Review of TOTEM results

Jan Kašpar
on behalf of the TOTEM collaboration

Low x, Nicosia, Cyprus
30 Aug 2019
• selection of topics for this talk (all connected by optical theorem)
 o differential elastic cross-section
 o total cross-section
 o parameter $\rho \equiv \frac{\Re A_N}{\Im A_N} \bigg|_{t=0}$

• complete list of TOTEM results:
Detector apparatus

- **TOTEM**: LHC experiment at IP5 (together with CMS)
- **Inelastic telescopes T1 and T2**: charged particles from *inelastic* collisions
 - T1: $3.1 < |\eta| < 4.7$, $p_T > 100\,\text{MeV}$
 - T2: $5.3 < |\eta| < 6.5$, $p_T > 40\,\text{MeV}$
- **Roman Pots (RP)**: *forward protons* close to outgoing beam
 - station at 147m in Run I → station 210m in Run II

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
Elastic scattering
Measurement of elastic scattering

- LHC as magnetic spectrometer
 \[\theta_y^* = \frac{y}{L_y}, \quad t = -p^2 \sqrt{\theta_x^*^2 + \theta_y^*^2} \]

- 2 outgoing protons: anti-parallel, from the same vertex
 - strong tagging \rightarrow low background

- analysis almost fully data-driven \rightarrow confidence
Elastic scattering: *Data summary*

- (transition to) perturbative QCD
- "dip-bump": amplitude interference, Odderon effects
- "forward code": non-perturbative Pomeron(s)
- Coulomb-nuclear interference (CNI): phase determination (ρ)
Forward cone: Exponential slope

• at “low $|t|$”: $d\sigma/dt \propto e^{-B|t|}$

- up to $\sqrt{s} \approx 3$ TeV: linear in $\ln s$; agrees with simplistic Regge model:
 $$d\sigma/dt \propto s^{2(\alpha(t)-1)}$$
 $$\alpha(t) = \alpha_0 + \alpha' t \Rightarrow B = B_0 + 2\alpha' \ln s$$

- above $\sqrt{s} \approx 3$ TeV: change of regime? interpretation?

- or more general energy dependence: e.g. $B = a + b \ln^2 s$ due to multi-Pomeron exchanges [Ryskin and Schegelsky, PRD 85 (2012)]
deviations from the leading exponential behaviour:

\[
\frac{d\sigma/dt}{\text{ref. exp.}} \approx \frac{\text{ref. exp.} - 0.1}{\text{ref. exp.}}
\]

- |t| ≲ 0.2 GeV\(^2\): similar pattern at all energies
 - non-exponentiality evaluated at 8 TeV: 7.2 σ
- |t| ≳ 0.2 GeV\(^2\): rapid change of behaviour (faster decrease towards dip)

interpretation

 - why it is so close to an exponential?

could the non-exponentiality be due to CNI? see later...
• left pp from TOTEM, right from ISR

○ increasing $\sqrt{s} \Rightarrow$ dip at lower $|t|$

• interpretation
 ○ related to forward-cone shrinkage?
 ○ dynamical details?
• **pp**: always pronounced *dip* (ISR, LHC)

 ![Graph showing dip in proton-proton (pp) collisions for ISR, LHC data points]

 ![Graph showing dip in proton-antiproton (p̅p) collisions for ISR, LHC data points]

 ⇒ *recurrent difference between pp and p̅p*

• **pp**: always *shoulder* only (ISR, Sp̅pS, Tevatron)

 ![Graph showing shoulder in proton-antiproton (p̅p) collisions for ISR, LHC data points]

 ![Graph showing shoulder in proton-proton (pp) collisions for ISR, LHC data points]

J. Kašpar

Low x, Nicosia, Cyprus

30 Aug 2019
Dip: Shape - comparison at the same energy

- ISR, 53 GeV - the only comparison from same machine and same energy
 - low energy - interpretation complicated by secondary reggeons
- Tevatron (D0, $\sqrt{s} = 1.96$ TeV) - LHC (TOTEM, $\sqrt{s} = 2.76$ TeV, ...)

