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Overview 

•  Representative selection of ML@ATLAS 

•  Classification & related topics 
– Will not have time to discuss regression tasks 

•  Clustering & data structures 

•  Generative models 
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LHC interim evaluation 
•  Physics beyond the SM is not around the corner 
•  Slow-growth era of LHC has started: energy & luminosity 
•  How to make rapid progress now? 
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Opportunity ! 
Turning crank → innovation 
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In a nutshell 

Our brain is not trained to analyze LHC data 
 

⇒Train artificial brain to do task for us 
 

Machine Learning (ML) 
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What is ML? 

•  Inspired by how the brain works 

•  Learning from examples 

•  Condensing information to “knowledge” 

[There are other ways to define ML]
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How can ML help? 

•  Low hanging fruit 
– Better 

– Faster 

– Easier / automated 

•  More profound changes to how we 
approach physics ?! 
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Uniqueness of HEP data for ML 

•  Simulation can produce highly valuable labeled 
training data for supervised learning 

•  We have a theory model (SM) 
–  How to inject our domain knowledge into ML 

•  Systematic uncertainties 

•  HEP not only costumer but also driver of ML! 
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Classification with Machine Learning (better) 

Classification task: eatable or not?
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Event-level discrimination 

•  We’ve used ML for 
decades  

•  Recent example: ttH 
discovery 

•  Human-engineered 
features (here 38 input 
variables) 

•  Many more examples 
exist 

[1806.00425] 
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Ideal test ground: physics object classification 

•  Large statistics 
•  Excellent modeling 
•  Good return/effort 
•  Validate in Control Region  
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Flavor tagging algorithms 

1.  Algorithm based on 
track properties 

2.  Algorithm based on 
leptons 

3.  Algorithm based on 
secondary vertices 
(SV) 

Algorithm 
combining all 
information 

RNNIP 

DL1 
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Recurrent NN: RNNIP 

•  Inputs: track properties of 
arbitrary length 

•  Tracks as series, ordered 
e.g. by d0 significance 

•  Exploits track correlations 
–  Long Short-Term Memory 

(LSTM) used to preserve 
memory and combat 
vanishing gradient problems 

[ATL-PHYS-PUB-2017-003] 



•  Trained using MC truth labels 
•  Multi-class output (easily extendable to more classes) 
•  Flexibility: one training for all OP for b- & c-tagging 
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[ATL-PHYS-PUB-2017-013] 

Deep Learning: DL1 
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[Parenthesis: training challenge] 

•  How to find optimal hyperparameters 
– Brute force: grid search 

•  No off-the-shelf solution 

•  Toolsets exist, but no instructions/theory 
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Improve Flavor tagging at highest pT 

Flavor tagging very challenging at high pT

Provide algorithm with adequate training statistics at high pT: 
Use Z’→bb/cc/qq (made ~flat in pT) instead of tt 

[ATL-PHYS-PUB-2017-013] 
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Boosted object tagging 



17	  [1808.07858 ] 

Improved tagging with ML

Best results with 
raw data as input 
[1704.02124] 

Is there more 
information to 
extract?

Next frontier: 
•  Robustness
•  Versatility
•  Transparency
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Boosted object tagging at highest pT 

•  Adequate training statistics at high pT 

•  New features at high pT: combine tracking & 
calorimeter info (Track-CaloCluster matching) 

[ATLAS-CONF-2019-003] 



Multi-class tagging with deep NN 

•  Discriminate (in context 
of VLQ search) 
–  W/Z 
–  Higgs 
–  Top  
–  QCD-jet 

19	  
[1808.01771] 
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Mass decorrelation 

- Sacrifice performance

+ Unsculpted BG

•  Minimize sculpting of background jet mass distributions 
•  Enable more robust background estimation 
•  Adversarial NN penalizes classifier if mass is learned: 

Mitigating impact of MC mismodeling (or pile-
up dependence) is further application of ANN
Or train on data [1702.00414, 1708.02949]:
correct labeling → correct proportions 

[ATL-PHYS-PUB-2018-014] 
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Beyond classification: 
clustering & generative models (faster) 



Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23

2026: High-Lumi-LHC tracking crisis 
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100’000 space-points 
010’000 tracks 

Current algorithm:  
combinatorial approach = slow! 
 
Reconstruction limited by tracking 



TrackML challenge 
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•  Can ML help? 

