

Central Exclusive Production and Soft QCD at LHCb

Lavinia-Elena Giubega

*on behalf of LHCb collaboration

Horia Hulubei National Institute for Physics and Nuclear Engineering

(IFIN-HH), Bucharest, Romania

Low-x Workshop,

Nicosia, Cyprus 25-31 August 2019

LHCb experiment

- > LHCb is one of the four main experiments on the LHC ring
- ➤ Its aim is to investigate the decays of hadrons that contain b&c quarks and so provide insight into the phenomenon of matter-antimatter asymmetries.

> The collaboration comprises of 1355 physicists and engineers from 79 institutes in 18 Countries

LHCb detector

- ➤ The tracking system: VErtex LOcator (VELO) +T stations
- ➤ Two Ring Imaging Cherenkov detectors (RICH1 and RICH2): charged hadron identification in the momentum range from 2 to 100 GeV/c
- ➤ The calorimeter system:
- Scintillating Pad Detector (SPD)
- PreShower (PS)
- Electromagnetic Cal (ECAL)
- Hadronic Cal (HCAL)
- Muon detection system: M1-M5
- > IP (impact parameter) resolution: 20 μm @ high-pT
- Momentum resolution: Δp/p=0.5 % at low momentum to 1.0% at 200 GeV/c
- ➤ Track reconstruction eff: ~96% for long tracks

LHCb trigger: hardware -> reduces 40 MHz of data to 1 MHz software trigger → 4 kHz

Unique pseudorapidity range:

- forward range:2<η<5
- backward range -3.5<η<-1.5

Ammount of data+LHCb upgrade

~ 10 fb⁻¹ data recorded in RUN1+RUN2 after LS2: 50 fb⁻¹

After LS2(2021):

- proton—proton collision rate at LHCb will be increased by a factor of five
- the whole detector will read at the full rate of 40 MHz to allow event selection to be done more precisely and flexibly by the software
- RICH detectors will be equipped with a new mirror system.
- New silicon-microstrip sensors and SciFi tracking

Latest LHCb public results:

13 July 2019: Observation of two new beauty baryon particles.

28 June 2019: Updated measurement of the CP-violating phase φs.

26 March 2019: Observation of new pentaquarks.

21 March 2019: Discovery of CP violation in charm particle decays.

http://lhcb-public.web.cern.ch/lhcb-public/

To be covered:

- > CEP results at LHCb @ 7 TeV: Updated measurements of exclusive J/ψ andψ(2S) production cross-sections in pp collisions at vs=7 TeV [J. Phys. G 41 (2014) 055002]
- **▶ Ion collisions:** Study of coherent J/ ψ production in lead-lead collisions at \forall s=5 TeV with the LHCb experiment [LHCb-CONF-2018-003]→ Preliminary results
- ightharpoonup CEP with HeRSCHeL @LHCb: Central exclusive production of J/ ψ and ψ (2S) mesons in pp collisions at $\sqrt{s} = 13$ TeV [JHEP 10 (2018) 167]
- ➤ SoftQCD@LHCb: Measurement of the inelastic pp cross-section at centre-of-mass energie of √s = 13 TeV [JHEP 06 (2018) 100]

HepData record:

- \triangleright record for J/ ψ and ψ (2S) in CEP at 7 TeV: https://doi.org/10.17182/hepdata.66883
- record for inelastic cross-section measurement at 13 Tev: https://doi.org/10.17182/hepdata.89782

Introduction

 \triangleright CEP is the process in which particles are produced by colourless propagators via the reaction $pp \rightarrow p+X+p$

Signal signature

- ☐ central system
- ☐ large rapidity gaps between central system and outgoing protons

Background

☐ diffractive processes involving proton dissociation

Possibilities

- □ transition between soft and hard pomeron → Soft QCD
- ☐ very clean final state → high benefit

HeRSCheL-LHCb forward extension

The LHCb experiment is rapidly becoming a major actor in CEP searches, the HeRSCheL subdetector is now allowing to reduce the non-CEP background to a minimum

