
The DPS measurements and tunes at CMS

Radek Žlebčík on behlaf of the CMS Collaboration

> Monday, August 26 Low-x 2019, Nicosia

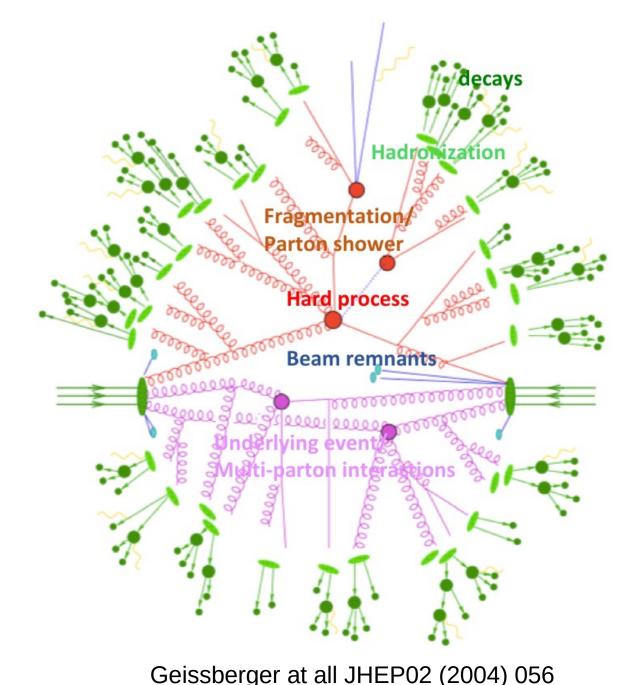
DESY. Low-x 2019 Nicosia | 26 August 2019 | Radek Žlebčík

The MC event picture

aka Divide and Conquer

#pars

- 1) Hard sub-process
 - Initial-state shower
 - Final-state shower
 - Multi parton interaction


QCD

scale

- 2) Proton remnant
- 3) Hadronization
 - 4) Particle decays
 - + PDF choice

More parameters \rightarrow more freedom in their choice

The Higgs production involves ~10 additional MPIs

Perturbative order of PDFs in the MC generators

Nowadays, many MC predictions based on

- NLO + PS, e.g. MC@NLO or POWHEG
- NNLO + PS, e.g. NNLOPS

However:

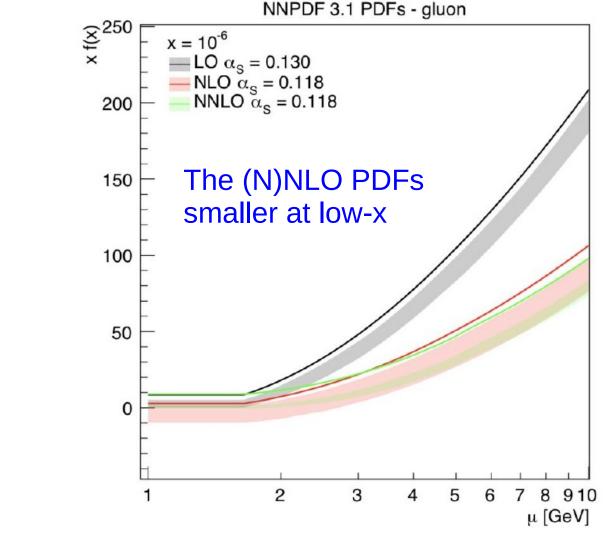
- The MPI ME included only at LO
- The PS uses LO splitting functions

Pythia8

The LO PDFs are recommended (low-x & low-scale behavior better under control)

Herwig7 NLO PDFs for ME+PS LO PDFs for MPI

Sherpa Uses the NNLO PDFs in the default tune

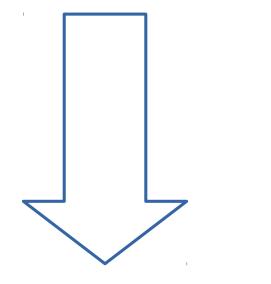


LO or (N)NLO PDFs for Pythia8 tune?

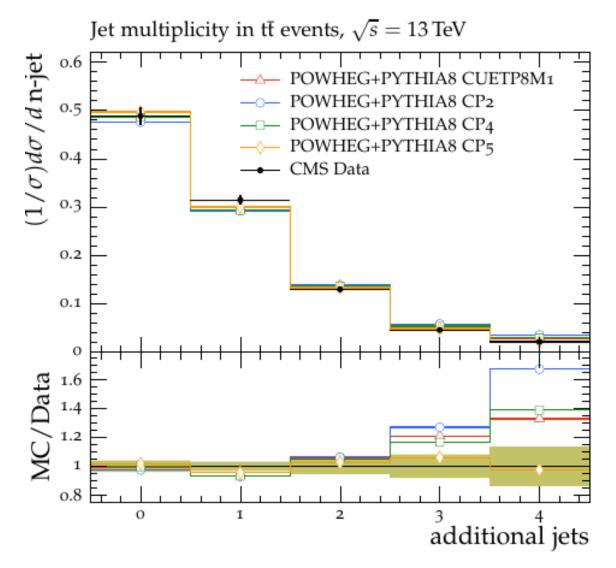
- The CMS 7TeV tunes (like CUETP8M1) based on NNPDF2.3 LO (Tune::pp = 18)
- In 2018 with 13 TeV data available the LO, NLO & NNLO NNPDF 3.1 tested for tuning (arXiv:1903.12179)

CP1-2: LO PDF, $\alpha_{s}(LO) = 0.130$ CP3: NLO PDF, $\alpha_{s}(NLO) = 0.118$ CP4-5: NNLO PDF, $\alpha_{s}(NLO) = 0.118$

In the NNPDF 3.1 no constraint on PDF positivity \rightarrow Even LO PDF is sometimes negative



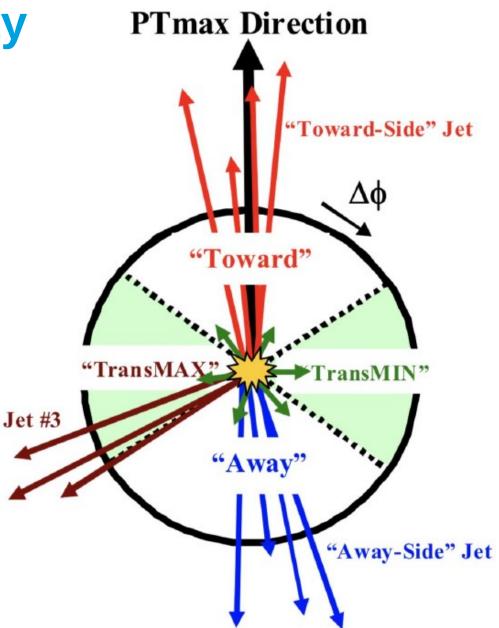
NNPDF3.1sx NNLO+NLLx should give stable low-x behavior, JHEP 1901 (2019) 217


