Soft and forward physics results by CMS

Cristian Baldenegro

On behalf of the CMS Collaboration

University of Kansas

Low-x 2019,
August 26th - September 1st, Nicosia, Cyprus
Introduction

- Quantum chromodynamics (QCD), very rich and successful theory of strong interactions!
- Precise understanding of perturbative and non-perturbative QCD necessary for:
 - testing pQCD in unexplored regions of phase-space
 - modelling soft QCD physics
 - constraining parton distribution functions
 - all above \rightarrow better SM measurements and searches for physics beyond SM
- We present a summary of recent results by the CMS Collaboration on the following topics:
 - Measurement of the average very forward energy as a function of track multiplicity at central pseudorapidities in proton-proton collisions at $\sqrt{s} = 13$ TeV, Submitted to EPJC, arXiv:1908.01750
Measurement of the average very forward energy as a function of track multiplicity at central pseudorapidities in proton-proton collisions at $\sqrt{s} = 13$ TeV, Submitted to EPJC, arXiv:1908.01750
Motivation

- Study correlations of particle activity at central rapidities and forward rapidities in proton-proton collisions.

- The energy carried by particles emitted in very forward region can be studied up to $-6.6 < \eta < -5.2$ using the CASTOR calorimeter of CMS.

- Measurements over a very large rapidity interval may provide additional information on the underlying event activity compared to previous studies at central rapidities.

- This information can improve event generators used in simulations of extensive air showers induced by cosmic rays at ultra-high energies.
CASTOR: Very forward calorimeter at the LHC

CASTOR

- Electromagnetic-hadronic calorimeter of CMS, covers $-6.6 < \eta < -5.2$;
- 14.37 m w.r.t. interaction point;
- 16-fold segmentation in ϕ, 14-fold segmentation in z; no segmentation in η;
- Operational in heavy-ion collisions and in dedicated runs in pp collisions.
- Previous uses in the past:
 - Forward energy flow measurement;
 - Inelastic and diffractive cross section measurements;
 - Jet spectra;
Analysis strategy

Measure the average total, electromagnetic and hadronic energy per event in CASTOR as a function of track multiplicity.

Compare with various MC generators predictions with different parameter tunes and physics approaches:

- PYTHIA8 with tunes CUETP8M1, 4C, and MBR, HERWIG 7.1
- EPOS-LHC, QGSJETII.04, SIBYLL 2.1, SIBYLL 2.3c

Selection

- For online trigger, the Beam Pickup Timing for the eXperiment (BPTX) devices were used (non-empty two colliding bunches)
- Offline, at least one calorimeter-tower in $3 < |\eta| < 5.2$ and at least one reconstructed track within $|\eta| < 2$.
- Total energy in CASTOR is the sum of calorimeter-towers w/ energy above noise-level $E > 2 \text{ GeV}$.

Data sample

Low pileup (30%) pp collisions at 13 TeV in June 2015, 0.22 nb$^{-1}$.
Observations

- UE tunes determined at central rapidities seem to be valid also at forward rapidities.
- PYTHIA8 4C + MBR and SIBYLL 2.3c predictions underestimate total energy at low multiplicities.
- PYTHIA8 5C overshoots data at intermediate multiplicities.
Observations

- Average total energy $\langle E_{\text{tot}} \rangle$ is normalized to total energy in $N_{\text{Tracks}} < 10$ to suppress experimental uncertainties.
- PYTHIA8 tunes yield very similar shapes, which are inconsistent with the one in data.
- EPS-LHC, QGSJETII.04, and HERWIG 7.1 predict saturation $\langle E_{\text{tot}} \rangle$ at intermediate multiplicities, which is not observed in data.
- SIBYLL provides predictions in agreement with data.
Observations

- Most models describe the electromagnetic energy distribution over the full track multiplicity spectra.
- SIBYLL 2.3c systematically underestimates the measured $\langle E_{\text{em}} \rangle$ in data.
- PYTHIA8 4C+MBR slightly underestimates $\langle E_{\text{em}} \rangle$ at low multiplicities.
Individual average hadronic energy distributions $\langle E_{\text{had}} \rangle$

Observation

- EPOS LHC, PYTHIA8 tune CUETP8M1 and CP5 overestimate $\langle E_{\text{had}} \rangle$ relative to the data at medium multiplicities.
- The rest of the models describe the hadronic component well.
The measured ratio $\langle E_{\text{em}} \rangle / \langle E_{\text{had}} \rangle$ is approximately uniform over the whole multiplicity range.

