Gluon splitting with small opening angles at ATLAS

Benjamin Nachman Lawrence Berkeley National Laboratory

on behalf of the ATLAS Collaboration

CMS Flavor tagging workshop, May 2019

Outline

- Motivation
- Observables
- Background estimation
- Systematic uncertainties
 - Results

2

- Conclusions & outlook

Motivation as an important background

Search for boosted $H \rightarrow bb$

×10³

Motivation as an important background

Motivation as an important background

Many top quark physics analyses and top-like searches where extra b's from gluon splitting are a nuisance.

Motivation II as an interesting QCD probe

ATLAS and CMS have measured di-bjet cross-sections, but the small-angle region is largely ~unprobed (even by e.g. LEP)

6

This measurement

... gives us a direct probe of massive QCD splitting function.

Measurement specs - phase space

Measure (unfold) kinematic properties of jets, acting as proxies for the quarks and gluons.

anti- $k_t R = 1.0$ trimmed jets as proxy for gluon $p_T > 450 \text{ GeV}$ (trigger)

anti-k_t R = 0.2 track jets as proxies for the b-quarks $p_T > 10 \text{ GeV}$

MV2c10 ~ O(1000) rejection

b-tag (60% efficiency) one of the track jets (increase stats relative to double tag) & in situ extraction of flavor fractions

Usual suspects: $\Delta R(b,b)$, $\rho = m/p_T$, $z(p_T) = p_{T,1} / (p_{T,1}+p_{T,2})$

8

+ $\Delta\phi(ppg,gbb)$ to probe the gluon polarization

Measurement specs - observables

Usual suspects: $\Delta R(b,b)$, $\rho = m/p_T$, $z(p_T) = p_{T,1} / (p_{T,1}+p_{T,2})$

9

+ $\Delta\phi(ppg,gbb)$ to probe the gluon polarization

Measurement specs - observables

Tracking → less-good momentum resolution

10

Pr(Detector-level | Particle-level)

Tracking → excellent angular resolution

The signed impact parameter significance is used for the leading and sub-leading jet.

Background estimation

The signed impact parameter significance is used for the leading and sub-leading jet.

Excellent description of the data post-fit.

Background estimation

This procedure is repeated for each bin of each observable.

3

BB ~ 20%; slightly over-estimated in MC, but shape mostly okay.

B and **L+C** inverted between data and MC.

Uncertainties from template shapes, fit range, etc. (more on this shortly)

Background estimation

Similar trends for each observable.

	$\Delta R(b, b)$	$\Delta \theta_{\rm ppg,gbb}$	$z(p_{\rm T})$	$\log(m_{bb}/p_{\rm T})$
Calorimeter jet energy	2-3%	2-3%	2-6%	2-4%
Flavor tagging	<1%	<1%	<1%	<1%

- Uncertainties up to 300 GeV using "usual" calibration schemes (e.g. ttbar events for b-jet efficiency)
- Extrapolation uncertainties using simulation variations.
- As the flavor fractions are constrained with the fit, there is little sensitivity to these flavor tagging uncertainties.

(N.B. our fit is only post-tagging, so there is still a small dependence on the flavor tagging uncertainty)

Systematic uncertainties

	$\Delta R(b,b)$	$\Delta \theta_{\rm ppg,gbb}$	$z(p_{\rm T})$	$\log(m_{bb}/p_{\rm T})$		
Calorimeter jet energy	2-3%	2-3%	2-6%	2-4%		
Flavor tagging	<1%	<1%	<1%	<1%		
Tracking	1-2%	1-2%	2–4%	1-2%		
Background fit	1%	1%	1-2%	2%		
Unfolding method	2-3%	2%	2–4%	2-5%		
- Vary the fit range and vary the way the templates are						
Stamerged from 9 (BB, BC, BL, .1.) to 3 (BB, B, CL). ^{1%}						
Total	3-10%	3-10%	3-14%	4-12%		

18

 Additional cross-checks: leading and sub-sub leading s_{d_0} ; fit in bins of jet p_T ; re-weight jet kinematic properties.

Results

Results - angular observables

20

Data seems to exhibit "less polarization" than Pythia, closer to Sherpa.

Results - momentum scale observables

21

unequal sharing and low mass.

Conclusions and outlook

We have performed a first differential measurement of g → bb at small opening angles.

- Flavor fractions significantly disagree with MC

- Significant disagreement for gluon polarization, low m_{bb}, and unequal momentum sharing.

Data are public (+Rivet routine) ... hopefully will improve modeling & our understanding of QCD in the future!

(already discussing with Vincia, Herwig, and Sherpa authors)