- ☐ 5 stations of scintillating planes located along the beampipe
- ☐ sensitive to activity (no tracking)

Detecting a CEP event requires the detection of rapidity gaps in the distribution of the final state particles

➤ HeRSCheL largely extends the ability to veto diffractive final states

CEP published results at LHCb

J/ψ and $\psi(2S)$ production @ 7 TeV

- 930 pb⁻¹ of 2011 data at 7 TeV
- exactly two muons in the acceptance
- $p_{T}(\mu) > 400 \text{ MeV/c}$

without HeRSCHeL

in good agreement with JMRT NLO theoretycal prediction

J. Phys.G41 (2014) 055009

[S. Jones, A. Martin, et. al]

 $\sigma_{pp \to J/\Psi \to \mu^+\mu^-}(2.0 < \eta_{\mu^{\pm}} < 4.5) = 291 \pm 7 \pm 19pb$

$$\sigma_{pp\to \Psi(2S)\to \mu^+\mu^-}(2.0 < \eta_{\mu^\pm} < 4.5) = 6.5 \pm 0.9 \pm 0.4 pb$$

Differential cross-section for (a) J/ψ and (b) $\psi(2S)$ production compared to LO and NLO predictions

LHCb-CONF-2018-003

Coherent J/ψ production in lead-lead collisions at 5 TeV

Ultraperiheral collisions (UPC)

Introduction

- reactions in which two ions interact via their *cloud* of virtual photons
- ➤ intensity of the electromagnetic field proportional with Z²

 UPC interactions

Caracteristics:

- ✓ low momentum transfer
- ✓ low transverse momentum
- ✓ the nucleus that emits the photon remains intact after the collision → no aditional particles

from Phys.Rept. 458 (2008) 1-171

a) photon-photon collisions

b) photonuclear collisions

Introduction

UPC photonuclear collisions

a) the photon interacts with the whole nucleus

b) the photon interacts with a single nucleon inside the nucleus

Data selection and mass fit

Coherent J/ ψ production in PbPb ->Pb+J/ ψ +Pb: γ "pomeron" \rightarrow J/ ψ

- Data set: lead-lead collisions at √s=5 TeV in 2015
- > Event selection:

Hardware level: $J/\psi \rightarrow \mu^+\mu^-$

 $p_{T}(\mu) > 900 \text{ MeV}$

Software level: $M_{\mu+\mu}$ >2.7 GeV

➤ Offline selection:

muon selection: p_T>500 MeV in

2<η<5

J/ψ selection: p_T<1 GeV

 J/ψ and $\psi(2s)$: double sided Crystal-Ball function non-resonant: exponential multiplied by a first-order polynomial

Signal determination and p_T fit

Candidates / 0.1

Signal yield determination

Ist step: fit on the invariant mass to determine all the J/ ψ candidates (coherent and incoherent J/ ψ , feed-down coming from ψ (2s))

ightharpoonup 2nd step: fit on the $\log(p_T^2)$ of J/ ψ to determine the signal yield in the presence of bkg. (incoherent J/ ψ and feed-down ψ (2S))

background and signal are modelled by templates taken from the STARlight event generator

Distribution of $log(p_T^2)$ of dimuon candidates.

Differential cross-section

Coherent cross-section:

LHCb preliminary

 σ =5.3 ±0.2(stat.)±0.5(syst)±0.7(lumi) mb

The analysis is repeated in bins of half unit rapidity y J/ψ

J/ψ rapidity	$d\sigma/dy \text{ (mb)}$		
2.00-2.50	$3.0 \pm 0.4 \pm 0.3$		
2.50 - 3.00	$2.60 \pm 0.19 \pm 0.25$		
3.00 - 3.50	$2.28 \pm 0.15 \pm 0.21$		
3.50 - 4.00	$1.73 \pm 0.15 \pm 0.17$		
4.00 - 4.50	$1.10 \pm 0.22 \pm 0.13$		

CEP with HeRSCheL@LHCb

Central exclusive production of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

