge 1 \mbox{ forward jet with $E_{\rm T}$ > 20 ${\rm GeV}$} \\ \hline \end{tabular} \end{tabular} \begin{tabular}{ c c c } \hline \mathbb{L}_1 & \geq 2 \mbox{ central b-jets at 70\%, 85\% efficiency working points with $p_{\rm T}$ > 95,70 ${\rm GeV}$ and $ \eta < 2.5$} \\ \hline \end{tabular} \begin{tabular}{ c c } \hline \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c } \hline \mathbb{L}_1 & \geq 2 \mbox{ bjets at 70\%, 85\% efficiency working points with $p_{\rm T}$ > 95,70 ${\rm GeV}$ and $ \eta < 2.5$} \\ \hline \end{tabular} \begin{tabular}{ c c } \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c } \hline \end{tabular} tab$	Two-central channel				
$\begin{array}{ c c c c } \mbox{Trigger} & \begin{tabular}{ c c c c } \hline 1 & & & \geq 1 \mbox{ forward jet with } E_{T} > 20 \mbox{ GeV} \\ \hline \hline & & \geq 2 \mbox{ central } b\mbox{-jets at 70\%, 85\% efficiency working points with } E_{T} > 80, 60 \mbox{ GeV} \\ \hline & & \geq 1 \mbox{ forward jet with } E_{T} > 45 \mbox{ GeV} \\ \hline & & \geq 2 \mbox{ bjets at 70\%, 85\% efficiency working points with } p_{T} > 95, 70 \mbox{ GeV and } \eta < 2.5 \\ \hline & & \geq 1 \mbox{ jet with } p_{T} > 60 \mbox{ GeV} \mbox{ dev} \\ \hline & & & \geq 2 \mbox{ bjets at 70\%, 85\% efficiency working points with } p_{T} > 95, 70 \mbox{ GeV and } \eta < 2.5 \\ \hline & & \geq 1 \mbox{ jet with } p_{T} > 20 \mbox{ GeV} \mbox{ dev} \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$		L1	≥ 2 central jets with $E_{\rm T} > 40, 25 { m ~GeV}$		
$\begin{array}{ c c c } \hline \text{HLT} & \geq 2 \text{ central } b\text{-jets at } 70\%, 85\% \text{ efficiency working points with } E_{\mathrm{T}} > 80, 60 \text{ GeV} \\ & \geq 1 \text{ forward jet with } E_{\mathrm{T}} > 45 \text{ GeV} \\ & \geq 2 b\text{ jets at } 70\%, 85\% \text{ efficiency working points with } p_{\mathrm{T}} > 95, 70 \text{ GeV and } \eta < 2.5 \\ & \geq 1 \text{ jet with } p_{\mathrm{T}} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ & \geq 1 \text{ jet with } p_{\mathrm{T}} > 20 \text{ GeV and } \eta < 4.4 \\ & p_{\mathrm{T}}(bb) > 160 \text{ GeV} \\ \hline \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ $	Trigger		≥ 1 forward jet with $E_{\rm T} > 20 { m ~GeV}$		
$\begin{array}{ c c c } \hline \text{Init} & \geq 1 \text{ forward jet with } E_{\mathrm{T}} > 45 \text{ GeV} \\ & \geq 2 \text{ b-jets at 70\%, 85\%$ efficiency working points with } p_{\mathrm{T}} > 95, 70 \text{ GeV and } \eta < 2.5 \\ & \geq 1 \text{ jet with } p_{\mathrm{T}} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ & \geq 1 \text{ jet with } p_{\mathrm{T}} > 20 \text{ GeV and } \eta < 4.4 \\ & p_{\mathrm{T}}(bb) > 160 \text{ GeV} \\ \hline \hline \hline Four-central \text{ channel} \\ \hline \hline \\ \hline \hline \\ $	Ingger	нл	≥ 2 central b-jets at 70%, 85% efficiency working points with $E_{\rm T}>80,60~{\rm GeV}$		
