Vertices of three reggeized gluons and the unitarity corrections to the propagator of reggeized gluons

S. Pozdnyakov(1,2), S. Bondarenko(2),

1) \textit{Saint Petersburg State University, Russia}
2) \textit{Ariel University, Israel}
Plan

1. The Lipatov’s effective action
2. How correlators and evolution equations are derived from it?
3. One loop QCD Regge Field Theory
4. Vertices of three reggeized gluons
The Lipatov’s effective action is gauge invariant and written in the covariant form in terms of gluon field v as

$$S_{\text{eff}} = - \int d^4 x \left(\frac{1}{4} G_{\mu \nu}^a G_a^{\mu \nu} + \frac{1}{N} \text{tr} \left[(A_+(v_+) - A_+) \partial_i^2 A_a^+ + (A_-(v_-) - A_-) \partial_i^2 A_a^- \right] \right),$$

where

$$A_{\pm}(v_{\pm}) = \frac{1}{g} \partial_{\pm} O(x_{\pm}, v_{\pm}); \quad O(x_{\pm}, v_{\pm}) = P e^{g \int_{-\infty}^{x_{\pm}} dx'_{\pm} v_{\pm}}.$$

There are additional kinematical constraints for the reggeon fields

$$\partial_- A_+ = \partial_+ A_- = 0,$$

In the framework with an external source of the color charge introduced, keeping only gluon field depending terms, we rewrite action as

\[S_{\text{eff}} = -\int d^4 x \left(\frac{1}{4} G_{\mu \nu}^a G_{\mu \nu}^a + v_- J^- (v_-) + v_+ J^+ (v_+) \right), \]

Under variation on the gluon fields these currents reproduce the Lipatov’s induced currents

\[\delta \left(v_\pm J^\pm (v_\pm) \right) = (\delta v_\pm) j^{\text{ind}}_{\mp} (v_\pm) = (\delta v_\pm) j^\pm (v_\pm), \]

The classical equations of motion for the gluon field \(v_\mu \) which arose from the action are the following:

\[(D_\mu G^{\mu \nu})_a = \partial_\mu G_{\mu \nu}^a + g f_{abc} v_\mu^b G_{\nu}^c = j_a^+ \delta^{\nu +} + j_a^- \delta^{\nu -} \]
We have found a solution to these equations of motion $v_{i\,cl}^a$, $v_{+\,cl}^a$ with NNLO precision and determined in the original Lagrangian:

$$
v_i^a \rightarrow v_{i\,cl}^a + \varepsilon_i^a, \quad v_+^a \rightarrow v_{+\,cl}^a + \varepsilon_+^a, \quad v_-^a = 0,
$$

$$
v_{cl}^{ia} = \sum_{k=0}^{+\infty} g^k v_k^{i\,a}(A_+, A_-), \quad v_{+\,cl}^a = \sum_{k=0}^{+\infty} g^k v_{+\,k}^a(A_+, A_-)
$$

and after integration over fluctuation $\varepsilon_{i,+}$ we have an expression for an effective one-loop action:

$$
\Gamma = \int d^4x \left(L_{YM}(v_{i\,cl}^a, v_{+\,cl}^a) - v_{+\,cl}^a J_{a+}^+(v_{+\,cl}^a) - A_+^a \left(\partial_i^2 A_-^a \right) \right) + \frac{\lambda}{2} \ln \left(1 + G(v_{+\,cl}^a) M(v_{+\,cl}^a) \right),
$$

which is the functional of only reggeized gluon fields.
In general case, consider the Lipatov's effective action for reggeized gluons A_{\pm}, formulated as RFT (Regge Field Theory) which can be obtained by an integration out the gluon fields ν in the generating functional for the $S_{\text{eff}}[\nu, A]$:

$$e^{\nu \Gamma[A]} = \int D\nu \ e^{\nu S_{\text{eff}}[\nu, A]}$$
The result of this action is that the effective action Γ can be expanded in terms of reggeon fields A_- and A_+ as

$$\Gamma = \sum_{n,m=1} \left(A_{+a}^a_1 \cdots A_{+a}^a_n (K_{-\cdots-})^{a_1 \cdots a_n}_{b_1\cdots b_m} A_{-b_1}^b_1 \cdots A_{-b_m}^b \right)$$

$$= -A_{+a}^a \partial_i^2 A_{-a}^{a} + A_{+a}^a (K_{xy}^{ab})_+ A_{-b}^b + \cdots,$$

that determines this expression as functional of reggeon fields and provides effective vertices of the interactions of the reggeized gluons in the RFT calculus.