- Measurement performed with 204 pb⁻¹ data at 13 TeV
- \checkmark µ=1.1 \rightarrow half of the visible interactions there is a single pp collision
- ☐ Trigger requirements:
- ✓ Hardware: less than 30 deposits in the scintillating-pad detector (SPD); at least one muon with $p_T > 200 \text{ MeV}/c$
- ✓ Software: < 10 reconstructed tracks; at least one reconstructed muon

- ✓ 2 reconstructed muons in $2 < \eta < 4.5$
- ✓ mass within 65 MeV/c² from J/ψ or ψ(2S) mass
- \checkmark p²_T<0.8GeV²

<u>JHEP 10 (2018) 167</u> pp

$pp \rightarrow p + \mu^+ \mu^- + p$ signal and background

 J/ψ

Feed-down background:

 $\psi(2S)/\chi_c$ - undected remaining particles produced in association with J/ ψ or outside the detector

 $Mass(\mu^+\mu^-)$ [MeV]

Proton dissociation contamination

Proton dissociation background

Inelastic production of mesons:

one or both protons dissociate or gluon radion

Ways to extract the proton dissociation background:

- fit data with 2 exponentials (one for the signal and one for the pr. diss. bkg)
- use the two independent samples below and above HeRSCheL veto to constrain the background

Cross section results

> Total cross-section

$$\sigma_{J/\psi \to \mu^+\mu^-}$$
 (2 < η_{μ} <4.5)=399 ± 16(stat.) ± 10 (syst.)± 16 (lumi) pb

$$\sigma_{\psi(2S)\to\mu^+\mu^-}$$
 (2 < η_{μ} <4.5)=10.2 ±1.0 (stat.) ± 0.3 (syst.) ± 0.4 (lumi) pb

JHEP 11 (2013)

J. Phys.G41 (2014) 055009

➤ Differential cross-sections with respect to rapidity: better agreement with JMRT NLO prediction

JHEP 10 (2018) 167

Systematic uncertainties $pp \rightarrow p+ J/\psi$ or $\psi(2S)+p$

Source	J/ψ ana	lysis (%)	ψ(2S) analysis(%)
HeRSCheL veto	1.7		1.7
2 VELO track 0 photon veto	0.2 0.2		0.2
Mass window	0.6		0.6
p ² _T veto Proton dissociation	0.3 0.7		0.3 >0.7
Feed-down	0.7	main reduction: 4% before	-
Nonresonant	0.1	4% before	1.5
Tracking efficiency Muon ID efficiency	0.7 0.4		0.7 0.4
Trigger efficiency	0.4		0.2
Total excluding luminosity	2.5		2.7
Luminosity	3.9		3.9

- decrease of the main uncertainties compared to previous analysis (J. Phys. G 41 (2014) 055002)
- proton dissociation background uncertainty ↓ thanks to HeRSCheL detector
- better tracking understanding

Photoproduction cross section

• Relation with the photo-production cross section, $\sigma_{\nu \rho o \psi \rho}$

From [JHEP 11 (2013) 085]:

$$\sigma_{pp\to p\psi p} = r(W_+)k_+\frac{dm}{dk_+}\sigma_{p\to\psi p}(W_+) + r(W_-)k_-\frac{dm}{dk_-}\sigma_{p\to\psi p}(W_-)$$

- \square r (W_±)-gap survival factor, from HERA (Table 2 from [JHEP 11 (2013) 085])
- \Box k₊-photon energy
- \Box dm/dk₊-photon flux
- \square W²_±=2k_±Vs-invariant mass of the photon-proton system

Photoproduction cross section

✓ J/ψ production

- in agreement with 7 TeV results where they overlap
- Reach extended to W~2 TeV
- Deviation from the power-law fit to H1 data at highest energies
- Good agreement with JMRT NLO prediction

\checkmark ψ (2S) production

• Good agreement with H1 data extrapolation, which is scaled from the J/ ψ power-law fit