$Offline \left \begin{array}{c} \geq 2 \text{ b-jets at 70\%, 85\% efficiency working points with } p_{\mathrm{T}} > 95, 70 \text{ GeV and } \eta < 2.5 \\ \geq 1 \text{ jet with } p_{\mathrm{T}} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ \geq 1 \text{ jet with } p_{\mathrm{T}} > 20 \text{ GeV and } \eta < 4.4 \\ p_{\mathrm{T}}(bb) > 160 \text{ GeV} \end{array} \right $ $\overline{Pour-central \text{ channel}}$ $\overline{Trigger} \boxed{L1} \geq 4 \text{ central jets with } E_{\mathrm{T}} > 15 \text{ GeV} \\ \overline{HLT} \geq 2 \text{ central } \text{ b-jets at 70\% (or 60\%) efficiency working point with } E_{\mathrm{T}} > 45 \text{ GeV (or 35 GeV)} \\ \hline \\ \hline \\ Offline \boxed{2 \text{ 2 b-jets at 70\% efficiency working point with } p_{\mathrm{T}} > 55 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 55 \text{ GeV and } \eta < 2.8 \\ \text{No jet with } p_{\mathrm{T}} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ p_{\mathrm{T}}(bb) > 150 \text{ GeV} \\ \hline \\ \hline \\ \hline \\ \hline \\ Trigger \boxed{L1} \geq 1 \text{ photon with } E_{\mathrm{T}} > 22 \text{ GeV} \\ \text{HLT} \geq 1 \text{ photon with } E_{\mathrm{T}} > 25 \text{ GeV} \\ \text{HLT} \geq 1 \text{ photon with } E_{\mathrm{T}} > 25 \text{ GeV} \\ \hline \\ \hline \\ \hline \\ Trigger \boxed{L1} \geq 1 \text{ photon with } E_{\mathrm{T}} > 25 \text{ GeV} \\ \text{HLT} \geq 4 \text{ jets (or } 3 \text{ jets and } \geq 1 \text{ b-jet at 77\% efficiency working point) with } E_{\mathrm{T}} > 35 \text{ GeV and } \eta < 4.9 \\ m_{jj} > 700 \text{ GeV} \\ \hline \\ \hline \\ \hline \\ Offline \hline \\ \hline \\ Offline \underbrace{Pi \text{ photon with } E_{\mathrm{T}} > 30 \text{ GeV and } \eta < 1.37 \text{ or } 1.52 < \eta < 2.37 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5 \\ \geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 4.4 \\ m_{jj} > 800 \text{ GeV} \\ p_{\mathrm{T}}(bb) > 80 \text{ GeV} \\ \hline \end{aligned}$			≥ 1 forward jet with $E_{\rm T} > 45 { m ~GeV}$		
$\begin{array}{c c c c c c } \mbox{Offline} & & & \geq 1 \mbox{ jet with } p_T > 60 \mbox{ GeV and } 3.2 < \eta < 4.4 \\ & \geq 1 \mbox{ jet with } p_T > 20 \mbox{ GeV and } \eta < 4.4 \\ & p_T(bb) > 160 \mbox{ GeV} \end{array} \\ \hline & & & Four-central \mbox{ channel} \end{array} \\ \hline & & & & Four-central \mbox{ channel} \end{array} \\ \hline & & & & & & & & & & & & & & & & & &$			≥ 2 b-jets at 70%, 85% efficiency working points with $p_{\rm T} > 95, 70$ GeV and $ \eta < 2.5$		
$\begin{array}{ c c c c } \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Offi	ne	≥ 1 jet with $p_{\rm T} > 60$ GeV and $3.2 < \eta < 4.4$		