The UE tune dependence in tt

Phys.Rev. D95 (2017) no.9, 092001

Higher jet multiplicities strongly affected by the PS & MPI parameters

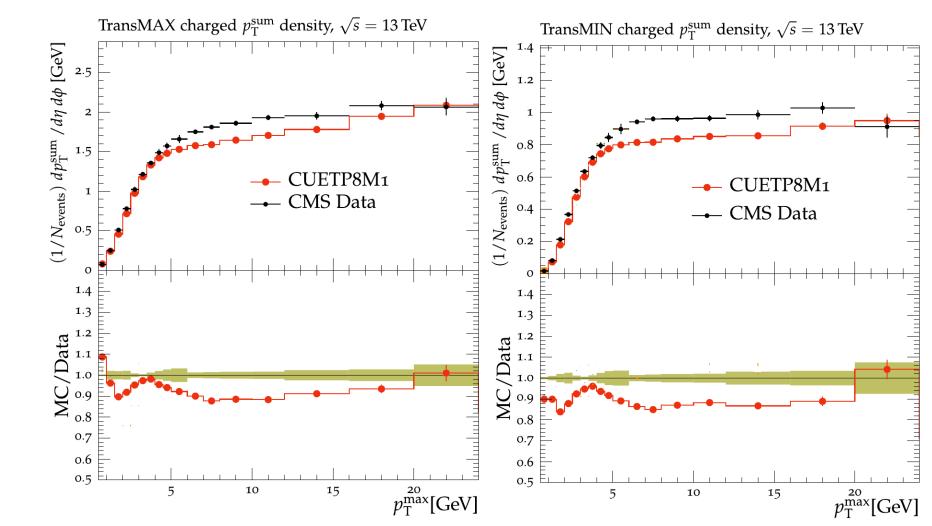
UE Measurements to constrain these parameters


Measurement of the UE activity

- \bullet UE activity studied as a function of $p_{_{\rm T}}$ of the leading particle
- 4 regions in the $\Delta \Phi$ variable:
 - \rightarrow Toward: $\Delta \Phi < 60^{\circ}$
 - → Transverse: $60^{\circ} < \Delta \Phi < 120^{\circ}$ (divided into TransMIN & TransMAX according the activity)
 - \rightarrow Away: $\Delta \Phi > 120^{\circ}$

Observables

- Average Charged Particle Multiplicity per event and per unit of $\eta,\,\Phi$
- Average p_{T} sum


per event and per unit of $\eta,\,\Phi$

The older 7 TeV tunes vs 13 TeV data

The older CMS tune CUETP8M1 (Eur. Phys. J. C (2016) 76 :155) tends to underestimate the energy flow in the transverse region

Need for new UE tunes with 13 TeV data

The new 13TeV tunes: What is fixed?

- The 13 TeV tunes based on the Monash Pythia8 tune (Eur.Phys.J. C74 (2014) no.8, 3024)
- The tunes differ in:

arXiv:1903.12179

- \rightarrow The PDF order
- \rightarrow The $\alpha_{_S}$ order & value for ISR, FSR, MPI, ME
- \rightarrow The ISR rapidity ordering

PYTHIA8 parameter	CP1	CP2	CP3	CP4	CP5
PDF Set	NNPDF3.1 LO	NNPDF3.1 LO	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLO
$\alpha_S(m_Z)$	0.130	0.130	0.118	0.118	0.118
SpaceShower:rapidityOrder	off	off	off	off	on
MultipartonInteractions:EcmRef[GeV]	7000	7000	7000	7000	7000
$\alpha_{\rm S}^{\rm ISR}(m_{\rm Z})$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm FSR}(m_{\rm Z})$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm MPI}(m_Z)$ value/order	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_S^{ME}(m_Z)$ value/order	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO

Effort to have consistent α_s value and order (CP3, CP4, CP5)

The new 13TeV tunes: What is tuned?

Parameter description	Name in PYTHIA8	Range considered
MPI threshold [GeV], pTORef, at $\sqrt{s} = \sqrt{s_0}$	MultipartonInteractions:pT0Ref	1.0-3.0
Exponent of \sqrt{s} dependence, ϵ	MultipartonInteractions:ecmPow	0.0–0.3
Matter fraction contained in the core	MultipartonInteractions:coreFraction	0.1–0.95
Radius of the core	MultipartonInteractions:coreRadius	0.1–0.8
Range of color reconnection probability	ColorReconnection:range	1.0-9.0

Inclusive parton-parton cross section > σ_{inel}

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T} \sim \frac{\alpha_S^2(p_T^2)}{p_T^4} \longrightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}p_T} \sim \frac{\alpha_S^2(p_T^2 + p_{T0}^2)}{(p_T^2 + p_{T0}^2)^2}$$
$$p_{T0}^2 = p_{T0}^{\mathrm{ref}} \left(\frac{E_{\mathrm{cms}}}{7000 \mathrm{~GeV}}\right)^{E_{\mathrm{cm}}^{\mathrm{pow}}}$$
Lower $\mathsf{p}_{\mathsf{T0}} \to \mathsf{More~MPI}$ interactions

The new 13TeV tunes: What is tuned?

Parameter description	Name in PYTHIA8	Range considered
MPI threshold [GeV], pTORef, at $\sqrt{s} = \sqrt{s_0}$	MultipartonInteractions:pT0Ref	1.0-3.0
Exponent of \sqrt{s} dependence, ϵ	MultipartonInteractions:ecmPow	0.0-0.3
Matter fraction contained in the core	MultipartonInteractions:coreFraction	0.1–0.95
Radius of the core	MultipartonInteractions:coreRadius	0.1–0.8
Range of color reconnection probability	ColorReconnection:range	1.0-9.0
The double Gaussian matter \rightarrow Fraction of the inner Gaus \rightarrow Inner / outer width $\rho(r) \propto (1 - c_{\rm F}) e^{-\frac{r^2}{2}} + \frac{c_{\rm F}}{c_{\rm F}^3}$ Overlap function: $\mathcal{O}(b) \propto \int \mathrm{d}t \int \mathrm{d}^3x \rho(x, y, z) \rho(z, y, z)$	esian 0.1 r^2 $e^{-\frac{r^2}{2c_R^2}}$ 0.06 0.04	$\begin{array}{c} \text{CP5} \\ c_{\mathrm{F}} = 0.63 \\ c_{\mathrm{R}} = 0.76 \end{array}$

