#### Low X 2019 Nicosia, Cyprus, August 29<sup>th</sup>, 2019

#### Oscar Adriani University of Florence & INFN Firenze

000200000

LHCf forward physics results

- Physics Motivations
- Results @ 13 TeV
- p-Pb Run
- Future perspectives

#### Ultra High Energy Cosmic Rays



#### How accelerator experiments can contribute?







We may profit (and we are profiting) of the very broad coverage! Dedicated forward detectors for a better measurement of the energy flow

# First models tuning after the first LHC data (EPOS, QGSJET and SIBYLL)



Significant reduction of differences btw different hadronic interaction models!!! But still a lot to be done....

#### LHCf: location and detector layout



#### Event category in LHCf



#### yy invariant mass distribution



#### LHCf Data Taking and Analysis matrix

| RUN              | Proton<br>E <sub>LAB</sub> (eV) | γ                                                       | n                                            | $\pi^0$ limited acceptance | π <sup>0</sup> full<br>acceptance | LHCf -<br>ATLAS                            | Perform<br>ance |
|------------------|---------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|--------------------------------------------|-----------------|
| SPS test<br>beam |                                 | NIM A 671<br>(2012) 129                                 | JINST 9 (2014)<br>P03016                     |                            |                                   |                                            |                 |
| p+p 900<br>GeV   | 4.3x10 <sup>14</sup>            | PLB 715<br>(2012)<br>298-303                            |                                              | Not accessible.            |                                   |                                            | IJIMPA<br>28    |
| p+p 7 TeV        | 2.6x10 <sup>16</sup>            | PLB 703<br>(2011)<br>128-134                            | PLB 750<br>(2015)<br>360-366                 | PRD 86<br>(2012)<br>092001 | PRD 94<br>(2016)<br>032007        |                                            | 133003<br>6     |
| р+р 2.76<br>TeV  | <b>4.1x10</b> <sup>15</sup>     |                                                         |                                              | PRC 89<br>(2014)           |                                   |                                            |                 |
| p+Pb 5 TeV       | 1.4x10 <sup>16</sup>            |                                                         |                                              | 065209                     |                                   |                                            |                 |
| p+p 13 TeV       | 9.0x10 <sup>16</sup>            | PLB 780<br>(2018)<br>233–239<br>On-going:<br>ATLAS-LHCf | Arm1: on-going<br>Arm2: JHEP11<br>(2018) 073 | Preliminary                |                                   | Conf. Note:<br>ATLAS-<br>CONF-<br>2017-075 |                 |
| p+Pb 8.1<br>TeV  | 3.6x10 <sup>16</sup>            | Prelim.                                                 |                                              |                            |                                   |                                            |                 |

## γ Spectra in p-p

#### Photon production cross section in LHC 13TeV p-p collision



PLB, 780 (2018) 233-239

- PYTHIA8, DPMJET3 overestimate
- SIBYLL2.3 under(over) estimates at small (large) angle
- QGSJET II-04 underestimates
- EPOS-LHC shows best agreement (slight overestimate near maximum energy)

## γ energy spectra 7 vs 13 TeV



High energy data covers up to larger p⊤ Similar trend in 7TeV and 13TeV, but differences look enhanced in 13TeV results

#### Photon spectra – Feynman Scaling (7 TeV vs 13 TeV)



Feynman scaling: differential cross section as a function of  $X_F$  independent of  $\sqrt{s}$  for  $X_F$ 

Feynman scaling holds within systematic uncertainties

 $\pi^0$  spectra in p-p

#### LHCf results: $\pi^0 p_T$ for different $\eta$ in p+p @ 7 TeV



Identification of events with two particles hitting the two towers

- **EPOS1.99** show the best agreement with data in the models.
- **DPMJET** and **PYTHIA** have harder spectra than data ("popcorn model")
- QGSJET has softer spectrum than data (only one quark exchange is allowed)





#### Hadron spectra (~neutrons) in p-p

#### ARM2 unfolded neutron spectra



In  $\eta > 10.76$  no model agrees with peak structure and production rate. Among all models, SIBYLL 2.3 and EPOS-LHC have the best overall agreement in 8.99 <  $\eta$  < 9.22 and 8.81 <  $\eta$  < 8.99, respectively.