$\begin{array}{ c c c c c } \hline P_{T}(bb) > 160 \text{ GeV} \\ \hline Four-central channel \\ \hline Frigger & L1 & \geq 4 \text{ central jets with } E_{T} > 15 \text{ GeV} \\ \hline \text{HLT} & \geq 2 \text{ central b-jets at 70\% (or 60\%) efficiency working point with } E_{T} > 45 \text{ GeV (or 35 GeV)} \\ \hline & \geq 2 \text{ b-jets at 70\% efficiency working point with } p_{T} > 55 \text{ GeV and } \eta < 2.5 \\ & \geq 2 \text{ jets with } p_{T} > 55 \text{ GeV and } \eta < 2.8 \\ & \text{No jet with } p_{T} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ & p_{T}(bb) > 150 \text{ GeV} \\ \hline \\ $	OIII	ne	≥ 1 jet with $p_{\rm T} > 20$ GeV and $ \eta < 4.4$		
$\begin{tabular}{ c c c } \hline Four-central \ channel \\ \hline Furger & L1 & \geq 4 \ central \ jets \ with \ E_T > 15 \ GeV \\ \hline HLT & \geq 2 \ central \ b-jets \ at \ 70\% \ (or \ 60\%) \ efficiency \ working \ point \ with \ E_T > 45 \ GeV \ (or \ 35 \ GeV) \\ \hline \hline \\ \hline $			$p_{\rm T}(bb) > 160 { m ~GeV}$		
$\begin{array}{ c c c c c } \hline \mathrm{Trigger} & \begin{array}{ c c c c } \hline \mathrm{L1} & \geq 4 \ \mathrm{central jets with } E_{\mathrm{T}} > 15 \ \mathrm{GeV} \\ \hline \mathrm{HLT} & \geq 2 \ \mathrm{central } b \ \mathrm{jets at 70\% (or 60\%) efficiency working \mathrm{point with } E_{\mathrm{T}} > 45 \ \mathrm{GeV (or 35 \mathrm{GeV})} \\ \hline \\ & & \\ \hline \\ \mathrm{Offline} \end{array} & \begin{array}{ c c c c c c c c c } & \geq 2 \ b \ \mathrm{jets at 70\% efficiency working \mathrm{point with } p_{\mathrm{T}} > 55 \ \mathrm{GeV and } \eta < 2.5 \\ & \geq 2 \ \mathrm{jets with } p_{\mathrm{T}} > 55 \ \mathrm{GeV and } \eta < 2.8 \\ & & & & & & & & & & & & & & & & & & $			Four-central channel		
$\begin{array}{ c c c c } \hline \text{HLT} & \geq 2 \ \text{central b-jets at 70\% (or 60\%) efficiency working point with $E_{\mathrm{T}} > 45 \ \text{GeV}(\text{ or 35 GeV})} \\ \hline & \geq 2 \ b$-jets at 70\% efficiency working point with $p_{\mathrm{T}} > 55 \ \text{GeV} and $ \eta < 2.5$} \\ & \geq 2 \ jets \ \text{with $p_{\mathrm{T}} > 55 \ \text{GeV} and $ \eta < 2.8$} \\ & \text{No jet with $p_{\mathrm{T}} > 60 \ \text{GeV} and $3.2 < \eta < 4.4$} \\ & p_{\mathrm{T}}(bb) > 150 \ \text{GeV} \\ \hline \\ $	Trigger	L1	≥ 4 central jets with $E_{\rm T} > 15 { m GeV}$		
$ \begin{array}{l} \label{eq:offline} \begin{split} & \displaystyle \stackrel{\geq 2 \text{ b-jets at 70\% efficiency working point with $p_{\mathrm{T}} > 55 \text{ GeV and $ \eta < 2.5$}}{ \displaystyle \stackrel{\geq 2 \text{ j-jets with $p_{\mathrm{T}} > 55 \text{ GeV and $ \eta < 2.8$}}{ & \text{No j-jet with $p_{\mathrm{T}} > 60 \text{ GeV and $3.2 < \eta < 4.4$}}{ & p_{\mathrm{T}}(bb) > 150 \text{ GeV}} \end{split} \\ \hline \\$	Ingger	HLT	$\geq 2 \text{ central } b$ -jets at 70% (or 60%) efficiency working point with $E_{\rm T} > 45 \text{ GeV}$ (or 35 GeV)		