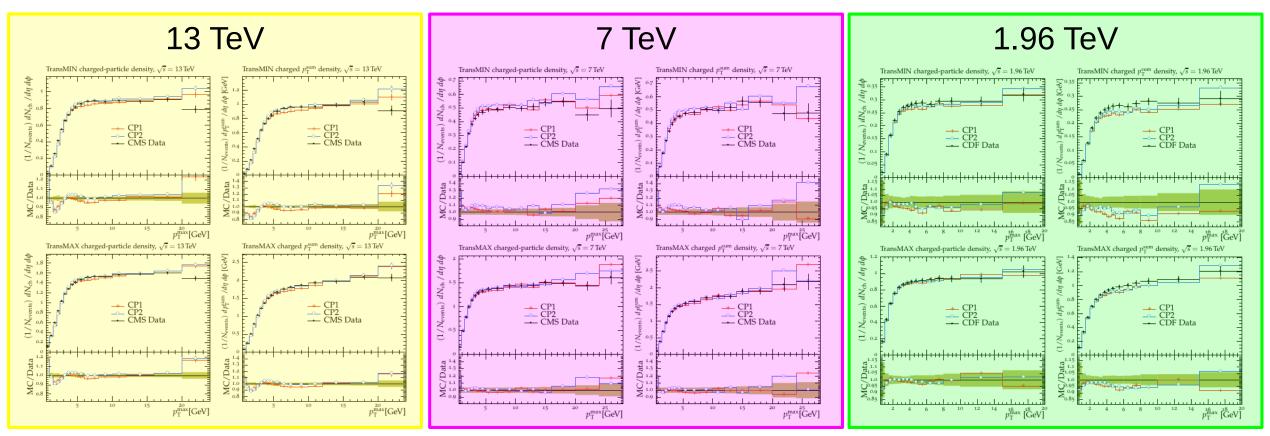
Double Gaussian enhances the event by event fluctuations in the particle multiplicity

The new 13TeV tunes: What is tuned?

Parameter description	Name in PYTHIA8	Range considered
MPI threshold [GeV], pTORef, at $\sqrt{s} = \sqrt{s_0}$	MultipartonInteractions:pT0Ref	1.0-3.0
Exponent of \sqrt{s} dependence, ϵ	MultipartonInteractions:ecmPow	0.0-0.3
Matter fraction contained in the core	MultipartonInteractions:coreFraction	0.1-0.95
Radius of the core	MultipartonInteractions:coreRadius	0.1–0.8
Range of color reconnection probability	ColorReconnection:range	1.0–9.0

The probability to reconnect the color lines of two MPI 2
$$\rightarrow$$
 2 interactions $p \sim \frac{(p_{T0}^{
m rec})^2}{p_T^2 + (p_{T0}^{
m rec})^2}$

 $p_{T0}^{\rm rec} = p_{T0} \times {\rm range}$


Smaller range

→ lower reconnection probability

The new 13TeV tunes: On which data?

TransMIN-N_{ch} TransMIN-p₋^{Sum} TransMAX-N_{ch} TransMAX- p_{τ}^{Sum}

for 1.96 TeV, 7 TeV, 13 TeV (12 distributions)

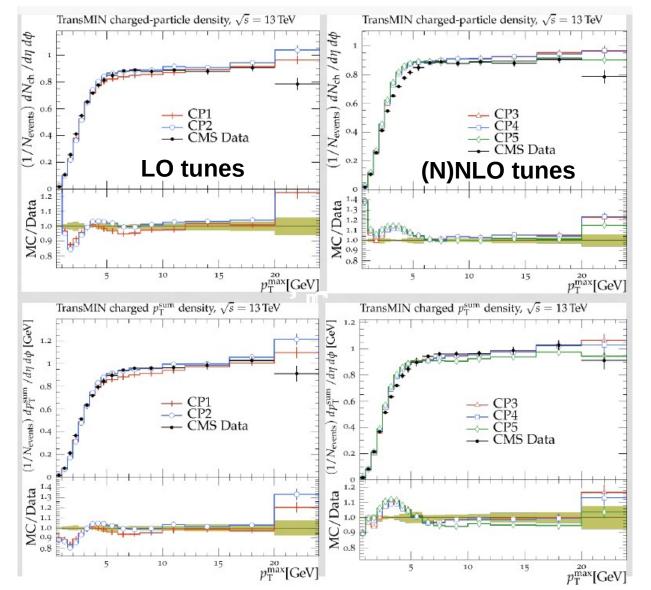
DESY. Low-x 2019 Nicosia | 26 August 2019 | Radek Žlebčík

The new 13TeV tunes: Result of tuning

- All tune variants have reasonable $\chi^2/{
 m dof}$
- The (N)NLO tunes tend to have lower p_{T0}^{Ref}
 - (to balance lower PDFs)

Professor based tuning

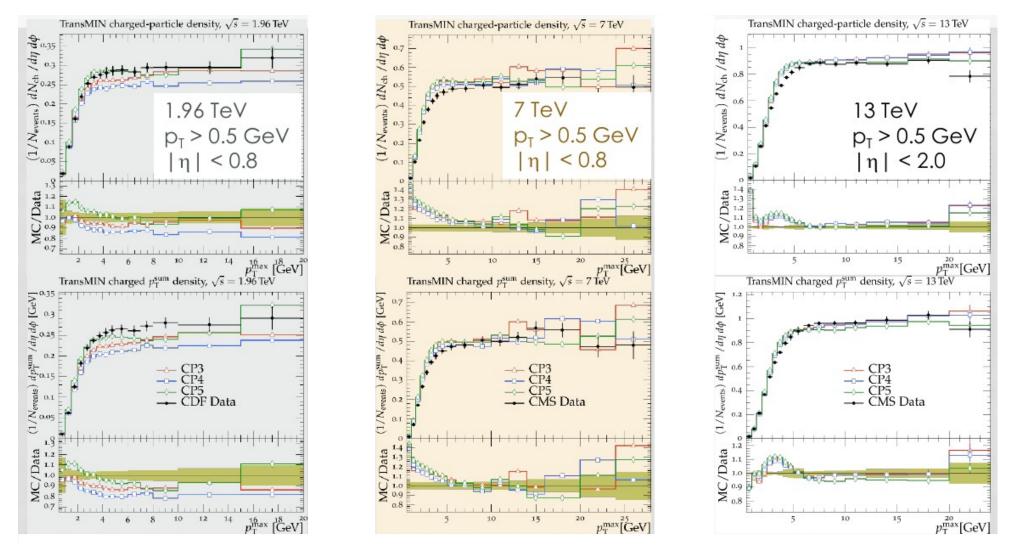
 Randomly select ~100 points in the parameter space and generate corresponding MC samples
 Calculate chi2 for each sample and interpolate by parabolic function