A hierarchy of correlators in the formalism of Lipatov’s effective action

Generating functional for calculation the correlators of the reggeon fields

\[Z[J] = \int D\exp\left(\imath \Gamma[A] - \imath \int d^4x J^a_-(x^-, x_\perp) A^a_+(x^+, x_\perp) - \imath \int d^4x J^a_+(x^+, x_\perp) A^a_-(x^-, x_\perp) \right) \]

\[\langle A^a_\pm(x, \eta) \rangle = \sum_{n=1} \left(\tilde{K}(\eta; x, x_1, \ldots, x_n) \right)^{a a_1 \cdots a_n} \langle A^a_\pm(x_1) \cdots A^a_n(x_n) \rangle \]

Taking the derivative of this equation with respect to \(\eta \), we can also obtain a BFKL-like evolution equation for reggeized gluon fields:

\[\frac{\partial}{\partial \eta} \langle A^a_\pm \rangle = \frac{\partial}{\partial \eta} \left(\sum_{n=1} \left(\tilde{K}(\eta) \right)^{a a_1 \cdots a_n} \langle A^a_\pm \cdots A^a_n \rangle \right) \]
Results of variation on currents J

$$\partial^2_{\perp 1} < A^a_1 A^a_2 > = - \nu \delta^{a_1 a_2} \delta_{\pm 1 \pm 2} \delta (x_{\perp 1} - x_{\perp 2}) + \left(K^a_{b_1} \right)^{\pm} \nabla < A^b_1 A^a_2 > + \cdots.$$

$$< A^a_1 A^a_2 \cdots A^a_m > = \sum_{n=1} \left(\hat{K}(\eta) \right)^{a_{b_1} \cdots b_n} < A^b_1 \cdots A^b_n A^a_1 \cdots A^a_m >.$$

Equations analogous to the hierarchy of Wilson line correlators in the Balitsky-JIMWLK formalism

$$\frac{\partial}{\partial \eta} < A^a_1 A^a_2 \cdots A^a_m > = \frac{\delta}{\delta \eta} \sum_{n=1} \left(\hat{K}(\eta) \right)^{a_{b_1} \cdots b_n} < A^b_1 \cdots A^b_n A^a_1 \cdots A^a_m >.$$
1) Effective vertex of the interaction with NLO

\[(K_{xy}^{ab})^{+-} = K_{xy}^{ab} = \left(\frac{\delta^2 \Gamma}{\delta A_+^a \delta A_-^b} \right) A_+, A_-, v_f \perp = 0. \]

2) Propagator of reggeized gluons in the form of the perturbative series

\[D_{ac}^{xy} = D_{ac}^{xy0} - \int d^4z \int d^4w \ D_{xz}^{ab0} \left(\sum_{k=1}^{\infty} K_{zw}^{bd} k \right) D_{wy}^{dc}. \]

3) Final expression for the propagator with one-loop precision

\[D_{ac}^{xy} = \delta^{ac} \delta(y^− - x^−) \delta(x^+ - y^+) \int \frac{d^2p}{(2\pi)^2} \tilde{D}(p_\perp, \eta) \ e^{-\epsilon p} (x^i - y^i), \]

\[\tilde{D}^{ab}(p_\perp, \eta) = \frac{\delta^{ab}}{p_\perp^2} \ e^{\eta \epsilon(p_\perp^2)}, \ \epsilon(p_\perp^2) = -\frac{\alpha_s N}{4 \pi^2} \int d^2k_\perp \frac{p_\perp^2}{k_\perp^2 (p_\perp - k_\perp)^2}. \]
One-loop correction from a hierarchy of correlators