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
Dip : *Shape - summary*

experiment
- difference between pp and p\(\bar{p}\) scattering
 - (indirectly) even at same energy
 - at high energies → cannot be attributed to C-odd reggeons
- high \(\sqrt{s}\), low \(|t|\): gluon-dominated, non-perturbative regime

theory
- Regge: Odderon as C-odd partner of Pomeron
- (perturbative) QCD: Odderon \(\sim C = -1\) state of mutually interacting gluons
- lattice calculations: vector glueballs firmly in predicted spectrum
- AdS/CFT: Odderon on same footing as Pomeron

matches
High $|t|$ structures

- $\sqrt{s} = 13$ TeV: very high statistics \Rightarrow precise measurement to high $|t|$ model predictions:

- **no structures observed up to** $|t| \sim 3$ GeV
 - rules out many models, e.g. “optical” models (recurrent diffractive structures)
 - interpretation – transition to perturbative QCD? Already in many models, e.g. 3-gluon in Donnachie-Landshoff, hard Pomeron in Godizov, ...

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
Total cross-section
3 ways to combine TOTEM observables:

elastic observables only:

\[
\sigma^2_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{1}{L} \left. \frac{dN_{\text{el}}}{dt} \right|_0
\]

\[\sigma_{\text{tot}}\]

- \(q\)-independent:
 \[
 \sigma_{\text{tot}} = \frac{1}{L} (N_{\text{el}} + N_{\text{inel}})
 \]

- luminosity-independent:
 \[
 \sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt}{N_{\text{el}} + N_{\text{inel}}} \bigg|_0
 \]

- at 7 TeV: all applied, consistent results found
- \(N_{\text{el}}\): CNI may be explicitly subtracted
- \(dN_{\text{el}}/dt\): sensitive to “non-exponentiality”
- luminosity: from CMS or from CNI (“Coulomb normalisation”)

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
Total cross-section : 13 TeV measurements

- 2 (complementary) datasets available
 - $\beta^* = 90$ m: inelastic data available, CNI region not covered
 - $\beta^* = 2500$ m: inelastic data not available, region CNI covered

- comparison

<table>
<thead>
<tr>
<th>data</th>
<th>method</th>
<th>ρ</th>
<th>σ_{tot} [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta^* = 90$ m</td>
<td>Ref. [6]</td>
<td>-</td>
<td>110.6 ± 3.4</td>
</tr>
<tr>
<td>$\beta^* = 2500$ m</td>
<td>approach 1</td>
<td>0.09 ± 0.01</td>
<td>111.8 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>approach 2</td>
<td>0.09 ± 0.01</td>
<td>111.3 ± 3.2</td>
</tr>
<tr>
<td></td>
<td>approach 3</td>
<td>0.08(5) ± 0.01</td>
<td>110.3 ± 3.5</td>
</tr>
<tr>
<td></td>
<td>approach 3 (single fit)</td>
<td>0.10 ± 0.01</td>
<td>109.3 ± 3.5</td>
</tr>
</tbody>
</table>

- $\beta^* = 90$ and 2500 m
 - Ref. [6] \oplus approach 3
 - $\sigma_{\text{tot}} = 110.5 ± 2.4$

- approach 1: normalisation from 90 m dataset
- approach 2: normalisation from 2500 m dataset within uncertainty of 90 m
- approach 3: normalisation from 2500 m – (partial) Coulomb normalisation
 - at lowest $|t|$: $dN/dt \approx \mathcal{L} d\sigma^{\text{QED}}/dt$
• selected TOTEM measurements (representing the full range)

- energy dependence: in general compatible with $\ln^2(s)$ at high energies
 - BTW: what about s^α dependence
- no sign of slow down
Ratio of elastic to total cross-section

\[
\frac{\sigma_{el}}{\sigma_{tot}} \, (\%)
\]

\[\sqrt{s} \, (\text{GeV}) \]

- relevance? interpretation? more figures of interest?
\(\rho \) parameter
\(\rho = \left. \frac{\Re A}{\Im A} \right|_{t=0} \)

- theory prediction
 - Pomeron: \(A(t = 0) \sim \) imaginary
 - Odderon: \(A(t = 0) \sim \) real \(\Rightarrow \rho \) sensitive to Odderon contributions

- dispersion relations: \(\rho \) related to \(\sigma_{\text{tot}} \) energy growth rate