→ minimum

Eur.Phys.J. C65 (2010) 331-357

PYTHIA8 parameter	CP1	CP2	CP3	CP4	CP5
PDF Set	NNPDF3.1 LO	NNPDF3.1 LO	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLO
$\alpha_S(m_Z)$	0.130	0.130	0.118	0.118	0.118
SpaceShower:rapidityOrder	off	off	off	off	on
MultipartonInteractions:EcmRef [GeV]	7000	7000	7000	7000	7000
$\alpha_S^{\text{ISR}}(m_Z)$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_S^{FSR}(m_Z)$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm MPI}(m_Z)$ value/order	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm ME}(m_{\rm Z})$ value/order	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
MultipartonInteractions:pT0Ref [GeV]	2.4	2.3	1.52	1.48	1.41
MultipartonInteractions:ecmPow	0.15	0.14	0.02	0.02	0.03
MultipartonInteractions:coreRadius	0.54	0.38	0.54	0.60	0.76
MultipartonInteractions:coreFraction	0.68	0.33	0.39	0.30	0.63
ColorReconnection:range	2.63	2.32	4.73	5.61	5.18
χ^2/dof	0.89	0.54	0.76	0.80	1.04

DESY. Low-x 2019 Nicosia | 26 August 2019 | Radek Žlebčík


Performance of the new tunes – LO vs (N)NLO

- The behavior of the LO and (N)NLO tunes differs in the low p_T^{max} region, where MC/Data is up to 15% off
- Nevertheless, both the LO and (N)NLO tunes provide similar performance

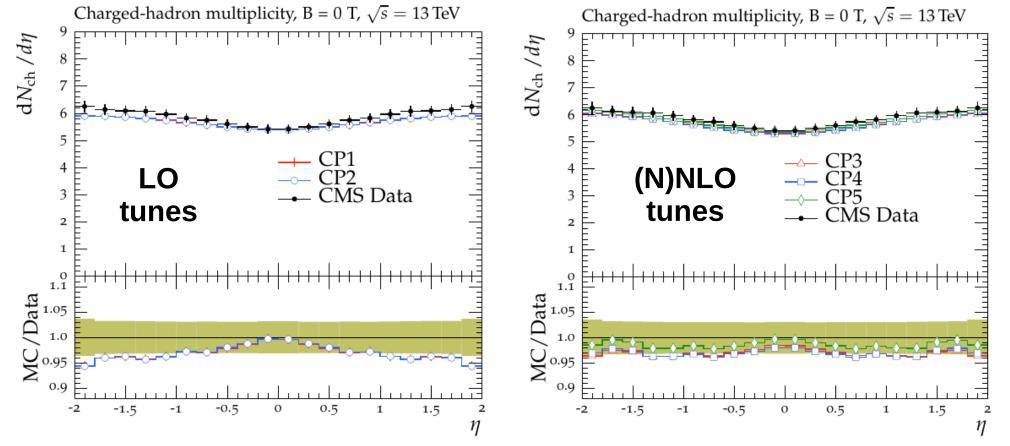
 $p_T > 0.5 \,\mathrm{GeV}$ $|\eta| < 2$

Performance of the new tunes – Energy dependence

The NNLO based CP5 tune with rapidity ordering most stable over beam energy

Performance of the new tunes – jet multiplicities in tt

For **POWHEG** predictions the higher jet multiplicities mostly overestimated, only CP5 with rap-ordering gives correct rate

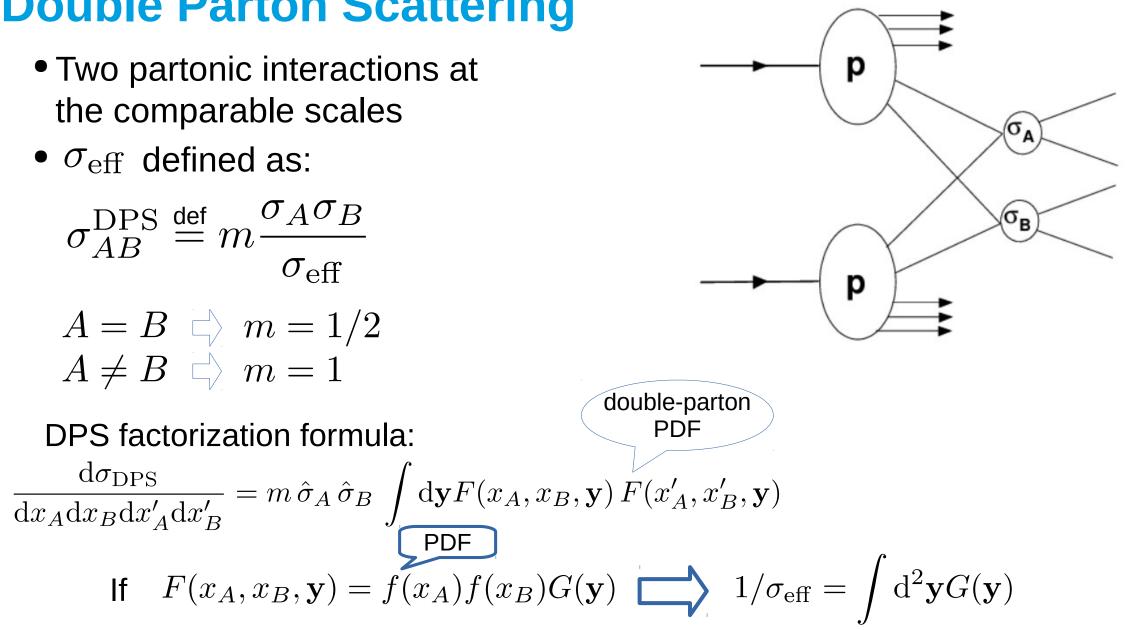

For MC@NLO predictions all tunes give similar performance

MC@NLO (2-jets NLO) Jet multiplicity in t events, $\sqrt{s} = 13$ TeV Jet multiplicity in tĒ events, $\sqrt{s} = 13$ TeV /dn-jet $(1/\sigma)d\sigma/d$ n-jet 0.6 0.6 MG5_aMC+PYTHIA8 [FxFx] CUETP8M1 POWHEG+PYTHIA8 CP2 — MG5_aMC+PYTHIA8 [FxFx] CP2 0.5 0. MG5_aMC+PYTHIA8 [FxFx] CP4 OWHEG+PYTHIA8 CP4 $(1/\sigma)d\sigma$ MG5_aMC+PYTHIA8 [FxFx] CP5 POWHEG+PYTHIA8 CP5 0.4 CMS Data CMS Data 0.3 0.3 0.2 0.2 0.1 0.1 0 /Data Data 1.6 1.4 1.2Я Ы 0.8 🗄 0.8 0 2 0 1 2 3 additional jets additional jets

POWHEG (0-jets NLO)

Performance of the new tunes – MB

- Charged hadron multiplicity for 0T data
- The data description similar for LO & (N)NLO tunes, the **CP5** performs slightly better