From exclusive two particle final states to normal inelastic interactions

Two muons and no other activity

Typical event in LHCb

SoftQCD@LHCb

Measurement of the inelastic pp cross-section at centre-of-mass energie of $\sqrt{s} = 13 \text{ TeV}$

Aim of the analysis: calculate the σ_{inel} using prompt and long-lived particles inside the LHCb acceptance and extrapolate it to the full phase space

Primary measurement: fiducial cross section at \(\forall s = 13 \) TeV

Delivered result: total inelastic crosssection

$$\sigma_{\text{inel}} = \Sigma \sigma_x \text{ where } x \in \{ND, SD, DD\}$$

Data used:

- pp collisions at centre-of-mass energy vs = 13 TeV
- both polarities of the LHCb dipole magnet
- 691 million events in 49 runs from 8 LHC fills

- ND: non-diffractive contribution
- SD: single diffractive contribution
- DD: double-diffractive contribution

Fiducial cross-section

Selection

- at least one long-lived prompt charged particle
- p>2 GeV/c
- Δt>30 ps
- pseudorapidity: 2<η<5</p>

$$\sigma_{acc} \equiv \frac{(\mu - \mu_{bkg})N_{evt}}{L_{tot}}$$

- μ-μ_{bkg} -average no. of int per event obtained from fraction of empty events and correcting for detector inefficiency and wrongly reconstructed tracks; the number of inelastic interactions per event described through a Poisson distribution.
- N_{evt}-number of collected events
- L_{tot}- integrated luminosity

 σ_{acc} =62.2 ± 0.2 ±2.5 (lumi) mb

Extrapolation to full phase-space

$$\sigma_{inel} = F_T \sigma_{acc} = \sum_{x} \sigma_{x}$$
 where $x \in \{ND, SDA, SDB, DD\}$

neglected: CEP and interference effects between different contributions

 F_T -extrapolation factor determined from generator-level simulations

$$F_T = \frac{\sum_{X} \sigma_{X}}{\sum_{X} \sigma_{X} \upsilon_{X}} = \frac{1}{\sum_{X} f_{X} \upsilon_{X}} = 1.211 \pm 0.072$$

fraction of inelastic cross section obtained with MC and data constraint fraction of visible interactions with at least one prompt longlived particle within the acc.

Total inelastic cross section

 $\sigma_{inel}(\sqrt{s} = 13 \text{TeV}) = 75.4 \pm 3.0(\text{exp}) \pm 4.5(\text{extr})\text{mb}$

due to exp. unc. of the fiducial crosssection

due to the crosssection extrapolation

improved calibration of the luminosity scale:

- lumi unc. reduced from 3.5% to 1.7%
- exp. unc. reduced from 4.3% to 3.0%
- central value shifted up by 2.7%.

$$\sigma_{inel}(\sqrt{s} = 7\text{TeV}) = 66.9 \pm 2.9(\text{exp}) \pm 4.4(\text{extr})\text{mb}$$

$$\sigma_{inel}(\sqrt{s} = 7\text{TeV}) = 68.7 \pm 2.1(\text{exp}) \pm 4.5(\text{extr})\text{mb}$$

Summary

- Central exclusive production results with Run 1 data shows a good agreement with the theory
- The coherent differential J/ψproduction cross-section, measured in bins of J/ψrapidity in lead-lead collisions at 5 TeV and compared with theoretical predictions → more data to be studied (2018 dataset) using HeRSCHel → reduction of the incoherent background is expected after vetoing significant energy detected in HeRSCheL
- J/ ψ and ψ (2S) central exclusive production cross-sections with 2015 dataset have been calculated in pp data with \sqrt{s} =13 TeV
- ✓ reduced level of background shows a good performance of HeRSCheL
- ✓ both vector mesons agree with JMRT NLO prediction
- ✓ photo-production of J/ ψ ->deviation from power law extrapolation of HERA data
- Inelastic pp cross-section
- ✓ a new measurement of the inelastic pp cross-section was performed at 13 TeV and is in good agreement with the measurements by the ATLAS and TOTEM collaborations

Thanks for your attention!