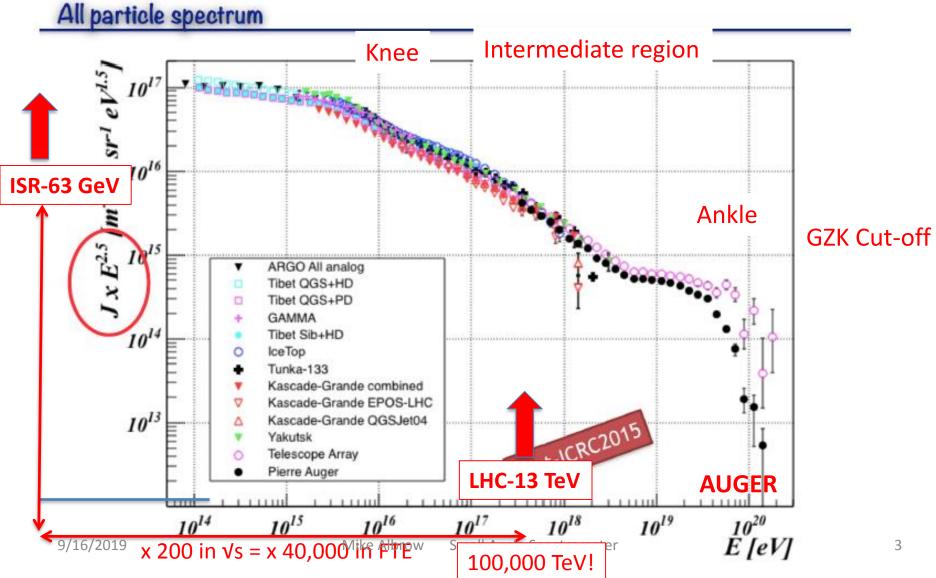

SAS@LHC / VFHS A Very Forward Hadron Spectrometer for Multi-TeV Forward Particles at the LHC Michael Albrow, Fermilab

A few introductory slides here

Low-x Nicosia, August 2019



ZDC & LHCf measure neutrals (n + K^0_L , $\pi^0 \rightarrow \gamma \gamma$) at $\theta \sim 0^\circ$.

COSMIC RAY SHOWERS: ASTROPHYSICS CONNECTION

Spectrum of high energy Cosmic Rays

 $\phi(E) \times E^{2.5}$

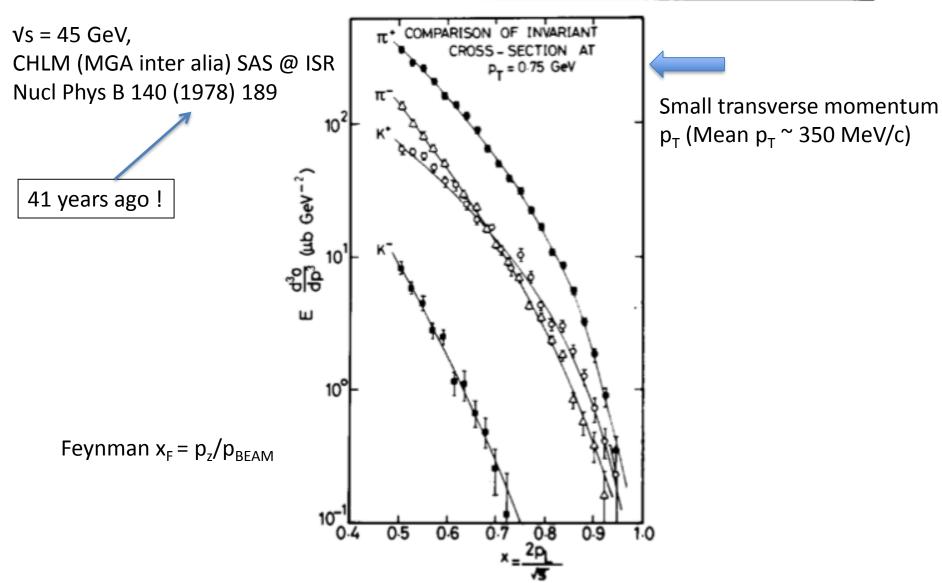
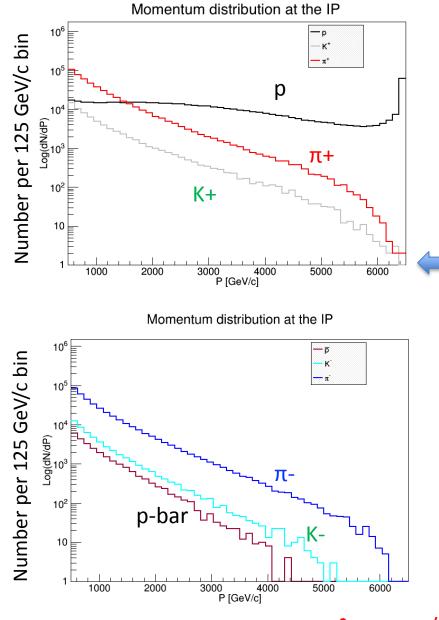