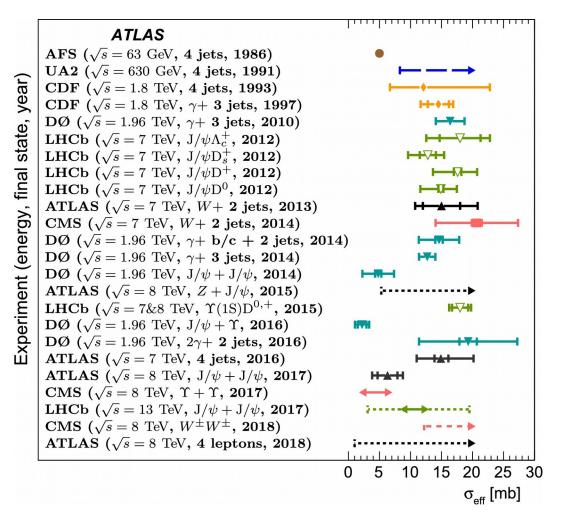

Double Parton Scattering

- Two partonic interactions at the comparable scales
- $\sigma_{\rm eff}$ defined as:

$$\sigma_{AB}^{\rm DPS} \stackrel{\rm def}{=} m \frac{\sigma_A \sigma_B}{\sigma_{\rm eff}}$$

$$\begin{array}{c|c} A = B & \rightleftharpoons & m = 1/2 \\ A \neq B & \bigtriangledown & m = 1 \end{array}$$

DPS factorization formula:

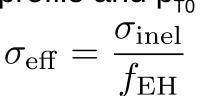


Double Parton Scatering at CMS

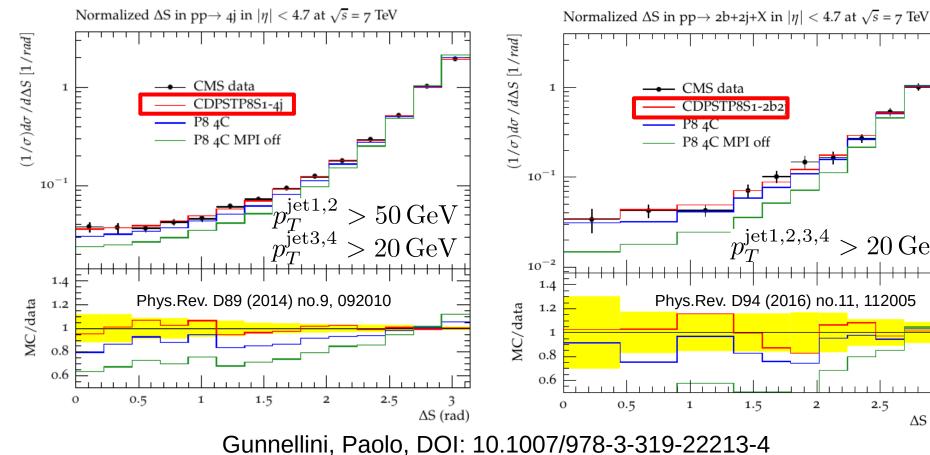
- At CMS, the DPS studied in several final states
- The 4j, 2j2b & same sign W discussed

Energy	Process1	Process2
7 TeV	j + j	j + j
7 TeV	b + b	j + j
7 TeV	W	j + j
7 TeV	γ + j	j + j
8 TeV	Υ	Υ
13 TeV	W	W

Phys.Lett. B790 (2019) 595-614



DPS in jet production (7 TeV)

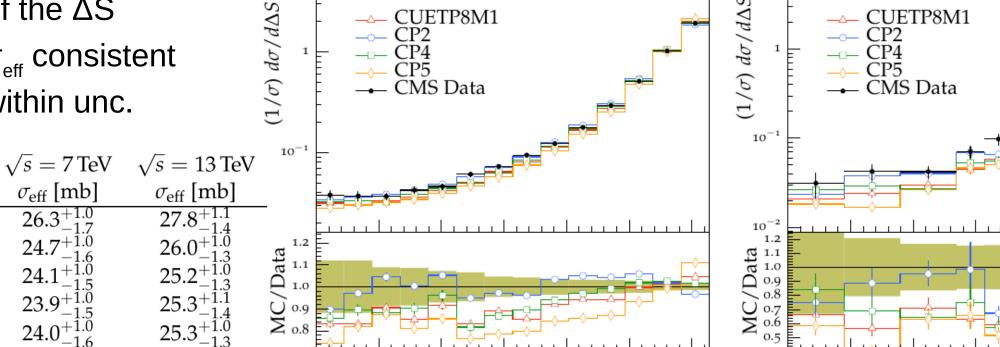

• The amount of **DPS** measured by the **tuning** method

(MPI-sensitive parameters tuned for each process independently)

• The f_{FH} related to the matter profile and p_{τ_0}

2j (2j)
$$\sigma_{\rm eff}^{4j} = 21.3^{+1.2}_{-1.6}$$

 $\Delta S = \arccos\left(\frac{\vec{p}_{\mathrm{T},1} \cdot \vec{p}_{\mathrm{T},2}}{|\vec{p}_{\mathrm{T},1}||\vec{p}_{\mathrm{T},2}|}\right)$


2j (2b) $\sigma_{\text{eff}}^{2j2b} = 25.2^{+4.1}_{-2.9}$

3

 ΔS (rad)

2.5

 $20\,\mathrm{GeV}$

1.5

2.5

ÅS

0.5

0

Normalized ΔS in pp $\rightarrow 4j$ in $|\eta| < 4.7$, $\sqrt{s} = 7$ TeV

- **DPS in jet production (7 TeV)**
- New CMS tunes provide slightly worse description of the ΔS

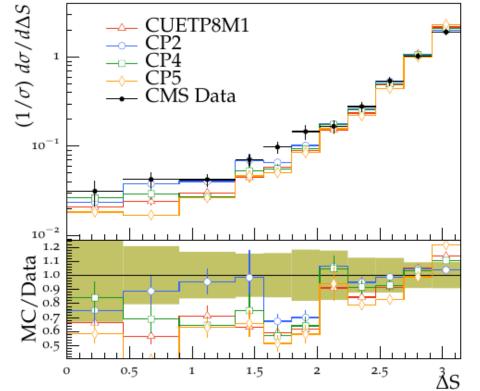
• σ_{eff} consistent within unc.