$ \begin{array}{c c} \mbox{Offline} & & \geq 2 \mbox{ jet with } p_{\rm T} > 55 \mbox{ GeV and } \eta < 2.8 \\ & & \mbox{ No jet with } p_{\rm T} > 60 \mbox{ GeV and } 3.2 < \eta < 4.4 \\ & & p_{\rm T}(bb) > 150 \mbox{ GeV} \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mbox{Trigger} & \hline \\ \hline$			≥ 2 b-jets at 70% efficiency working point with $p_{\rm T} > 55~{\rm GeV}$ and $ \eta < 2.5$		
$\begin{array}{ c c c c c } \hline & \text{No jet with } p_{\mathrm{T}} > 60 \text{ GeV and } 3.2 < \eta < 4.4 \\ p_{\mathrm{T}}(bb) > 150 \text{ GeV} \\ \hline & Photon \text{ channel} \\ \hline \\ $	Offli	ne	≥ 2 jets with $p_{\rm T} > 55~{\rm GeV}$ and $ \eta < 2.8$		
$\begin{array}{ c c c c c } \hline p_{T}(bb) > 150 \ \text{GeV} \\ \hline \hline Photon \ \text{channel} \\ \hline \hline Photon \ \text{channel} \\ \hline \\ \hline \\ Trigger \end{array} \begin{array}{ c c c c c } \hline L1 & \geq 1 \ \text{photon with } E_{T} > 22 \ \text{GeV} \\ & \geq 1 \ \text{photon with } E_{T} > 25 \ \text{GeV} \\ & \geq 4 \ \text{jets (or } \geq 3 \ \text{jets and } \geq 1 \ b \ \text{jet at } 77\% \ \text{efficiency working point) with } E_{T} > 35 \ \text{GeV and } \eta < 4.9 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Offline \end{array} \begin{array}{ c c c c } & \geq 1 \ \text{photon with } E_{T} > 30 \ \text{GeV and } \eta < 1.37 \ \text{or } 1.52 < \eta < 2.37 \\ & \geq 2 \ b \ \text{jets at } 77\% \ \text{efficiency working point with } p_{T} > 40 \ \text{GeV and } \eta < 2.5 \\ & \geq 2 \ \text{jets with } p_{T} > 40 \ \text{GeV and } \eta < 4.4 \\ \hline \\ $	OIII	ne	No jet with $p_{\rm T} > 60~{\rm GeV}$ and $3.2 < \eta < 4.4$		
$ \begin{array}{ c c c } \hline Photon \mbox{ channel} \\ \hline Photon \mbox{ channel} \\ \hline Trigger & L1 & \geq 1 \mbox{ photon with } E_{\rm T} > 22 \mbox{ GeV} \\ \hline HLT & \geq 1 \mbox{ photon with } E_{\rm T} > 25 \mbox{ GeV} \\ \hline HLT & \geq 4 \mbox{ jets (or } \geq 3 \mbox{ jets and } \geq 1 \mbox{ b-jet at } 77\% \mbox{ efficiency working point) with } E_{\rm T} > 35 \mbox{ GeV and } \eta < 4.9 \\ \hline m_{jj} > 700 \mbox{ GeV} \\ \hline \\ Offline & \sum_{j=1}^{2} 2 \mbox{ b-jets at } 77\% \mbox{ efficiency working point with } p_{\rm T} > 40 \mbox{ GeV and } \eta < 2.5 \\ \geq 2 \mbox{ jets with } p_{\rm T} > 40 \mbox{ GeV and } \eta < 4.4 \\ \hline m_{jj} > 800 \mbox{ GeV} \\ \hline p_{\rm T}(bb) > 80 \mbox{ GeV} \end{array} $			$p_{\rm T}(bb) > 150 { m ~GeV}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Photon channel		