Here in a diagrammatic form: the ovals are the correlators, the blocks are vertices (interaction kernel), and the bold dot is the bare propagator of the Reggeon field D_0:

$$\left(\delta^{ab}\partial_{\perp}^2 - (K^a_b)^+\right) D_{0}^{bc+} = \delta^{ac}.$$
\[\partial_{\perp x} < A^a_+(x^+, x_\perp) A^{a_1}_-(y^-, y_\perp) > = -i \delta^{aa_1} \delta(x^+) \delta(y^-) \delta^2(x_\perp - y_\perp) + \]
\[+ \int d^2z_\perp d^2z_1^+ d^2z_1^- K_{++-+}^{b_1 b_2 a}(x^+, z_\perp; z_1^+, z_1^-; x_\perp) < A^{b_1}_+(x^+, z_\perp) A^{b_2}_+(z_1^+, z_1^-) A^{a_1}_-(y^-, y_\perp) > + \]
\[+ \int d^2z_\perp d^2z_1^- d^2z_1^+ K_{+-+-}^{b_1 b_2 a}(z_\perp; z_1^-, z_1^-; x_\perp) < A^{b_1}_+(x^+, z_\perp) A^{b_2}_-(z_1^-, z_1^-) A^{a_1}_-(y^-, y_\perp) > . \]

The third term in the r.h.s. of the equation depends on \(x^- \) variable, whereas the correlator in the l.h.s. does not. This discrepancy means a violation of kinematical conditions, which in fact were known as not-absolute and therefore, generalizing the approach, we have to consider the reggeon fields as four-dimensional ones:

\[A_+(x^+, x_\perp) \rightarrow B_+(x^+, x^-, x_\perp) = A_+(x^+, x_\perp) + D_+(x^+, x^-, x_\perp), \quad D_+(x^+, x^- = 0, x_\perp) = 0 \]

and

\[A_-(x^-, x_\perp) \rightarrow B_-(x^+, x^-, x_\perp) = A_-(x^-, x_\perp) + D_-(x^+, x^-, x_\perp), \quad D_-(x^+ = 0, x^-, x_\perp) = 0 . \]
Violation of kinematical conditions for correlator

\[
\begin{align*}
 \langle A_+^a(x^+, x_\perp) A_-^{a_1}(y^-, y_\perp) \rangle &\rightarrow \langle B_+^a(x^+, x^- x_\perp) A_-^{a_1}(y^-, y_\perp) \rangle \\
 = \langle A_+^a(x^+, x_\perp) A_-^{a_1}(y^-, y_\perp) \rangle + \langle D_+^a(x^+, x^-, x_\perp) A_-^{a_1}(y^-, y_\perp) \rangle
\end{align*}
\]

Treating the expression perturbatively and writing the correlators as propagators

\[
\begin{align*}
 \langle A_+^a(x^+, x_\perp) A_-^b(y^-, y_\perp) \rangle &= i \delta(x^+) \delta(y^-) \delta^{ab} D(x_\perp, y_\perp) \\
 \text{and} \\
 \langle D_+^a(x^+, x^-, x_\perp) A_-^{a_1}(y^-, y_\perp) \rangle &= i G_-^{aa_1}(x^+, x^-, x_\perp; y^-, y_\perp),
\end{align*}
\]
Violation of the reggeized form of the initial propagator

\[D^{ab}(x^+, x^-, x_\perp; y^+, y^-, y_\perp; Y) = D^{ab}(x_\perp, y_\perp; Y) + g^{aa_1}_+(x^+, x^-; y^-, y_\perp; Y) + g^{aa_1}_-(x^+, x_\perp; y^+, y^-; y_\perp; Y). \]

Fourier transform of \(g^{aa_1}_+ \) with respect to \(x^+ \) and \(x_\perp - y_\perp \) is

\[\tilde{g}^{aa_1}_+(p_+, p_\perp; y^-, x^-; Y) = \]
\[= \frac{2 \delta^{aa_1}}{p^2_\perp} \left(e^{\epsilon(p^2_\perp) Y} - e^{2 \epsilon(p^2_\perp) Y} - \int_{-\epsilon(p^2_\perp) Y}^{2 \epsilon(p^2_\perp) Y} \frac{dy}{y} \left(e^{-y} - 1 \right) \right) \left(\tilde{g}^{0-}_x - \tilde{g}^{0-}_0 \right) \]