•  HL-LHC data set with ACTS 
•  tt, 200 pile-up 

Accuracy

Throughput

ACTS: public high-fidelity simulation 
[http://acts.web.cern.ch/ACTS/] 

2 phases: 



Promising 2-Step Approach 
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1) Reduce combinatorial complexity 2) Track finding inside regions 

[CTD/WIT2019 talk by Sabrina Amrouche]



Inspiration from spotify 

•  Approximate Nearest Neighbors: 
https://github.com/spotify/annoy 

•  < 0.1ms to get n similar songs 
– high-dimensional space 

• Unsupervised 

•  Bucket definition based  
   on angular distance 
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Bucketing provides fast & efficient seeding 
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Data Preparation 
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Data structure = Layout for memory 

•  Most tracks are largely contained within a bucket

•  Reduce problem to track finding inside buckets 



Large-scale and high-fidelity simulation 
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Bottleneck!

Dominated by 
Geant shower 

simulation!



Fast Calorimeter Simulation 
•  Geant 4 too slow 
•  FastCaloSim V1 [ATL-PHYS-PUB-2010-013] used for years 
•  Improved FastCaloSim V2 [ATL-SOFT-PUB-2018-002] using 

PCA 
•  FastCaloSim fast enough but still not accurate enough for all 

simulation needs 

•  Objective: generative models to simulate calorimeter showers 
[ATL-SOFT-PUB-2018-001] 

•  Challenges: 
–  Non-uniform geometry 
–  Sparse data 
–  Large dynamic range: tails 
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The ATLAS EM calorimeter 
•  Train and validate using G4 simulation of photons for the ATLAS 

geometry 
•  Discrete particle energies logarithmically spaced between 1 and 260 GeV 
•  Uniformly distributed in 0.20 < |η| < 0.25 

30	  
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Deep Generative Models (VAE, GAN) 
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[ATL-SOFT-PUB-2018-001]

Encoder Decoder

Latent space z (10 dim.)

D
e
n

s
e

5
0

E
L
U

D
e
n

s
e

1
0
0

E
L
U

D
e
n

s
e

1
5
0

E
L
U

D
e
n

s
e

2
0
0

S
i
g
m

o
i
d

G
e
n
e
r
a
t
e
d

s
h
o
w

e
r

D
e
n

s
e

5
0

E
L
U

D
e
n

s
e

1
0
0

E
L
U

D
e
n

s
e

1
5
0

E
L
U

D
e
n

s
e

2
0
0

E
L
U

G
e
a
n
t
4

s
i
m

u
l
a
t
i
o
n

Particle energy

266 266

Variational Auto-Encoder (VAE) architecture:

Reconstruc5on	  loss	  

Kullback-‐Leibler	  divergence	   Constrain	  energy	  
frac5ons	  in	  layers	  

Constrain	  total	  energy	  



Validation: promising 

Deep Generative Models (VAE, GAN) 

32	  [ATL-SOFT-PUB-2018-001]



VAE Latent Space 
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Non-Gaussian 
5D latent space

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/ 

Inverse Autoregressive 
Flow [1606.04934]: 
latent space more 
Gaussian 

Allows one to sample 
from Gaussian 
distribution 



Integration into ATLAS (C++) Software 
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•  Implemented with Lightweight Trained Neural Network 
(LWTNN) [https://github.com/lwtnn/lwtnn] 

•  Flag to switch trained model 
•  DNNCaloGAN same speed as FastCaloSim V2 

–  65 GeV single photon: G4 → FCS : 10 seconds → 70 ms  
•  LWTNN takes <1 ms per shower 

•  Model trained on particles with fixed energy, but 
interpolates well to other energies 

•  Only central eta for now 
•  Plan: use higher uniform granularity for full eta range 
 



The ML revolution in HEP has started 
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•  Exciting time – room for creativity 
–  Opportunity for young researchers to think outside the box 

•  Fruitful interdisciplinary work 
     …but also hard work from proof of principle to realization in ATLAS 
•  Better, faster, more automated,…  
     …but also maintainability & memory footprint 

•  Trend from “ML in analysis” to “ML for simulation, reconstruction, trigger” 
•  “Raw data” vs. “human-engineered features” 
•  Domain knowledge vs. what machine learns 

•  New frontiers 
–  Latency: trigger 
–  Specialized hardware: FPGA, GPU, Custom DL chips,… 
–  Anomaly detection 
–  Interpretability 
–  … 

Relevance for 
flavour tagging
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Brain Artificial 
Intelligence 

The 
Universe 



Backup 
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