Trigger ≥ 1 photon with $E_{\rm T} > 25$ GeV ≥ 4 jets (or ≥ 3 jets and ≥ 1 b-jet at 77% efficiency working point) with $E_{\rm T} > 35$ GeV and $ \eta < 4.9$ $m_{jj} > 700$ GeV ≥ 1 photon with $E_{\rm T} > 30$ GeV and $ \eta < 1.37$ or $1.52 < \eta < 2.37$ ≥ 2 b-jets at 77% efficiency working point with $p_{\rm T} > 40$ GeV and $ \eta < 2.5$ ≥ 2 jets with $p_{\rm T} > 40$ GeV and $ \eta < 4.4$ $m_{jj} > 800$ GeV $p_{\rm T}(bb) > 80$ GeV		L1	≥ 1 photon with $E_{\rm T} > 22 { m ~GeV}$		
HLT $\geq 4 \text{ jets } (\text{or } \geq 3 \text{ jets and } \geq 1 \text{ b-jet at } 77\% \text{ efficiency working point) with } E_{\mathrm{T}} > 35 \text{ GeV and } \eta < 4.9$ $m_{jj} > 700 \text{ GeV}$ $\geq 1 \text{ photon with } E_{\mathrm{T}} > 30 \text{ GeV and } \eta < 1.37 \text{ or } 1.52 < \eta < 2.37$ $\geq 2 \text{ b-jets at } 77\% \text{ efficiency working point with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 2.5$ Offline $\geq 2 \text{ jets with } p_{\mathrm{T}} > 40 \text{ GeV and } \eta < 4.4$ $m_{jj} > 800 \text{ GeV}$ $p_{\mathrm{T}}(bb) > 80 \text{ GeV}$	Triggor		≥ 1 photon with $E_{\rm T} > 25 { m ~GeV}$		
$\begin{array}{ c c c c c }\hline m_{jj} > 700 \ \text{GeV} \\ \hline & \geq 1 \ \text{photon with } E_{\mathrm{T}} > 30 \ \text{GeV and } \eta < 1.37 \ \text{or} \ 1.52 < \eta < 2.37 \\ \hline & \geq 2 \ b\text{-jets at } 77\% \ \text{efficiency working point with } p_{\mathrm{T}} > 40 \ \text{GeV and } \eta < 2.5 \\ \hline & \geq 2 \ \text{jets with } p_{\mathrm{T}} > 40 \ \text{GeV and } \eta < 4.4 \\ m_{jj} > 800 \ \text{GeV} \\ p_{\mathrm{T}}(bb) > 80 \ \text{GeV} \end{array}$	Ingger	HLT	≥ 4 jets (or ≥ 3 jets and ≥ 1 <i>b</i> -jet at 77% efficiency working point) with $E_{\rm T} > 35$ GeV and $ \eta < 4.9$		
$ \begin{array}{l} \begin{array}{l} \geq 1 \mbox{ photon with } E_{\rm T} > 30 \mbox{ GeV and } \eta < 1.37 \mbox{ or } 1.52 < \eta < 2.37 \\ \geq 2 \mbox{ b-jets at } 77\% \mbox{ efficiency working point with } p_{\rm T} > 40 \mbox{ GeV and } \eta < 2.5 \\ \geq 2 \mbox{ jets with } p_{\rm T} > 40 \mbox{ GeV and } \eta < 4.4 \\ m_{jj} > 800 \mbox{ GeV} \\ p_{\rm T}(bb) > 80 \mbox{ GeV} \end{array} $			$m_{jj} > 700 \text{ GeV}$		
$ \begin{array}{l} \text{Offline} \\ \begin{array}{l} \geq 2 \ b\text{-jets at 77\% efficiency working point with } p_{\mathrm{T}} > 40 \ \text{GeV and } \eta < 2.5 \\ \\ \geq 2 \ \text{jets with } p_{\mathrm{T}} > 40 \ \text{GeV and } \eta < 4.4 \\ \\ m_{jj} > 800 \ \text{GeV} \\ \\ p_{\mathrm{T}}(bb) > 80 \ \text{GeV} \end{array} \end{array} $			≥ 1 photon with $E_{\rm T} > 30~{\rm GeV}$ and $ \eta < 1.37~{\rm or}~1.52 < \eta < 2.37$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			≥ 2 b-jets at 77% efficiency working point with $p_{\rm T} > 40$ GeV and $ \eta < 2.5$		
$m_{jj} > 800 \text{ GeV}$ $p_{\mathrm{T}}(bb) > 80 \text{ GeV}$	Offli	ne	≥ 2 jets with $p_{\rm T} > 40~{\rm GeV}$ and $ \eta < 4.4$		
$p_{\rm T}(bb) > 80~{ m GeV}$			$m_{jj} > 800 \text{ GeV}$		
			$p_{\rm T}(bb) > 80 {\rm ~GeV}$		