CP1

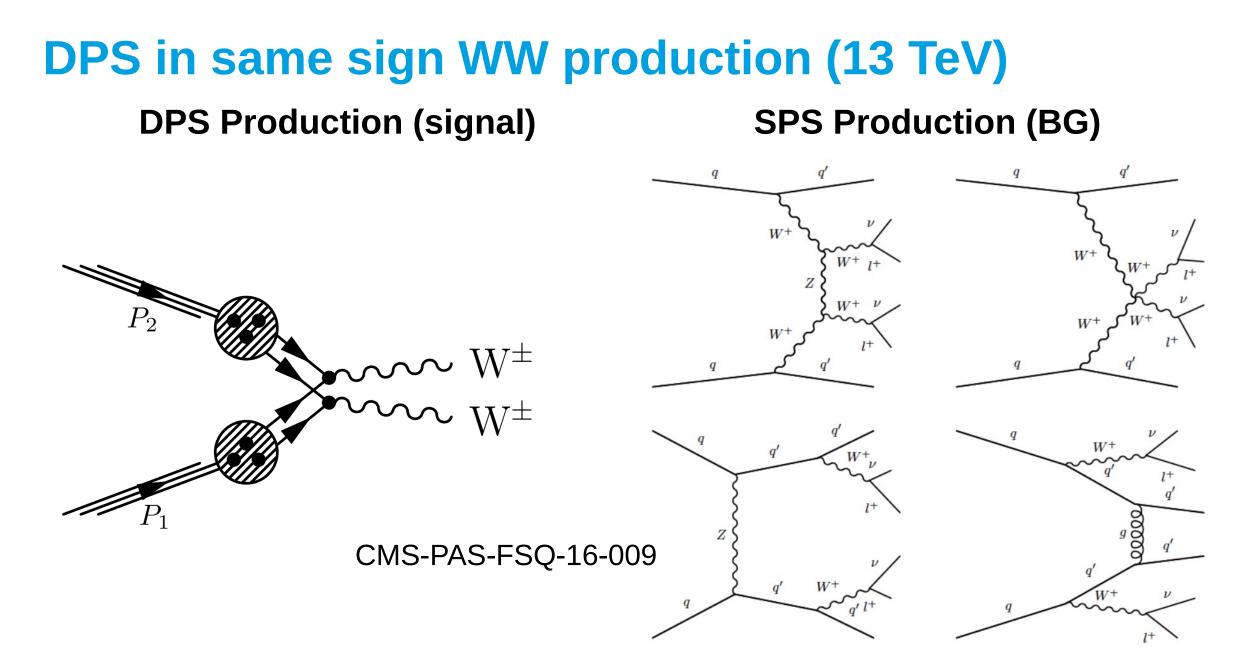
CP2

CP3

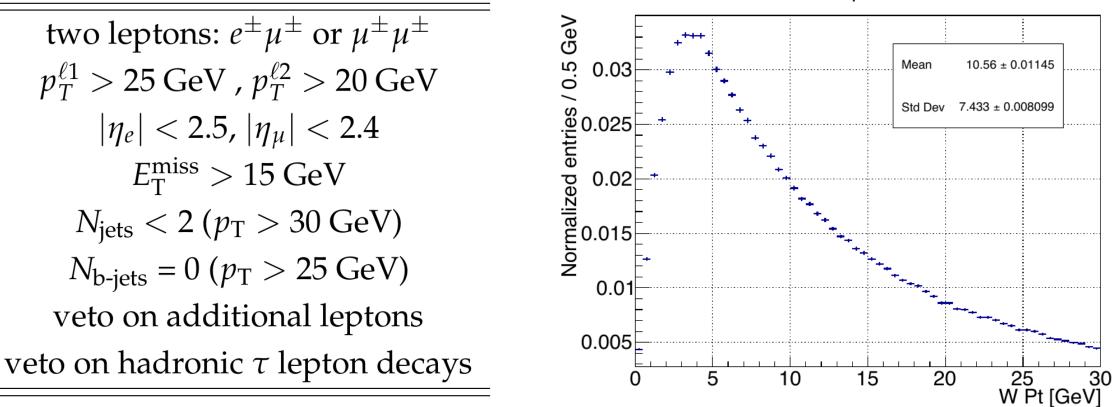
CP4


CP5

 $\Lambda S = \arccos$


$$\left(\frac{\vec{p}_{\rm T,1} \cdot \vec{p}_{\rm T,2}}{|\vec{p}_{\rm T,1}||\vec{p}_{\rm T,2}|}\right)$$

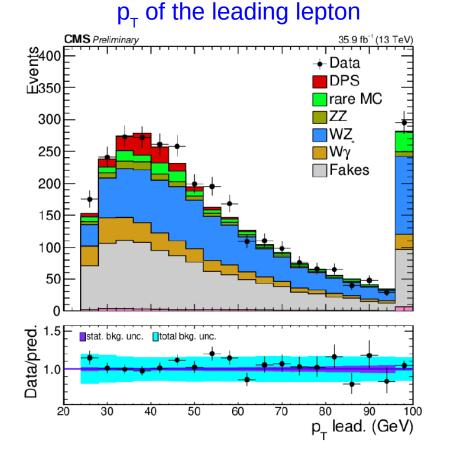
2j (2b) $\sigma_{\text{eff}}^{2j2b} = 25.2^{+4.1}_{-2.9}$


Normalized ΔS in pp $\rightarrow 2b+2j+X$, $\sqrt{s} = 7$ TeV

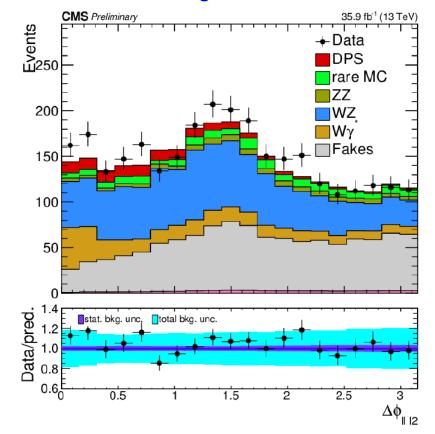
arXiv:1903.12179

DPS WW – Event selection

- Selection
 - \rightarrow veto on jets
 - \rightarrow tighter veto on b-jets (typically from ME)
- Inclusively produced W tends to have small p_τ (=small jet recoil)



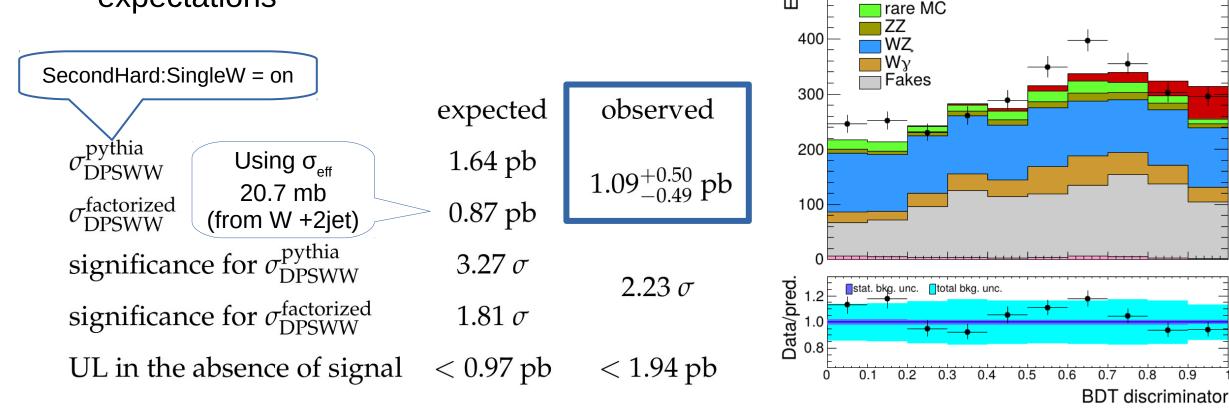
W Pt spectrum


https://www2.physics.ox.ac.uk/sites/default/files/2012-03-27/w_mass_oxford_pdf_81806.pdf

