Longitudinal absorption and interferometric measurements at Wigner RCP #### SCHEME - Ti-Sapphire laser beam propagating longitudinally through the Rb-cell - Counterpropagating quasi-resonant diode laser beam - Detection of absorption (transmission) and interferometric signals: - Vs time: fast photodetector - Lateral distribution: gated camera ### 1. Temporal dependence of absorption and interferometric signals measured with the Legend laser (3 mJ, 40 fs) (G.P. Djotyan et al., Nucl. Instr. Meth. A 884 (2018) 25-30) #### Interferometric signals with fitted exponentially decaying phase difference $$I_{\text{interf}}(t) = I_{\text{tr}}(t) + I_{\text{ref}} + 2\epsilon\sqrt{I_{\text{tr}}(t)I_{\text{ref}}} \cdot \cos(\varphi_0 + \varphi_1(t)) \qquad \varphi_1(t) = \varphi_1^{(0)} e^{-t/\tau}$$ #### Results of the density calculations $$\Delta N_{\rm p}(t)L = \varphi_1(t) \frac{\lambda_{\rm L} m}{\pi^2 f e^2} \left[\sum_{i=1}^2 p_i \sum_{j=1}^2 \frac{\Delta \omega_j^{(i)}}{\omega_{0j}^{(i)} (\Delta \omega_j^{(i)2} + \Gamma^2)} \right]^{-1}$$ | Temperature (°C) | 95 | | 120 | | |------------------------------------|----------------------|----------------------|----------------------|----------------------| | Detuning (GHz) | 4.0 | 3.2 | 4.0 | 3.2 | | $\varphi_1^{(0)}$ (rad) | 3.59 | 5.41 | 18.3 | 24.8 | | $\tau~(\mu { m s})$ | 1.08 | 1.07 | 2.28 | 2.31 | | $\Delta N_{\rm p}~({\rm cm}^{-3})$ | 3.5×10^{11} | 4.6×10^{11} | 1.8×10^{12} | 2.1×10^{12} | | $\Delta N_{\rm p}/N$ (%) | 8.1 | 10.6 | 8.8 | 10.4 | #### 2. Experiments with the Hidra laser (30 mJ, 40 fs) #### Temporal dependence of the transmission and interference signals Difference between the efficiency of the pulses with <u>positive</u> and <u>negative</u> chirp: NEGATIVE CHIRP is more efficient Ti:Sa laser pulse energy: 13.5 mJ; Diode laser detuning: -1 GHz #### Positive chirp # Date: 2018/0421 Temperature: 90. °C. Density: 3.1E+12 cm⁻³ Shot: 218 Frame: 01 Detuning: -1.0 GHz Polar filter: 340.0 deg. Transm. pulse energy: 5.07 m) Positive chirp -7.601 Interference 1-frame Transmission Smoothing: 50 points, t = 5.00 ns, Ntot = 40000 400 400 400 7,60 GHz 7,60 GHz 7,60 GHz 7,60 GHz 7,60 GHz #### Negative chirp #### Transmission signals are different for positive and negative diode laser detuning → focusing / defocusing of the transmitted beam ? Ti:Sa laser: pulse energy: 13.5 mJ, negative chirp Diode laser: Negative detuning: -1 GHz Positive detuning: +1 GHz Measurement of the <u>lateral distribution</u> of the transmitted diode laser beam intensity and interferograms with a gated camera at different delay times after the Ti:Sa pulse (Exposure time of the image intensifier: 200 ns) Positive detuning \rightarrow lower refractive index of the vapor density is lower at the middle \rightarrow positive lens \rightarrow focusing Negative detuning \rightarrow higher refractive index of the vapor density is lower at the middle \rightarrow negative lens \rightarrow defocusing Interference signals \rightarrow ring structure varying in time \rightarrow calculation of the density distribution