VHbb STXS unc

Source of uncertainty			Impact on error		
	$ZH, 75 < p_{\rm T}^Z < 150 {\rm GeV}$	$ZH, 150 < p_{\rm T}^Z < 250 {\rm GeV}$	$ZH, p_{\mathrm{T}}^Z \ge 250 \mathrm{GeV}$	$WH, 150 < p_{\rm T}^W < 250 {\rm GeV}$	$WH, p_{\mathrm{T}}^{W} \ge 250 \mathrm{GeV}$
Total	±56%	±92%	±48%	±124%	±58%
Statistical	±43%	±77%	±44%	±86%	±50%
Data	±40%	±75%	±44%	±81%	±50%
Floating normalisations	±13%	±18%	±4%	±18%	±9%
Systematic	±36%	±51%	±18%	±89%	±30%
Signal modelling	±13%	±11%	±9%	±8%	±6%
Background modelling	±26%	±44%	±14%	±66%	±28%
Multijet	±1%	±2%	-	±6%	±1%
Single top quark	±3%	±5%	±1%	±26%	±6%
tī	±11%	±14%	±2%	±15%	±7%
W+jets	±3%	±9%	±3%	±21%	±15%
Z+jets	±12%	±26%	±3%	±13%	±2%
Diboson	±7%	±18%	±3%	±20%	±4%
MC statistical	±20%	±27%	±12%	±49%	±22%
Experimental uncertainties	±24%	±24%	±7%	±46%	±10%
Leptons	±3%	±3%	±2%	±2%	±1%
$E_{ m T}^{ m miss}$	±16%	±6%	±2%	±3%	±1%
Jets	±11%	±9%	±3%	±13%	±4%
<i>b</i> -tagging (<i>b</i> -jets)	±10%	±19%	±5%	±14%	±8%
<i>b</i> -tagging (<i>c</i> -jets)	±1%	±2%	±2%	±29%	±2%
<i>b</i> -tagging (light-flavour jets)	±4%	±3%	-	±14%	±2%
<i>b</i> -tagging (extrapolation)	_	±1%	-	±2%	±2%
Pile-up	±4%	±1%	±1%	±2%	_
Luminosity	±2%	±2%	±2%	±2%	±2%

"Sensitivity might not require extreme Precision"

M. Mangano's talk

size of
$$\delta O_Q \sim \left({Q \over \Lambda}
ight)^2$$
 analysis deviation NP scale

- Probing higher scale in the analysis makes you mode sensitive to NP therefore you can afford to be less precise
- One example:
 - → 3% uncertainty for p_T>150GeV : probes scales up to 890 GeV
 - + 10% uncertainty for p_T>600GeV : probes scales up to 1800 TeV
 - an analysis 3 times less precise has twice the sensitivity
- High pT VH analysis could become competitive with inclusive H->WW measurement
- As Higgs p_T increases, VH becomes more and more competitive with ggF as dominate Higgs production mode

+ Direct searches:

- + new physics signature include SM Higgs boson or SM Higgs-boson-like particles in final states:
- consider simplified models as a prototype for a large variety of models: heavy vector triplets, vector-like quarks, Higgs+invisible, SUSY EWK decay chains, di-Higgs resonances

Indirect searches:

- modified interaction of Higgs boson can be revealed through deviations of production/decays with respect to SM
- often interpreted in the context of effective field theory (EFT)

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_i c_i^{(6)} O_i^{(6)} / \Lambda^2$$

- VH production very sensitive to anomalous Higgs-Vector boson interactions
- Sensitivity VS "Precision" balance:
 - effects are small on quantities we can measure very precisely
 - effects are much larger in tails where the precision of the measurements in less high

Operator	Expression	HEL coefficient	Vertices
O _g	$ H ^2 G^A_{\mu u} G^{A\mu u}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$	Hgg
O_{γ}	$ H ^2 B_{\mu u} B^{\mu u}$	$cA = \frac{m_W^2}{{g'}^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$
Ou	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	Htī
O_{HW}	$i (D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W^{a}_{\mu\nu}$	$cHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ
O_{HB}	$i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu \nu}$	$cHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H ight) D^{\nu} W^a_{\mu u}$	$\mathbf{CWW} = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ
O_B	$i\left(H^{\dagger}D^{\mu}H ight)\partial^{ u}B_{\mu u}$	$\mathbf{cB} = \frac{m_W^2}{g'}\bar{c}_B$	HZZ

7 / 59 dim 6 operators

Good complementarity and consistence among the various analyses

Leading production and decay mode established at more than 5 sigma: no major deviation from SM.

 reaching very high precision in determination of coupling to SM particles

(*) not including the latest Hbb results

Dao Valerio

VH: ! bb

1

 $\mathsf{BDT}_{\mathsf{VH-Had}}$

 $(\sigma \cdot B)_{SM}$ [fb]