Model predictions are generally lower than the data.

QGSJETII.04, SIBYLL 2.1 and HERWIG 7.1 provide the best description of the ratio.
Motivation

- Inelastic proton-proton collisions are described by a combination of hard- and soft-exchanges between the proton’s constituents.

- Hard collisions are complemented by multiple parton interactions (MPI) and projectile fragmentation effects.

- Studies of energy densities in pseudorapidity, $dE/d\eta$ measured in pp collisions at the LHC can help test many of the associated parametrizations of underlying event activity.

- Valuable input for tuning of Monte Carlo event generators used to describe high-energy hadronic interactions employed in cosmic-ray physics measurements.
Analysis strategy

Measure the average energy density per collision,

\[
\frac{dE}{d\eta} = \frac{1}{N_{\text{coll}} \cdot \Delta \eta} \sum_i E_i(\Delta \eta)
\]

Energy-densities are measured in $3.15 < |\eta| < 5.2$ and with CASTOR $-6.6 < \eta < -5.2$.

Comparison with various MC generator predictions: EPOS-LHC, QGSJETII.04, PYTHIA8.

Comparison of tranverse energy densities with previous $\sqrt{s} = 0.7, 7$ TeV, for different shifted-intervals $\eta' = \eta - \eta_{\text{beam}}$.

Selection

Online, events are selected by triggering the DAQ with BPTX devices of CMS.

Event categories defined in terms of forward-particle production above noise-level:

- Inelastic (\textbf{INEL}): Energy deposition of $E > 5$ GeV in $3 < |\eta| < 5.2$ on either hemisphere of CMS

- Non-single-diffractive enhanced (\textbf{NSD-enhanced}): Energy deposition of $E > 5$ GeV in $3 < \eta < 5.2$ and $-5.2 < \eta < -3$

- Single-diffractive enhanced (\textbf{SD-enhanced}): Energy deposition of $E > 5$ GeV in $3\eta < 5.2$ and energy deposition of at most $E < 5$ GeV in $-5.2 < \eta < -3$, or viceversa.

Data sample

Low pileup ($\sim 5\%$) pp collisions at 13 TeV during 2015, with CASTOR forward calorimeter operating ($-6.6 < \eta < -5.2$) and 0.06 nb$^{-1}$ of data.
Results

Observations

- Good description of $dE/d\eta$ by models in INEL and NSD-Enhanced event categories
- EPOS-LHC and QGSJETII.04 slightly underestimate measured energy densities in SD-enhanced category.
Observations

- MPI necessary to describe forward energy densities in INEL and NSD-enhanced categories.
- Absence of MPI does not affect the PYTHIA8 predictions in the SD-enhanced category.
- Similar performance across PYTHIA8 tunes within exp. uncertainties.
Comparison of measurements of transverse energy density $dE_T/d\eta'$

- Measurements at $\sqrt{s} = 0.9, 7, 13$ TeV → access to different $\eta' = \eta - y_{\text{beam}}$ intervals, with $y_{\text{beam}} = \text{acosh}(\sqrt{s}/2m_p)$.
- Transverse energy $E_T = \cosh(\eta)$.
- The data are consistent with QGSJET and EPOS-LHC models within experimental uncertainties.
• Exclusive photoproduction of vector bosons can be studied in ultraperipheral pPb collisions.

• Photoproduction of quarkonia offers a clean probe of gluon densities of the proton at $x_{Bj} = 10^{-4} - 10^{-2}$ at $Q^2 \sim m_{\Upsilon}^2$, potentially where saturation effects may play a role.