#### Measurement of interesting quantities for CR Physics



#### √s scaling; Neutron @ zero degree



Same structure observed by PHENIX and ISR (qualitatively) Analysis to be performed adding 900 GeV 2.76 TeV and RHICf data

## p-Pb results

#### LHCf @ pPb 5.02 TeV and 8.16 TeV



0.1 0.2 0.3 0.4

0.5

0.6 0.7

P<sub>T</sub> [GeV/c]

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 P<sub>T</sub> [GeV/c]

#### LHCf @ pPb 5.02 TeV: $\pi^0$ pT spectra as function of $\eta$



#### Photon spectra in pPb @ 8.16 TeV



• 8.81 <  $\eta$  < 8.99: all models predict an harder spectrum

## Combining forward and central info

#### Physics cases with ATLAS joint taken data

#### In p+p collisions

- Forward spectra of
   Diffractive/ Non diffractive events
- Measurement of proton-π collisions
- Forward hadron vs
   central activity correlation

All are important for preciseunderstanding of CR air shower development



#### <u>p-π measurement at LHC</u>

Leading neutron can be tagged by LHCf detectors -> total cross section multiplicity measurement



#### ATLAS-LHCf combined data analysis

#### Operation in 2013

- □ p+Pb, √s<sub>NN</sub> = 5TeV
  - → about 10 M common events.
- Operation in 2015
  - □ p+p, √s = 13TeV
    - → about 6 M common events.
  - Operation in 2016
  - □ p+Pb, √s<sub>NN</sub> = 5TeV
    - → about 26 M common events
  - □ p+Pb, √s<sub>NN</sub> = 8TeV
    - → about 16 M common events

Off-line event matching

Important to separate the contributions due to diffractive and non-diffractive collisions

WG active meeting every 2 weeks





## Diffractive studies

- MC studies
  - Contributions on forward photon/neutron spectra from diffractive/non-diffractive collisions.
  - Event-selection by the central particle production to separate these events





Very forward photon energy spectra predicted by four models with total/diffractive/non-diffractive

- Total: Quite similar spectra in EPOS,QGSJET and SIBYLL (LHCf alone)
- Diffractive/Non-diffractive: Very big difference between models (ATLAS-LHCf)
- ATLAS inner tracker enables to categorize events in diffractive-like and non-diffractive-like

#### ATLAS-LHCf joint analysis for diffraction



# PRD 94 (114026) 2016

#### Central-forward neutron correlation

#### Constraining high energy interaction mechanisms by studying forward hadron production at the LHC

S. Ostapchenko<sup>1,2</sup>, M. Bleicher<sup>1,3</sup>, T. Pierog<sup>4</sup> and K. Werner<sup>5</sup>

<sup>1</sup>Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany

<sup>2</sup>D.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia

<sup>3</sup>Institute for Theoretical Physics, Goethe-Universität, 60438 Frankfurt am Main, Germany

<sup>4</sup>Karlsruhe Institute of Technology, Institut für Kernphysik, Postfach 3640, 76021 Karlsruhe, Germany <sup>5</sup>SUBATECH, University of Nantes–IN2P3/CNRS–EMN, 4 rue Alfred Kastler, 44307 Nantes Cedex 3, France

July 30, 2018

#### Abstract

We demonstrate that underlying assumptions concerning the structure of constituent parton Fock states in hadrons make a strong impact on the predictions of hadronic interaction models for forward hadron spectra and for long-range correlations between central and forward hadron production. Our analysis shows that combined studies of proton-proton collisions at the Large Hadron Collider by central and forward-looking detectors have a rich potential for discriminating between the main model approaches.