Fig. 2. Invariant cross sections for $p + p \rightarrow \text{meson} + X$, for $p_T = 0.75$ GeV, a function of $x = 2p_L/\sqrt{s}$. The curves are empirical fits of the form $A \exp\{K(1-x)^C\}$ for π^{\pm} , K⁺ described in the text. The curve for K⁻ is hand-drawn. The behaviour at other p_T values is similar.

DPMJET prediction

Very uncertain! Illustration only

Spectra generated by /DPMJET-MARS With 10⁶ pp events, Vs = 13 TeV (N.Mokhov and O.Fornieri)


In 1 second, with 2808 bunches, Have 30 x 10^6 bunch crossings and 30 x 10^6 x µ(= interactions/X) events.

Notes: At 0.5 TeV (~ central) $\pi^+ = \pi^- \& K^+ \cong K^- \& K/\pi \sim 10\%$

p's > π^+ above 1.5 TeV and flattish; High x_F peak from diffraction

 K^{-} (s-ubar) steeper than K^{+} (u-sbar) π^{-} (d-ubar) steeper than π^{+} (u-dbar)

Antiprotons < K⁻ but only by a factor ~ 0.5 Anti-deuterons/tritons/He³ to measure too

Neutrons not = protons, K⁰ not = K^{+/-}

A Spectrometer for Multi-TeV Forward Particles at the LHC

An idea for a new LHC experiment - collaboration needed!

Introduction: Terra Incognita! Strong interactions and cosmic ray showers

Some physics topics: single- and two- particle inclusive production (& anti-nuclei) Q & H ? Stan Brodsky's talk Ilias Cholis talk

TeV particles through 30 Tm spectrometer magnets, special vacuum chamber

Tracking, Calorimetry and Muon detectors

Charged hadron identification : π, K, p with transition radiation detectors Anatoli Romaniouk's talk

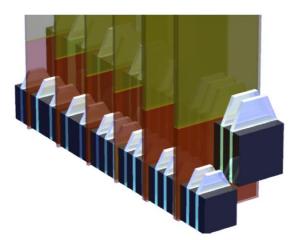
What's next? A new collaboration – experiment co-existing with ALICE or LHCb?

Idea, using 10 – 15 m of space in front of TAN:

Use **MBX dipoles** (Integral B.dL ~ 30 Tm) as **spectrometer magnets**.

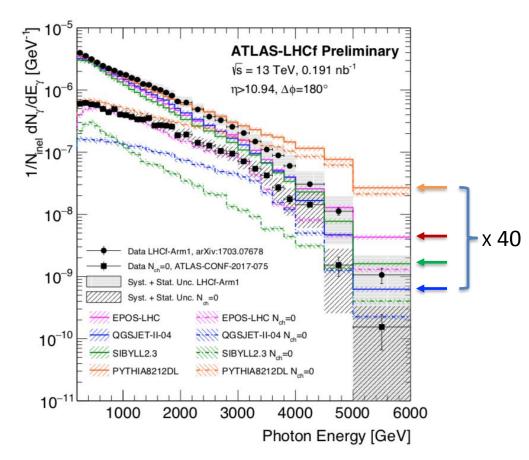
Use straight section from ~ 85m to 140m (TAN absorber) space.