DPS WW – Event classification

- BDT constructed from 11 kinematic variables
- Crucial is the BG from W+Z production
- Fakes = missidentified leptons, mostly multi-jet + W+jet

Azimuthal angle between II & I2

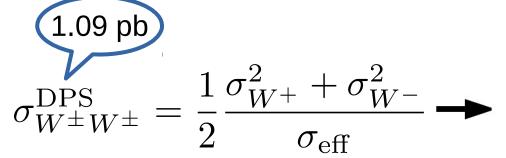

DPS WW – Event classification

- The expected and observed event yields for 2016 data (35.9 fb⁻¹)
- The DPS cross section for leptons with positive charge enhanced since $\sigma_{pp\to W^+}/\sigma_{pp\to W^-}\sim 1.4$

	$\mu^+\mu^+$	$\mu^-\mu^-$	$e^+\mu^+$	$e^-\mu^-$
fakes	151.1 ± 26.6	132.7 ± 23.4	412.7 ± 47.2	341.4 ± 39.0
WZ	277.2 ± 28.1	164.5 ± 16.7	355.9 ± 36.1	228.1 ± 23.2
ZZ	24.8 ± 7.0	18.7 ± 5.3	57.8 ± 16.4	55.8 ± 15.8
$W\gamma*$	85.9 ± 27.5	73.1 ± 23.4	142.8 ± 45.7	127.7 ± 40.9
other rare	39.7 ± 15.0	20.2 ± 7.7	83.7 ± 31.7	49.4 ± 18.8
charge flips	—	—	20.4 ± 0.0	21.5 ± 0.0
background	578.6 ± 50.3	409.2 ± 38.2	1073.3 ± 83.0	824.0 ± 65.8
DPS WW	41.1 ± 1.0	20.6 ± 0.5	48.7 ± 1.2	24.1 ± 0.6
observed	604	411	1091	869

DPS WW – The DPS cross section

- Discriminator fitted by signal and BG MC templates
- The observed DPS x-section consistent with expectations


CMS Preliminary

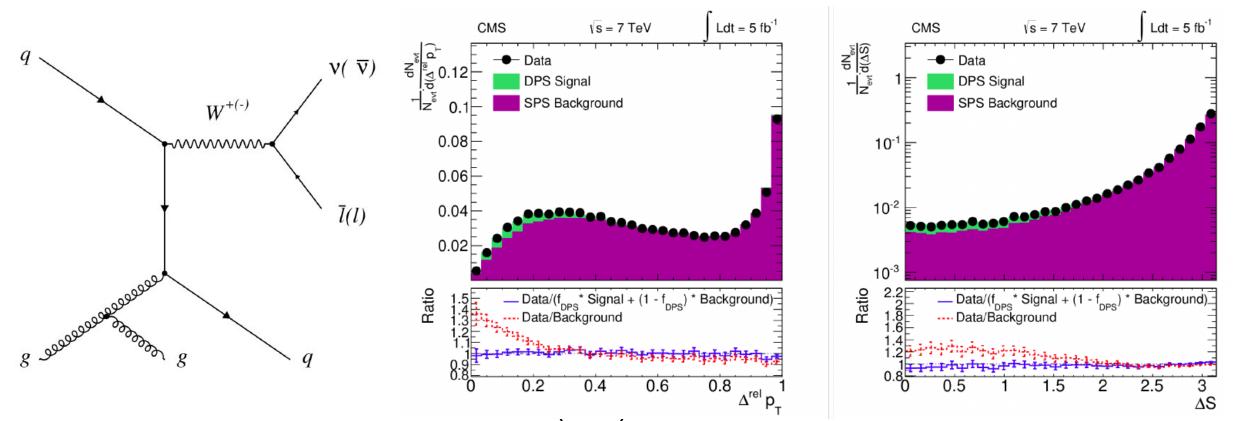
← Data ■ DPS

Events 00200 35.9 fb⁻¹ (13 TeV

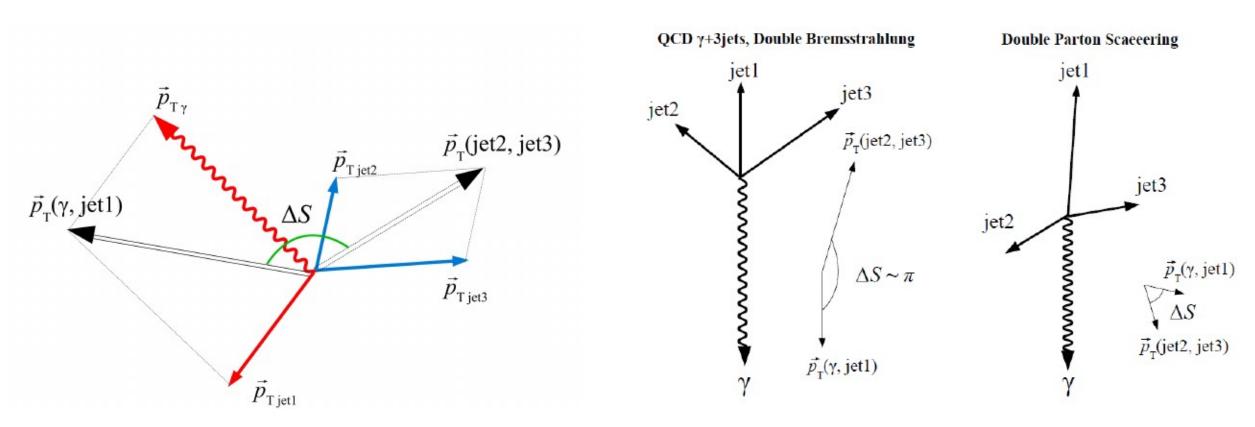
Effective DPS cross sections with V-boson

- On average $\sigma_{_{eff}} \sim 15 mb$
- No significant energy/process dependence observed

 σ_{eff} extractions (vector boson final states)