Correction \(g^{aa_1}_- \) can be directly obtained by change of the + sign in the expression on the – sign everywhere and corresponding change of the coordinates

This correction is large and does not suppressed perturbatively
\[\tilde{\mathcal{G}}_{a1}^{aa}(p_+, p_\perp; x^-, y^-; Y) = \]
\[
\frac{2\delta^{aa1}}{p_\perp^2} \left(1 - e^{\epsilon p_\perp^2 Y} - \int_0^{-\epsilon p_\perp^2 Y} \frac{dy}{y} (e^{-y} - 1) \right) \left(\tilde{\mathcal{G}}_{x^-0}^0 - \tilde{\mathcal{G}}_{0x^-0}^0 \right) \delta(p_+)\delta(y^-). \]

The last step in the Fourier transform is the transforms of the theta functions \(x^- \) coordiant. We note that expression is zero at \(x^- = 0 \), as it must be. Therefore, in order to preserve the property of the expression, we have to regularize the Fourier transform of the difference of the theta functions in this limit, we do so with the help of Sokhotski expressions:

\[
\frac{1}{p_- + i\epsilon} + \frac{1}{p_- - i\epsilon} = 2 P(\frac{1}{p_-}) \tag{1}
\]

where

\[
\left(P(\frac{1}{p_-}), f(p_-) \right) = PV \int \frac{f(p_-)}{p_-} dp_- = \int \frac{f(p_-) - f(0)}{p_-} dp_- \tag{2}
\]
On reggeization of vertex of three reggeized gluons

Any vertex of the three Reggeon fields interactions is defined as following

\[
(K_{x y z}^{a b c})^{\mu \nu \rho} = \left(\frac{\delta^3 \Gamma(v_i cl(A_+, A_-), v_+ cl(A_+, A_-))}{\delta A_\mu^a \delta A_\nu^b \delta A_\rho^c} \right)_{A_+, A_-, v_f \perp = 0}.
\]

\[
(K^{abc}_{x z y; \eta})^{++} = (K^{abc}_{x z y})^{++} - \frac{2 \alpha_s N}{(2\pi)^4} \int_0^\eta d s \int d^2 \omega \perp (K^{abc}_{x z y; s})^{++}.
\]

\[
\int d^2 k_\perp \int d^2 k_{1\perp} \frac{k_{1\perp}^2}{k_\perp^2 (k_\perp - k_{1\perp})^2} e^{-\nu(y^i - \omega^i)k_{1i}}.
\]

where

\[
(K^{abc}_{x z y})^{++} = \frac{1}{2} g_{f^{abc}}(\theta_{x^+ - z^+} - \theta_{z^+ - x^+}) \delta^2_{y_\perp x_\perp} \delta^2_{z_\perp y_\perp} \delta_{i y}^2.
\]
The solution of this equation after Fourier transform leads to the reggeization of the vertex with the trajectory twice larger than the trajectory of the propagator of reggeized gluons.

\[
\frac{\partial \bar{K}^{abc}}{\partial \eta} = 2\varepsilon(p_{2\perp}) \bar{K}^{abc}, \quad \varepsilon(p_{2\perp}) = -\frac{\alpha_s N}{(2\pi)^2} \int d^2k_\perp \frac{k_{1\perp}^2}{p_{\perp}^2 (k_\perp - p_{\perp})^2}
\]

\[
\bar{K}^{abc} \left(x^+, z^+; p_\perp, p_{1\perp}, p_{2\perp}; \eta \right) = \bar{K}_0^{abc} \left(x^+, z^+; p_\perp, p_{1\perp}, p_{2\perp}; \eta \right) e^{2\eta \varepsilon(p_{2\perp})}.
\]
The relation of reggeon correlators to the correlators of Wilson lines operators built from the longitudinal gluons is also clarified and results of this relation, we hope, will help to understand general landscape of the high energy QCD approaches.