Special vacuum chamber design for particles to emerge through minimal material

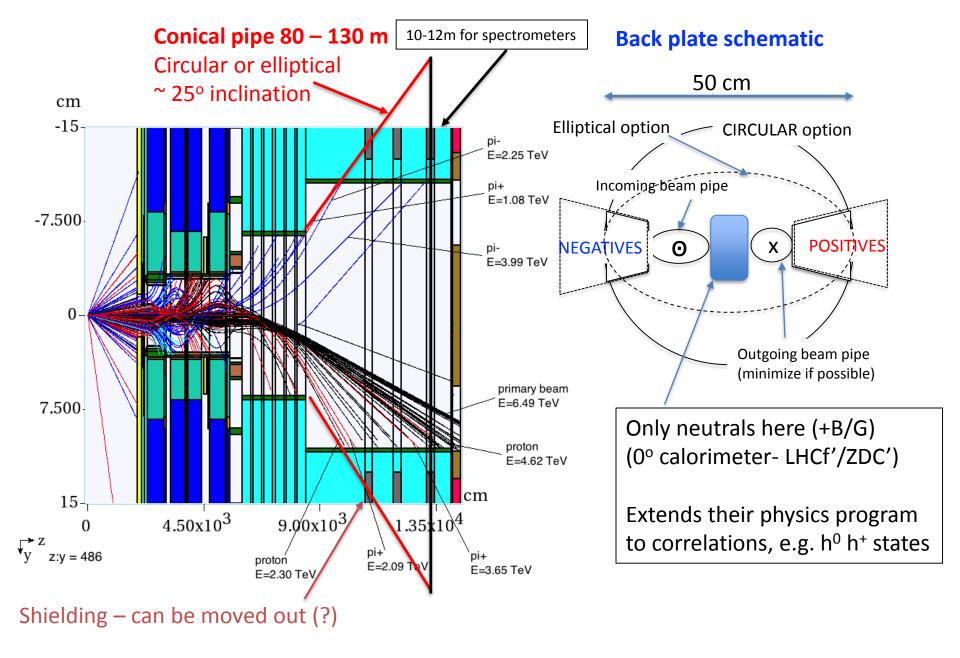

Precision tracking (silicon strips or pixels) over ~ 2 m (θx , θy to a few μrad) – or included in

Transition Radiation Detectors for $\gamma = E/m$ in $10^3 - 3$. 10^4 region (novel – Romaniouk's talk)

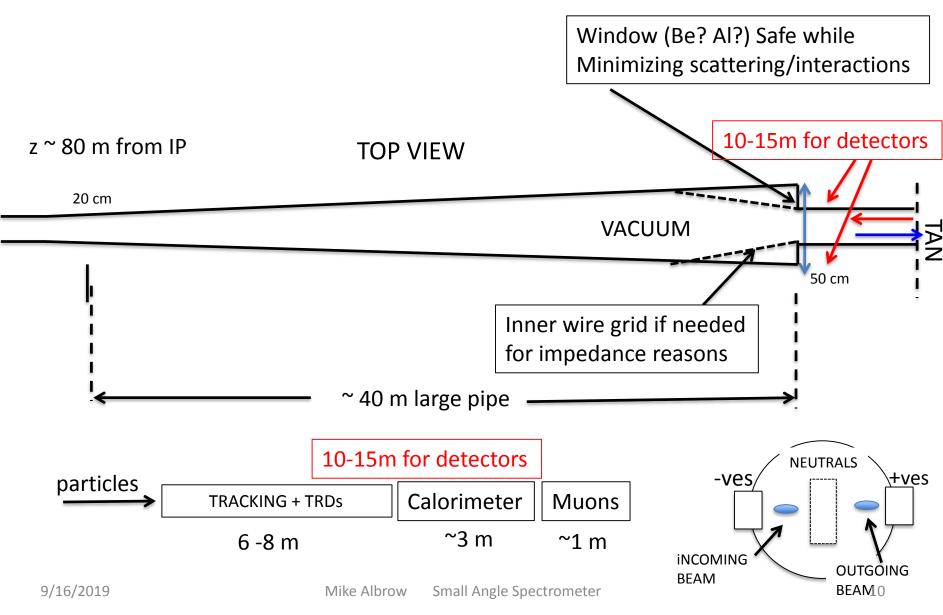
Hadron Calorimeter for energy measurement and muon filter