720 ± 50

170 ± 20

120 ± 20

24 ± 5 140 ± 30

87.2 ± 2.7

 $4.1^{+0.4}_{-0.2}$

35.9^{+1.9} -3.3

16.5^{+0.8}_{-1.4}

15.4 + 1.1

 $\sigma \cdot B/(\sigma \cdot B)_{SM}$

10

SM Prediction

σ∙*B* [fb]

870 ± 165

 100 ± 105

80 ± 55

7 ± 27

160 ± 110

240 ± 95

30 ± 25

 20 ± 100

 20 ± 25

< 60

(95% CL)

8

VH

VBF

ZZ*

ggF+bbH

tī+V, VVV

Dao Valerio

merging bins from the left until Z>1

 $Z = z_s n_s / N_s + z_b n_b / N_b.$

• adopting $z_b = z_s = 10$

 highest BDT bins roughly contains 10% of signal each

- Nominal sample: Sherpa 2.2.1 5F MEPS@NLO (0,1,2 parton @NLO, 3,4 @LO)
- Uncertainties variations:
 - fact/ren scale and PDF variations in Sherpa 2.2.1 sample —> subleading effect on shape
 - ckkw and matching scale variation in Sherpa 2.1 sample —> small effect but statistically limited
 - comparison with MadGraph+Pythia8 5F MEPS@LO (up to 4 partons)

	W + jets	=		
W + ll normalisation	32%	-		
W + cl normalisation	37%	(uncertainties on navour composition are		
W + bb normalisation	Floating (2-jet, 3-jet)	subuominant)		
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)	 floating normalisation of W+HF separately 		
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton)	2 and 3jets		
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)	$W \perp WE 2$ is $1.10 \perp 0.12$		
0-to-1 lepton ratio	5%	$W + \Pi F 2$ -jet 1.19 ± 0.12 $W + \Pi F 2$ jet 1.05 ± 0.12		
W + HF CR to SR ratio	10% (1-lepton)	$W + \Pi\Gamma$ 3-jet 1.03 ± 0.12		

in

42

 Shape uncertainties are dominated by comparison between Sherpa and MadGraph. Leading contribution to analysis sensitivity comes from differences in W p_T spectrum between Sherpa and MadGraph (large impact on signal-like tail of the BDT)

 Exactly same prescriptions as for W+jets in terms of available MC and variations

	Z + jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + bb normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30 - 40%
Z + cc-to- $Z + bb$ ratio	13 – 15%
Z + bl-to- $Z + bb$ ratio	20-25%
0-to-2 lepton ratio	7%
$m_{bb}, p_{\mathrm{T}}^{V}$	S

- analysis dominated by Z+bb contribution (uncertainties on flavour composition are subdominant)
- floating normalisation of W+HF separately in 2 and 3jets: Sherpa NLO 5F MC consistently underestimates the data as for the W+HF case

Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

- 2-lepton SR quite pure in Z+HF thanks to the mll window around the Z peak
- (contrary to W+HF) Z+HF Shape uncertainties extracted in subset of SR:
 - m_{bb} [100-150] veto to remove signal contribution
 - ET^{miss}/sqrt(HT)<3.5 to further minimise ttbar contamination</p>
 - data-MC difference taken as the variation for the shape uncertainties: reduced effect w.r.t. MC-MC comparison
- normalisation mainly driven by 2-lepton channel:
 - extrapolation uncertainties to 0-lepton channel computed from MC inputs only using the in the V p_T>150GeV bin

- 2 different phase space for ttbar in the analysis:
 - 0+1 lepton: 4-jet veto selects mainly events with missing ttbar decay products (very different from final state of usual ttbar measurements)

CMS FTAG - 30/04/2019

- 2 lepton: more natural ttbar decay topology: 2lep + 2b-jets (+ jets)
 every uncertainty is considered decorrelated between 0+1 lepton and 2-lepton regions
- Nominal sample: Powheg (V2)+Pythia8 (hdamp=1.5*mtop)
- Alternative samples:
 - Parton Shower: Powheg+Herwig7, MatrixElement: aMC@NLO+Pythia8
 - radiation settings (hdamp, μ_R, μ_F, shower tune)