Correlators of Lipatov’s operators

\[
\hat{O}(v_{\pm}) = \frac{1}{2} \left(P e^{g \int_{-\infty}^{\infty} dx_{\pm} v_{\pm}(x_{\pm}, x_{\mp}, x_{\perp})} \right) \left(\bar{P} e^{-g \int_{-\infty}^{\infty} dx_{\pm} v_{\pm}(x_{\pm}, x_{\mp}, x_{\perp})} \right)
\]

\[
\langle \left(T^{a_1} \hat{O}_1(v_{\pm}) \right) \otimes \left(T^{a_2} \hat{O}_2(v_{\pm}) \right) \otimes \cdots \otimes \left(T^{a_n} \hat{O}_n(v_{\pm}) \right) \rangle = C(R)^n (2g)^n \left(\sum_{j=0}^{\infty} \left(\frac{\delta}{\delta J^{a_1}_{\mp}} \cdots \frac{\delta}{\delta J^{a_n}_{\mp}} \right) \log Z[J] \right)_{J=0} = C(R)^n (2g)^n
\]

\[
\int dx_1^{\pm} \cdots \int dx_n^{\pm} \left(\sum_{j=0}^{J} C_{b_1^{a_1} \cdots b_n^{a_n}}^{a_1 \cdots a_n} \left(\frac{\nu}{2} \partial_{\perp}^{-2} \right)^j (-\nu)^{n-2j} < A_{b_1}^{b_1} \cdots A_{b_n}^{b_n-2j} > \right)
\]
This effective action formalism, based on the reggeized gluons as main degrees of freedom, can be considered as reformulation of the RFT calculus for the case of high energy QCD.

We calculated the one loop RFT contribution to the propagator of reggeized gluons in the framework of Lipatov’s effective action and Dyson-Schwinger hierarchy of the equations for the correlators of reggeized gluon fields.

We find additional part of the corrections that breaks the propagator’s reggeization.

The one loop QCD triple vertices will change the rapidity structure of the two reggeized gluons correlator as well and will allow understand better the quantum structure of the theory.

The continuation of high energy QCD Lipatov’s effective action to Euclidean space is performed.
Solution to these equations of motion

\[v_{+0} a = A_+ a, \]
\[v_{i0} a = \rho_i^b(x_\perp, x^-) U_{ab}, \]
\[v_{+1} a = -\frac{2}{g} \Box^{-1} \left((\partial_+ \partial_i U_{ab}) \rho_i^b \right), \]
\[v_{i1} a = -\Box^{-1} \left[\partial_j F_{ji} a + \frac{1}{g} \partial_i \left((\partial_j U_{ab}) \rho_j^b \right) - \partial_i^{-1} j_{a1}^+ \right]. \]

\[U^{ab}(v_+) = -\text{tr} \left[T^a \left(Pe^g \int_{-\infty}^{x^+} dx'^+ v_{+c}(x'^+, x^-, x_\perp) T^c \right) T^b \left(Pe^{-g} \int_{x^+}^{+\infty} dx'^+ v_{+d}(x'^+, x^-, x_\perp) T^d \right) \right]. \]
NNLO solution to these equations of motion

\[v_{+2 a} = \Box^{-1} \partial^{-1} \left[\frac{2}{g} \partial_{+} j_{a1}^{+} \right. \]
\[+ f_{abc} \left(2 \partial_{-} v_{i0}^{b} \partial_{+} v_{1}^{ic} + (\partial_{i} v_{v_{0}}^{c}) \partial_{-} v_{1+}^{b} + 2 \partial_{i} (A_{+}^{b} \partial_{-} v_{1}^{ic}) \right) \left(\right) \], \quad (8) \]

\[v_{2a}^{i} = \Box^{-1} \left[\partial_{-1} \partial^{i} \left(L_{a2}^{+} - (\partial^{j} \rho_{j}^{b}) (\frac{1}{g^{2}} \partial_{-} U_{ab}) \right) \right. \]
\[- f_{abc} \left(\frac{1}{g} v_{j0}^{b} \left(\partial^{j} v_{0}^{i} c - \partial^{i} v_{0}^{j} c \right) + v_{0j}^{b} (\partial^{j} v_{1}^{c} c - \partial^{i} v_{1}^{j} c) \right. \]
\[\left. \left. - v_{0}^{i} c v_{1+}^{b} + 2 A_{+}^{b} v_{1}^{c} + \partial_{j} \left(v_{0}^{j} b v_{1}^{i} c - v_{0}^{i} b v_{1}^{j} c \right) + f^{cde} v_{j0}^{b} v_{0d}^{j} v_{0e}^{i} \right) \right] \]. \quad (9) \]
Extending by including the quarks