#### The experimental measurement of:

• Forward  $\pi^0$  spectra vs central multiplicity

 Forward hadron spectra vs central multiplicity could be very useful to determine the best model approach for high energy interactions



#### Neutrons forward spectra vs central multiplicity



#### Neutrons forward spectra vs central multiplicity



#### From LHC to RHIC

#### From the LHC to RHIC

#### $\sqrt{s}$ scaling, or breaking?



#### Schematic view of the RHICf installation

10

10

200

Energy (GeV)





#### Acceptance in $E-p_T$ phase space





#### Very rough overview of the 2017 RHICf run



First analysis priority: transverse spin asymmetry of very forward  $\pi^0$  in polarized pp collisions at 510 GeV c.m. energy

#### The future at LHC

### Proposal for LHCf operation in LHC Run3

Low luminosity run for p+p at 14 TeV (2021?)
 LHCf was originally approved for this run

Motivations:

- Slightly higher energy  $\rightarrow$  slightly higher boost
- Dedicated trigger for «rare» events (~1000  $\eta$ , some K<sup>0</sup> expected in one day)
- Increase of  $\gamma$ , n and  $\pi^0$  statistics wrt 13 TeV
- Combined data taking with ATLAS, ALFA Roman Pot and hopefully hadronic ZDC modules
- Low luminosity p+O (or O+O) run or other light ions at the highest achievable energy (2023?)

Motivations:

- Optimal collisions to simulate the interactions with the atmosphere
- Negligible background from UPC
- First forward measurement at high energy with light ions
- Combined data taking LHCf-ATLAS-ALFA-ZDC might give useful info on the generation of CR shower in the fwd and central regions at the same time
- Possibility to take data also in the ion remnant side: direct study of nuclear effects in the generation and development of atmospheric showers

Physics cases and related upgrade of the DAQ system are summarized in a detailed Technical Report submitted this year to LHCC (CERN-LHCC-2019-008 ) → Accepted!!!!

#### Summary

LHCf zero degree results are significantly contributing to improve our knowledge of hadronic interaction model for HECR Physics

- We have precisely measured  $\gamma,\,\pi^0$  and n spectra in many different experimental conditions
  - p-p from 900 GeV up to 13 TeV c.m. energy
  - p-Pb at 5.02 and 8.16 TeV c.m. energy
- We are finalizing the analysis to correlate forward and central activity (LHCf/ATLAS)
- We have taken data with 510 GeV p-p polarized beam at RHIC
- We have been approved for LHC RUN3 operations with upgraded detectors
  - Low luminosity p-p 14 TeV
  - p-O run
- Still a lot of results will come in the next years...
- So... stay tuned!!!!

#### Back-up Slides

#### p-O collisions



## Analysis of hadron production in p-p collisions at 13 TeV



#### $\pi^0$ reconstruction



#### √s scaling; Neutron @ zero degree



•  $\sqrt{s} = 7$ TeV result agrees in a peak structure, but slightly soft??

## $\sqrt{s}$ scaling, or breaking?

## LHCf 2.76TeV and 7TeV data shows scaling of forward $\pi^0$



 $\pi^0$ 

#### But not everything is perfect....



## LHCf $\pi^0$ results: improvement @ 7 TeV

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

- Sampling layers
  - EJ-260 is replaced with GSO
  - 3mm (EJ-260) -> 1mm (GSO)
- Position sensitive layers
  - Arm1
    - SciFi is replaced with GSO-bar hodoscope
  - Arm2
    - Longitudinal configuration is changed
    - Grounding for not-used strips

#### LHCf at 13 TeV

Arm1

![](_page_49_Picture_2.jpeg)

#### Arm2

![](_page_49_Picture_4.jpeg)

#### Performance of the upgraded detector

![](_page_50_Figure_1.jpeg)

A. Tricomi, d,l W.C. Turner, <sup>m</sup> M. Ueno<sup>a</sup> and Q.D. Zhou<sup>a</sup>

ALEL C CUID EL

<sup>a</sup> Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
 <sup>b</sup> INFN Section of Florence, Florence, Italy
 <sup>c</sup> University of Florence, Florence, Italy
 <sup>d</sup> INFN Section of Catania, Catania, Italy
 <sup>e</sup> Ecole-Polytechnique, Palaiseau, France
 <sup>f</sup> Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Japan

#### LHCf neutron analysis: motivations

Inelasticity measurement k=1-pleading/pbeam Muon excess at Pierre Auger Observatory