Muon tracking behind calorimeter

Possible later extension (not discussed here): Bent crystal to channel and so accept highest momenta (>~ 4.5 TeV, ~4 mrad bend) LHCf is a small 0° calorimeter measuring photon-like and n-like showers Only 1.6 λ_l and 4 cm in size, $\sigma(E)/E \sim 40\%$ for neutrons. Low-PU, High β^* runs


Arm 1: 2cm x 2cm & 4cm x 4cm Arm 2: 2.5 x 2.5 & 3.2 x 3.2 cm

Common data with ATLAS for some Low-PU runs: diffractive events

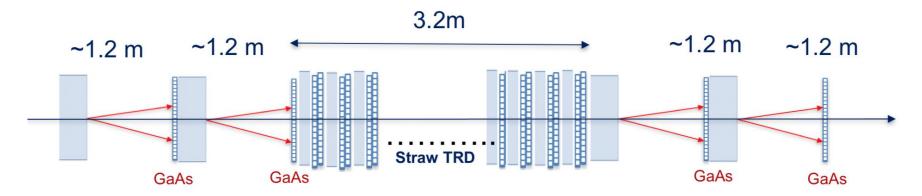

ZDC in CMS 7 λ_1 and 8cm x 10 cm Expect $\sigma(E)/E \approx$ 15% at 3 TeV

A good 3D-imaging calorimeter for SAS : $\sigma(E)/E \sim 5\%$

Beam pipe design for small angle spectrometer (schematic)

20 cm - 50 cm diameter conical pipe from 85m to 130m (from collision)

TRD development for hadron identification in multi-TeV


energy range.

Transition Radiation Detectors : Only known way to identify multi-TeV $\pi/K/p$

SAS_TRD

Anatoli Romaniouk's talk this morning, on behalf of team:

J. Alozy^a, N. Belyaev^c, B. L. Bergmann^d, M. van Beuzekom^e, T.R.V. Billoud^f, P. Buriand,^g, P. Broulim^g, M. Campbell^a, G. Chelkov^h, M. Cherryⁱ, S. Doronin^c, F. Dachsa^{,b}, K. Filippov^c, P. Fusco^j,k, F. Gargano^k, B. van der Heijden^e, E. H. M. Heijne^{a,d,e}, S. Konovalov^I, X. Llopart Cudie^a, F. Loparco^{j,k}, V. Mascagna^m,ⁿ, M. N. Mazziotta^k, L. Meduna^d, H. Pernegger^a, D.Ponomarenko^c, S. Pospisil^d, M. Prest^{m,n}, C. Rembser^a, A. Romaniouk^c, A. A. Savchenko^{c,o}, D. Schaefer^p, E. J. Schioppa^a, D. Sergeeva^{c,o}, D. Shchukin^I, E. Shulga^c, S. Smirnov^c, Y. Smirnov^c, P. Smolyanskiy^h, M. Soldani^{m,n}, P. Spinelli^{j,k}, M. Strikhanov^c, L.Sultanalieva^c. P.Teterin^c, V. Tikhomirov^I, A. A. Tishchenko^{c,o}, E. Vallazza^q, K. Vorobev^c, K. Zhukov^I

Concept. Yet requires detailed optimization.