We have added a part of the Lagrangian L_{quark}. We find only one correction of the order g^2 and ε^2. This addition will allow us to take into account the contribution with a quark loop in the gluon. Integrating out the fluctuation we obtain the following expression for the contribution to the action:

$$
-\frac{g^2}{4} \text{tr}(G^0_q(y,x)(\gamma^\nu v_{a\nu}(x))G^0_q(x,y)(\gamma^\mu v^a_{\mu}(y)))
$$

(10)

where

$$
G^0_q(x,y) = (i\gamma^\nu \partial^\nu_x + m)\Delta_{xy}, \quad \Delta_{xy} = \int \frac{d^4p}{(2\pi)^4} \frac{e^{ip(x-y)}}{p^2 - m^2 + i0}
$$

Then after varying by $v_{a\rho}(z)$ we obtain the following contributions to the equation of motion

$$
\frac{\partial}{\partial x} \left(j^\rho_{quark a}(z) = -\frac{g^2}{2} \text{tr}\left(\gamma^\rho G^0_q(z,y)\gamma^\mu v_{a\mu}(y)G^0_q(y,z)\right) \right)
$$

(11)
We verified, that condition $\partial_\rho j^\rho_{\text{quark}~a} = 0$ is true. Then the classical solutions have additional contributions v^i_{q2} and v_{q+2}, respectively:

$$
v^i_{q2a} = \Box^{-1} \left[j^i_{\text{quark}~0a} - \partial^i \partial^{-1} j^+_0 \right], \quad (12)
$$

$$
v_{q+2a} = \Box^{-1} \left[j^-_{\text{quark}~0a} - \partial^- \partial^{-1} j^+_0 \right], \quad (13)
$$

where

$$
j^\rho_{\text{quark}~a}(z) = -\frac{g^2}{2} \text{tr} \left(\gamma^\rho G_0^0(z, y) \gamma^\mu \nu_a \mu(y) G_0^0(y, z) \right) \quad (14)
$$
We want to estimate the contribution of quarks to the reggeon propagator.

Inserting obtained classical gluon fields solutions in the Eq. (??) action, we will obtain a action which will depend only on the reggeon fields. In order to calculate this action we need to know the components of the field strength tensor, with LO precision we have:

\[G^a_{+ - 0} = 0, \quad G^a_{i+ 0} = \partial_i A^a_+, \quad G^a_{i- 0} = -\partial_+ v^a_{i0}, \quad G_{ij 0} = 0, \]

(15)

and components of the field strength tensor with included quarks

\[G^a_{+ - q2} = 0, \quad G^a_{i+ q2} = g^2 \partial_i v^a_{q+2}, \quad G^a_{i- q2} = -g^2 \partial_+ v^a_{qi2}, \quad G_{ij q2} = 0, \]

(16)

that gives

\[\frac{1}{2} G_{\mu \nu 0} G^ {\mu \nu}_{q2} = g^2 (\partial_+ v^a_{i0}) (\partial_i v^a_{q+2}) + g^2 (\partial_+ v^a_{qi2}) (\partial_i A^a_+). \]

(17)
Therefore, for the additional contributions to the effective action from the inclusion of quarks we obtain to LO:

\[
S_{\text{eff } q^2} = -\frac{g^2}{N} \int d^4x \left[\partial_i \left(\nu_{q+}^a \partial_i A_-^b \right) + \right.
\]

\[
N \left(\partial_- \left(\nu_{q+}^b \partial_i A_+^a \right) - \nu_{q+}^b \left(\partial_i \partial_- A_+^a \right) \right) \right] = 0, \quad (18)
\]

In addition, it is a direct contribution to the effective action:

\[
-\frac{g^2}{4} \left(\delta^2 \text{tr} \left(G_q^0(y, x) (\gamma^\nu \nu_{a\nu}(x)) G_q^0(x, y) (\gamma^\mu \nu_{a\mu}(y)) \right) \right) \left(\frac{\delta A_+^a_x \delta A_-^b_y}{A_+, A_- = 0} \right) . \quad (19)
\]

After the calculations, we showed that this contribution is also zero.