- cosmic rays experiment measure PCR energy from muon number at ground and florescence light
- 20-100% more muons than expected have been observed

![](_page_51_Figure_4.jpeg)

Number of muons depends on the energy fraction of produced hadron Muon excess in data even for Fe primary MC EPOS predicts more muon due to larger baryon production

![](_page_51_Figure_6.jpeg)

#### Reconstructed ARM2 hadron energy spectra

![](_page_52_Figure_1.jpeg)

#### Feynman scaling in neutron production cross-section

![](_page_53_Figure_1.jpeg)

Feynman scaling hypothesis holds within the error bars Consistency is good especially in the region  $0.2 < x_F < 0.75$ 

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_1.jpeg)

- The LHCf results in p-Pb (filled circles) show good agreement with DPMJET and EPOS.
- The LHCf results in p-Pb are clearly harder than the LHCf results in p-p at 5.02TeV (shaded area) which are interpolated from the results at 2.76TeV and 7TeV.

#### LHCf @ pPb 5.02 TeV: π<sup>0</sup> p<sub>T</sub> spectra

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_1.jpeg)

$$\begin{split} R_{\rm pPb}(p_{\rm T}) &\equiv \frac{d^2 N_{\pi^0}^{\rm pPb}/dy dp_{\rm T}}{\langle N_{\rm coll} \rangle d^2 N_{\pi^0}^{\rm pp}/dy dp_{\rm T}} \\ < & \text{N}_{\rm coll} > = 6.9 \end{split}$$

Both LHCf and MCs show strong suppression But LHCf grows as increasing p<sub>T</sub>, understood by the softer p<sub>T</sub> spectra in p-p at 5TeV than those in p-Pb.

## $\pi^0$ average $p_T$ for different cm energies

![](_page_58_Figure_1.jpeg)

 $< p_T >$  is inferred in 3 ways:

- 1. Thermodynamical approach
- 2. Gaussian distribution fit
- Numerical integration up to the histogram upper bound

![](_page_58_Figure_6.jpeg)

Average pt vs ylab

From scaling considerations (projectile fragmentation region) we can expect that  $<p_T>$  vs rapidity loss should be independent from the c.m. energy

Reasonable scaling can be inferred from the data

## Limiting fragmentation in forward $\pi^0$ production

Limiting fragmentation hypothesis: rapidity distribution of the secondary particles in the forward rapidity region (target's fragment) should be independent of the center-of-mass energy.

This hypothesis for  $\pi^0$  is true at the level of  $\pm 15\%$ 

![](_page_59_Figure_3.jpeg)

Feynman scaling hypothesis: cross sections of secondary particles as a function of  $x_F \equiv 2p_z/\sqrt{s}$  are independent from the incident energy in the forward region ( $x_F > 0.2$ ).

This hypothesis for  $\pi^0$  is true at the level of  $\pm 20\%$ 

![](_page_60_Figure_3.jpeg)

#### LHCf @ pp 7 TeV: neutron spectra

![](_page_61_Figure_1.jpeg)

- LHCf Arm1 and Arm2 agree with each other within systematic error, in which the energy scale uncertainty dominates.
- In  $\eta$ >10.76 huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result.
- In other rapidity regions, the LHCf results are enclosed by the variation of models.

#### Nsel:

number of good charged ATLAS tracks

- *p*<sub>T</sub> > 100 MeV
- vertex matching
- |η| < 2.5.</li>

Significant UPC contribution in the very forward region with  $N_{sel}=0$ 

![](_page_62_Figure_7.jpeg)

#### RHICf detector acceptance

Compact double calorimeters (20mmx20mm and 40mmx40mm)

![](_page_63_Figure_2.jpeg)

neutrons.

# Diffractive vs. non diffractive at $\eta > 8.2$ with $\sqrt{s} = 510$ GeV p+p collisions

![](_page_64_Figure_1.jpeg)

RED: diffractive only ("RHICf + no central track in STAR" will be similar => TBC) BLACK: non diffractive ("RHICf + >=1 central track in STAR" => TBC )