• The larger mass of the Υ meson provides a larger perturbative scale at which the gluon PDF is sampled, thereby reducing theoretical uncertainties in pQCD calculations.
Analysis strategy

- Study $\Upsilon(nS) \rightarrow \mu^+\mu^-$ decays in UPCs.
- Measure differential cross sections $d\sigma/dy_{\Upsilon}$ and $d\sigma/dp_T^2$ and $\sigma(\gamma p \rightarrow \Upsilon p)$ as a function of $W_{\gamma p}$
- Comparison of results with previous measurements at H1, ZEUS and LHCb
- Comparison of results with various treatments of low-x_{Bj} gluon densities

Data sample

pPb (Ppb) collisions at $\sqrt{s_{NN}} = 5.02$ TeV and 32.6 nb$^{-1}$ of data by CMS

Selection

- High-level trigger requirement: $n_\mu \geq 1$ and $1 \geq N_{Track} \geq 6$
- Offline requirements:
 - Two opposite-charge muon pair with a single vertex and no extra charged-particles with $p_T > 0.1$ GeV.
 - Offline, each muon has $p_T^\mu > 3.3$ GeV and $|\eta^\mu| < 2.2$ in the lab frame.
 - No calorimeter-energy deposits with $E > 5$ GeV in $3 < |\eta| < 5.2$ in forward region.
 - $\Upsilon(nS)$ mass window restricted to $9.1 < m_{\mu\mu} < 10.6$ GeV, for $n = 1, 2, 3$.
- Photoproduction contributions ($\gamma\gamma \to \mu^+\mu^-$, $\gamma p \to \gamma p$, $\gamma Pb \to \gamma Pb$) are simulated with STARLIGHT generator.

- Inclusive (Drell-Yan) and semi-exclusive γ residual contaminations are determined from data based on templates built by modifying selection requirements.
• Extract a slope of $b = 6.0 \pm 2.1\text{(stat)} \pm 0.3\text{(syst)} \text{GeV}^{-2}$ with $\exp(-bp_T^2)$ fit, in agreement with the value measured by ZEUS at lower masses $b = 4.3^{+2.0}_{-1.3}\text{(stat)}^{+0.5}_{-0.6}\text{(syst)} \text{GeV}^{-2}$.

• Predictions by four different theoretical predictions:
 ▶ Jones-Martin-Ryskin-Teubner (JMRT) model.
 ▶ Factorized impact parameter saturation (fIPsat) model.
 ▶ Iancu-Itakura-Munier (IIM) color-dipole formalism.
 ▶ Impact parameter CGC model (bCGC).
$W_{\gamma p}$ is related to rapidity of Υ in lab frame via $W_{\gamma p}^2 = 2E_p m_\Upsilon \exp(\pm y)$, where $E_p = 4$ TeV, computed in bins of $\langle y \rangle$

Photoproduction cross section $\sigma(\gamma p \rightarrow \Upsilon(1S)p)$ extracted from $\frac{d\sigma}{dy}$ (pPb \rightarrow p$\Upsilon(1S)$Pb)

$\sqrt{s_{NN}} = 5.02$ TeV pPb results with CMS cover region unexplored by H1, ZEUS and LHCb results.

A fit to the CMS data of the form $A(W_{\gamma p}/400 \text{ GeV})^\delta$ yields $\delta = 1.08 \pm 0.42$, consistent with value by ZEUS $\delta = 1.2 \pm 0.8$.
Summary

- The LHC keeps enlarging our access to unexplored phase space to study strong interactions;
- Recent measurements provide important inputs for Monte Carlo generator tuning and constraints on small-x gluon PDFs
- Probes of perturbative and non-perturbative QCD predictions include the results presented today:
 - Measurement of the average very forward energy as a function of track multiplicity at central pseudorapidities in proton-proton collisions at $\sqrt{s} = 13$ TeV, Submitted to EPJC, arXiv:1908.01750