Note : Measurement of $\pi/K/p$ <u>spectra</u> does not require perfect separation. But « better is better » especialy for S:B in e.g. D⁰ - > π +K-

SAS as a Multi-particle Spectrometer

Acceptance for 2 or more particles from same event.

Positive and negative particles on opposite sides of pipe, near horizontal plane. Neutrals at 0° between pipes

Acceptances need to be calculated for realistic design.

Potentially: $J/\psi, \psi(2S) \rightarrow \mu + \mu -, \chi_c \rightarrow J/\psi + \gamma, \text{ Drell-Yan } \mu + \mu -, \gamma\gamma \rightarrow \mu + \mu K^0_s \rightarrow \pi^+\pi^-, \Lambda \rightarrow p \pi. P^* \rightarrow n \pi + ?$ $D^0 \rightarrow K^+\pi^- ... \chi_c \rightarrow \pi^+\pi, K^+K^-, \text{ etc.}$

Very forward charm and beauty also measured with single leading e and μ Leptons can be identified (how well? Background from fakes?)

Muons from π , K decay will be known, and their decay lengths are very long!

γcτ (π) = 139 km at 2.5 TeV ! γcτ (K+) = 18.5 km at 2.5 TeV !But abundant and - > forward HE μ-neutrinos! (FASER)

A Very Forward Hadron Spectrometer for the LHC and Cosmic Ray Physics

Short write-up

Michael Albrow**

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA. ORCID 0000-0001-7329-4925 E-mail: albrow@fnal.gov

Charged hadron production in hadron-hadron collisions with longitudinal momentum fraction Feynman-x, x_F , between 0.1 and 0.9 has not been measured above $\sqrt{s} = 63$ GeV at the CERN Intersecting Storage Rings. I discuss a way to measure this at the Large Hadron Collider at $\sqrt{s} = 13$ TeV, which is 40,000 times higher in equivalent fixed target energy, and important for understanding cosmic ray showers.

2nd World Summit: Exploring the Dark Side of the Universe 25-29 June, 2018 University of Antilles, Pointe-Ãă-Pitre, Guadeloupe, France arXiv:1811.02047v1

Job List – How can we make it happen?

New collaboration : Independent experiment at an existing collision point → More likely homes of LHCb and/or ALICE :

Physics synergy and eventual collaboration possible.

GOAL for discussion:

Studies towards a Letter of Intent → Proposal to LHCC: Need collaborators to develop project – areas of interest? Need CERN contributions – Vacuum pipe, infrastructure, beam conditions etc. Physics, hardware, computing - including Monte Carlo simulations, theory, ... Develop physics case (SM, Beyond SM including DM, Cosmic rays, astrophysics,...

Housekeeping:

Set up Web site, Twiki page/repository of papers etc, Indico for meetings, etc.

Initial designs: TRDs (include tracking), calorimetry, muon chambers, trigger, DAQ

Initial estimates of « who does what », costs and timescale

Summary

Terra Incognita : large phase space (in x_F , p_T) unexplored from $\sqrt{s} = 63 - 14,000$ GeV ! **Justification in itself**, but ...

Need to understand **Strong Interaction** in non-perturbative sector

Important to understand UHE cosmic rays : Sampled shower \rightarrow primary, UHE collisions, muons

Exist: Spectrometer magnets and 85m vacuum chamber + 50m straight section Need **special vacuum chamber** with "thin" exit windows. Feasible. Technology for **tracking, calorimeter, muon** tracking exist Particle ID with **transition radiation** possible (π ,K,p) ... interesting challenge being developed Open & accessible & small so evolution of techniques natural.

How and where?

Downstream of (ALICE) has good conditions and alignment with physics (pp + pO + OO). Downstream of – LHCb – forward but not <u>this</u> forward.

Both should find addition of VFHS enhances their physics program, both pp and nuclei Strategically: Independent new experiment (allowing for later merger)

TRD experts are developing suitable TR detectors

[Crystal channeling experts are developing Xtals – could extend x_F range]

It can be done and it should be done!

Can you join or do you know someone who can? Leadership especially needed!

Thank You

Back Ups \rightarrow