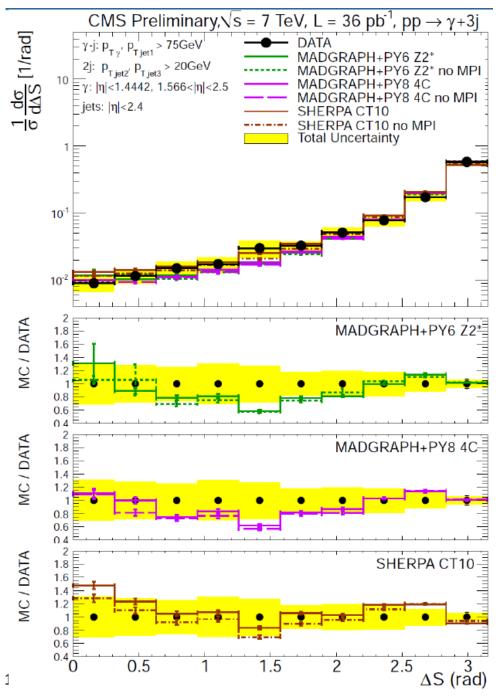

Conclusions

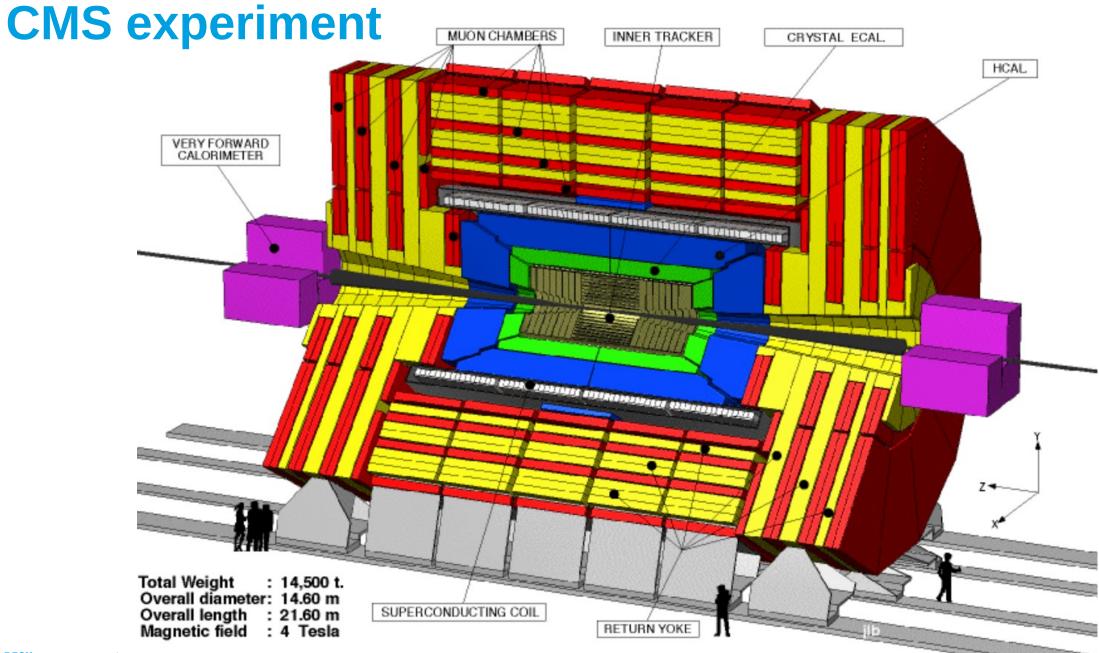
- New CMS 13 TeV tunes CP1-CP5 introduced
- At CMS the CP5 tune base on NNPDF 3.1 NNLO used as default since:
 - \rightarrow the (N)NLO PDFs better suited for matched NLO+PS MCs
 - \rightarrow gives best beam-energy stability for UE measurements
 - \rightarrow reasonably describes high jet multiplicities in ttbar
- \bullet The $\sigma_{_{eff}}$ measured in various final states, most recently in the same sign WW production at 13 TeV
- \bullet After selecting DPS-sensitive observables, the $\sigma_{_{eff}}$ can be extracted by:
 - \rightarrow template method
 - \rightarrow tuning method


W + jj DPS at 7 TeV

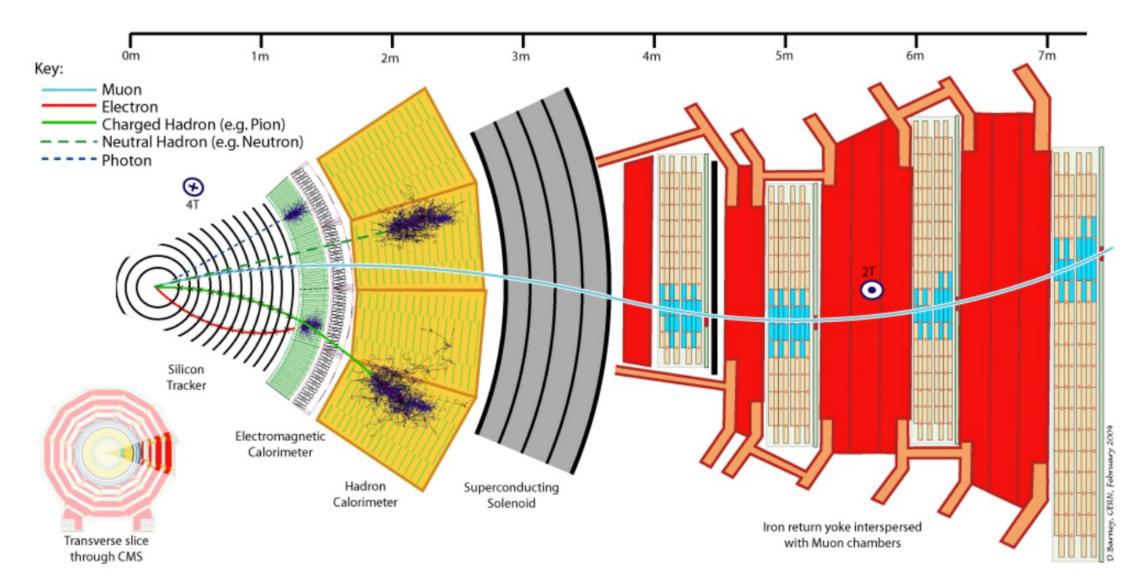
- W \rightarrow $\mu\nu$ + 2 jets
- DPS fraction 5.5% ± 1.4%
- σ_{eff} = 20.7±0.8 (stat) 6.6 (syst) mb

gamma + 3j DPS at 7 TeV


- Gamma + leading jet ($p_{\tau} > 75 \text{ GeV}$)
- Two other jets ($p_{\tau} > 20 \text{ GeV}$)
- 36 pb⁻¹



gamma + 3j DPS at 7 TeV


- Even the ΔS variable not very sensitive to DPS
- The no-MPI MC provides by chance slightly better data description
 - → other effects more important than MPI for this process

 Conclusion on DPS not possible within given precision

CMS experiment