$t\bar{t}$ (all are uncorrelated between the 0+1 and 2-lepton channels)				
<i>tt</i> normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)			
0-to-1 lepton ratio	8%			
2-to-3-jet ratio	9% (0+1 lepton only)			
W + HF CR to SR ratio	25%			
$m_{bb}, p_{\mathrm{T}}^{V}$	S			

- Extrapolation and shape uncertainties effects dominated by the differences between Powheg and aMC@NLO:
 - 2-lepton channel manages to reduce the impact of the uncertainties thanks to the dedicated control region
 - in 0-1 lepton channel: main SR has the largest top contribution

 Normalisation factors consistent with unity

single top modelling q

- Solely relevant in the 1-lepton channel:
 - 50/50 contribution between t-channel and Wt
 - Wt more important since it has more signal-like features
- Nominal sample: Pohweg+Pythia8 (diagram removal procedure for Wt)
- Alternative samples:
 - Powheg+Herwig++
 - radiation settings: (hdamp+PS tune)
- aMC@NLO+Herwig++
- diagram subtraction procedure for Wt

Single top-quark				
Cross-section	4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)			
Acceptance 2-jet	17% (t-channel), 55% (Wt(bb)), 24% (Wt(other))			
Acceptance 3-jet	20% (t-channel), 51% (Wt(bb)), 21% (Wt(other))			
$m_{bb}, p_{\mathrm{T}}^{V}$	S (<i>t</i> -channel, <i>Wt</i> (<i>bb</i>), <i>Wt</i> (other))			

- Wt uncertainties split according to flavour composition of selected jets:
 - bb component has larger uncertainties (involves b not from top) but less signal like
 - + bc component originates from the top decay (smaller unc). but more signal like
- Wt uncertainties completely driven by comparison of DR-DS schema:
 - strong shape difference in many kinematic quantities (mbb, V pT)
 - further sensitive variable: m_{top} (proxy from) used both in MVA and region definition

Dao Valerio

inclusive analysis

$m_H = 125 \text{ GeV at } \sqrt{s} = 13 \text{ TeV}$							
Process	Cross-section \times B [fb] -	Acceptance [%]					
		0-lepton	1-lepton	2-lepton			
$qq \to ZH \to \ell\ell b\bar{b}$	29.9	< 0.1	< 0.1	7.0			
$gg \to ZH \to \ell\ell b\bar{b}$	4.8	< 0.1	< 0.1	15.7			
$qq \to WH \to \ell \nu b \bar{b}$	269.0	0.2	1.0	—			
$qq \rightarrow ZH \rightarrow \nu\nu b\bar{b}$	89.1	1.9	—	—			
$gg \to ZH \to \nu \nu b\bar{b}$	14.3	3.5	_	_			

 STXS analysis: acceptance x efficiency increase from 1% to 18% [though redefinition of measured target]

in STXS ZH is II+vv

Preferred gateway to top
 Yukawa coupling measurement

- Crowded' final state with multiple possibilities given by ttbar decay products:
- consider events with only one (1L) or two (2L) leptons in the final state
- categorising events according to the number of reconstructed jets
- heavily relying on flavour tagging information

Large and difficult to control irreducible tt+bb background

(for a given jet multiplicity) Categorise events according to the b-tagging score of the jets:

Run2: $t\bar{t}H$ ($H \rightarrow b\bar{b}$)

increase signal acceptance, exploit different S/B [and S/sqrt(B)] in each region

 Very different background composition in each regions

used to constrain the normalisation

- 4b in the final state complicates combinatorics:
 - only 30% of Higgs boson correctly reconstructed inside the signal —> can't directly rely on the mass peak
 - will improve at high p⊤ topologies

- Final discriminant in signal regions: BDT
- + jet kinematic variables
- global event variables
- jet b-tagging scores
- event reconstruction through additional BDT: assigning reconstructed jets to partons in ttbar/ ttH decay
- Likelihood/MEM discriminant (signal VS ttbb)

Dao Valerio

1.4 (1.6) observed (expected) significance w.r.t. no Higgs hypothesis

At 95% CL, for m_H=125 GeV:

observed $\sigma^*BR/(\sigma^*BR)_{SM} < 4.0$

expected $\sigma^*BR/(\sigma^*BR)_{SM} < 1.9$

Analysis dominated by systematic uncertainties: MC modelling of tt+bb background, mis-tag of c and light jets