- tool: Coulomb-nuclear interference \(\rightarrow \) phase exposed in \(d\sigma/dt \)
 - determine nuclear phase wrt. known QED amplitude
Coulomb-nuclear interference

- observed cross-section

\[
\frac{d\sigma}{dt} \propto \left| + \cdots + A^N + \cdots \right|^2
\]

- Coulomb amplitude
- nuclear amplitude
- “mixed” terms

- our modelling
 - "interference formula" = summation for practical applications
 - considered: West-Yennie, Cahn and Kundrát-Lokajíček
 - Coulomb amplitude: QED + experimental form factors
 - modulus of A^N: empirical guidance \Rightarrow at low $|t|$: $a \exp \left(\sum_{n=1}^{N_b} b_n t^n \right)$
 - phase of A^N
 - little/no experimental guidance \Rightarrow theory suggestions welcome!
 - different assumptions \Rightarrow different behaviour in b space
 - fair comparison with pre-LHC data \Rightarrow assume slow variation with $|t|$
CNI exploration at 8 TeV

- test of assumptions on nuclear modulus and phase
- choice of phase

- data fit quality
 - \(B = \text{const}, \) constant phase: excluded
 - \(B = \text{const}, \) peripheral phase: not excluded, but disfavoured
 - \(B \neq \text{const}, \) both phases compatible with data

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
• **8 TeV** – uncertainty dominated by statistics

• **13 TeV** – two points plotted

 ○ represent the range of numerical results

 ○ represent the range of concepts

 ○ the lower point – most similar conditions to the UA4/2 measurement

 \[\Rightarrow 13 \text{ TeV measurement significantly lower than extrapolations (more than 4 } \sigma \text{ effect)}\]
Comparison to COMPETE

- comprehensive study of pre-LHC data by COMPETE
 - 256 models considered to describe \(\sigma_{\text{tot}} \) and \(\rho \) data in \(pp, p\pi, pK, \ldots \)
 - various assumptions on energy dependence, reaction dependence
 - asymptotic component: only crossing-even
 - 23 models (shown above) found to give reasonable description
 - predictions cluster in 3 bands

- red: selection of TOTEM measurements

J. Kašpar
Low x, Nicosia, Cyprus
30 Aug 2019
• simple version of derivative dispersion relation for crossing-even amplitude

\[
\rho \approx \frac{\pi}{2\sigma_{\text{tot}}} \frac{d\sigma_{\text{tot}}}{d \ln s}
\]

- faster σ_{tot} rise \Rightarrow higher value of ρ
- TOTEM data show the opposite \Rightarrow model-independent argument for crossing-odd component

J. Kašpar

Low x, Nicosia, Cyprus

30 Aug 2019
Models compatible with TOTEM data

- Nicolescu et al. (updated version of original model)
 - crossing-odd effect: strong energy dependence, increase with energy
 - TOTEM’s ρ measurement at $\sqrt{s} = 13$ TeV correctly predicted long before LHC
 - considered as first experimental evidence for “Odderon”

- Durham group (model enhanced with crossing-odd contribution)
 - crossing-odd effect: mild energy dependence, decrease with energy

\Rightarrow crossing-odd component needed to describe data
Summary and outlook

• measurements
 ○ elastic scattering and total cross-section: 2.76, 7, 8 and 13 TeV
 ○ ρ parameter: 8 and 13 TeV

• observation/confirmation of trends
 ○ forward-cone shrinkage, but change of regime?
 ○ non-exponentiality at low $|t|$
 ○ dip moves to lower $|t|$ with increasing s
 ○ cross-sections: sustained growth

• evidence for Odderon
 ○ at $t \neq 0$: dip in pp, shoulder in p\bar{p}
 ○ at $t = 0$: low value of ρ, high value of σ_{tot}

• outlook
 ○ $\sqrt{s} = 900$ GeV elastic, σ_{tot} and ρ analysis in progress
 ○ plans for Run III: elastic, σ_{tot} and ρ measurement at 14 TeV
Thank you for your attention!

This work has been supported by

- grant MNiSW DIR/WK/2018/13 by the Polish Ministry of Science and Higher Education
- MŠMT ČR (Czech Republic)
Backup
Effect of ρ on differential cross-section

- simulation (with realistic nuclear component):

- TOTEM data, $\sqrt{s} = 13$ TeV, $\beta^* = 2500$ m: