
IT Technology and Markets, Status and Evolution

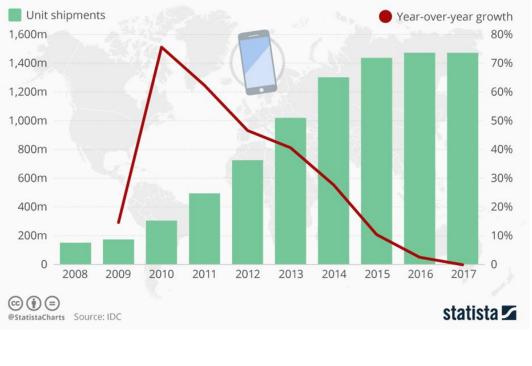
General Semiconductor Market

Source: WSTS

Total IT spending expected in 2018: 3.7 trillion \$, 4.5% growth rate

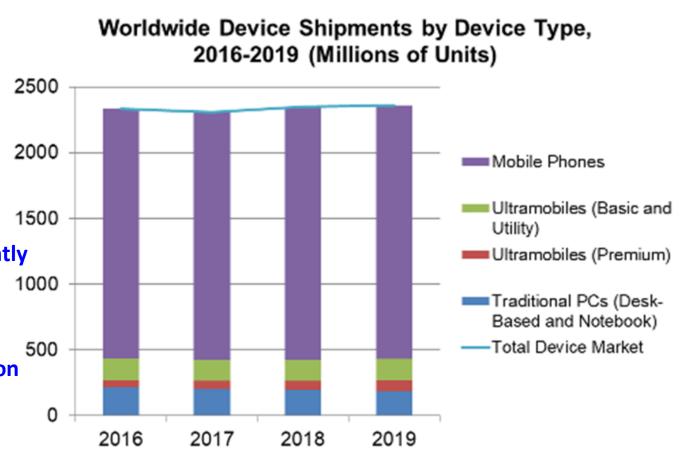
Wafer supply companies have increased prices in 2017 and will increase by 20% in 2018 and further in 2019

Large jump (21.5%) in revenue and growth rate in 2017 which will partly continue in 2018 Major reason: RAM price increase by 120%


Total revenue per year has now crossed 400 B

Biggest semiconductor company is now Samsung (61 B\$), followed by Intel (58 B\$) 10 companies make >50% of revenues

Have We Reached Peak Smartphone?

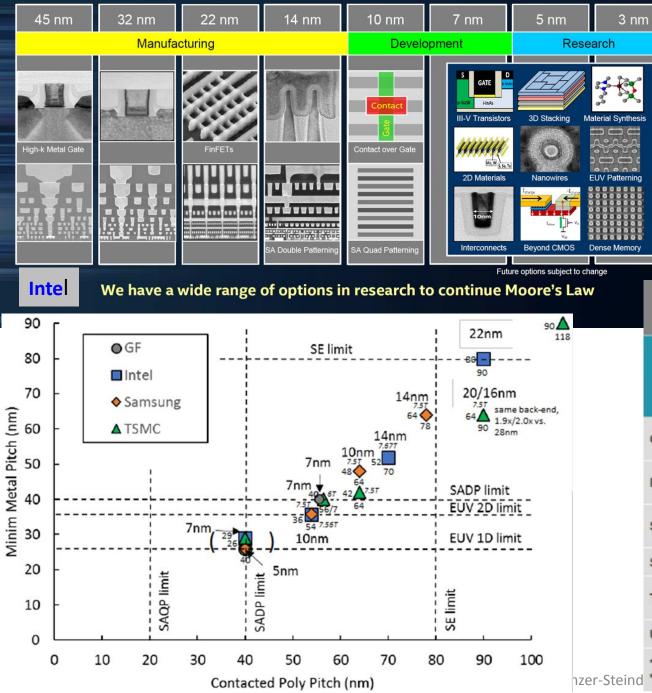

Worldwide smartphone shipments and year-over-year shipment growth

- PCs, notebooks and tablets sales declining constantly
- Smartphones sales are flat
- Attractiveness of replacement is decreasing Only marginal differences between smartphone models and generations , small and little innovation → Lifetime increase

Device Markets

Overall Computing Device market is flat, becomes replacement market

World Internet Population



Saturation effects

Limited growth rates for internet devices due to limited growth rate of internet users

Already high market penetration in the population

68% of the world population have a phone

Processor Technology

Intel has problems with their 10nm process

TSMC building fab 18 for their 5nm process, Will be finished in 2020; 950000 m2 for 17 B\$

There is no norm for the process names: 10 nm Intel compares to a 7 nm Samsung/TSMC process

Below 7nm new technologies are needed (nanowires, non-silicon materials), very expensive

Industry FinFET Lithography Roadmap, HVM Start

Data announced by companies during conference calls, press briefings and in press releases

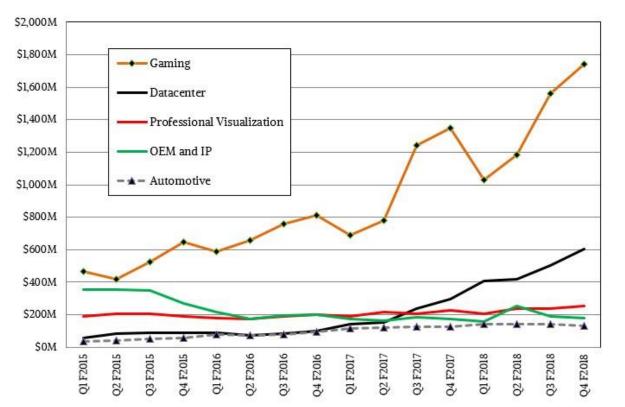
	2016		2017	2018		2019		2020		2021
		1H	2H	IH	2H	ін	2H	lН	2H	
GlobalFoundries	14LPP				7nm DUV	7nm with EUV*				
Intel				4 nm+- 10 nm	+	10 nm+ 10 nm++				
Samsung	14LPP 14LPC	10LPE		10LPP		8LPP 10LPU	7LPP		6 nm* (?)	
SMIC	28 nm**	14 nm in development								
TSMC	CLN16FF+ CLN16FFC	CLN10FF CLN16FFC		CLN7FF CLN12FFC		CLN12FFC/ CLN12ULP	CLN	7FF+	5 nm* (?)	
UMC	28 nm**	14nm no data								
*Exact timing not ann **Planar	ounced									

New Processor Architectures

There is a plethora of new processor designs, all with a focus on Machine Learning:

- Intel: Mobileye EyeQ5 (vision processing, autonomous cars), Nervana Neural Network Processor, Movidius MyriadX VPU
- ARM: Project Trillium, Machine Learning processor, Object Detection processor
- Graphcore IPU (Intelligent Processing Unit)
- Google second generation of Tensor Processing Unit TPU
- NeuPro AI processor from CEVA

• Nvidia is enhancing their graphics cards, Titan V (110 Tflops Deep Learning), Xavier (SoC, 20 TOPS, vision accelerator)

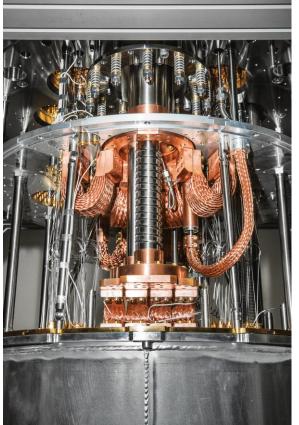

The keyword is LOCAL data processing also major impact on IoT → much less network, cloud storage and cloud processing needed

All high-end smartphones are integrating AI chip enhancements (Qualcomm-neural processing engine, Apple- A11 Bionic chip, etc.) The market for these special chips will reach 5-10 B\$ in 2022

Accelerators

GPUs

- Dedicated Graphics Cards market leader in Nvidia
- High end card Tesla V100 (14 TFlops SP, 110 Tflops ML, 12nm process)
- Gaming key driver for the market (plus AI and crypto mining).
- Large price increases (up to x2), crypto mining + high memory prices
- Change license policy → no gamer cards in the center
 (GTX 1080 TI = 700\$ → Tesla V100 9000\$, but also DP performance 20-30 higher)


other accelerators:

- Intel stopped the Xeon Phi line (Knights Mill last product) Not clear what the replacement will be
- Microssoft Project brainwave, based on Intel (Altera) Stratix FPGA
- Xilinx ACAP , Project Everest many-core SoC, programmable DSPs
 50 B transistors, TSMC 7nm process
- Chinese Matrix-2000 DSP accelerator for Exascale HPC (current No 1 supercomputer)

1 B PC gamer worldwide

PC gaming hardware market 35 B\$, total gaming market 165 B\$

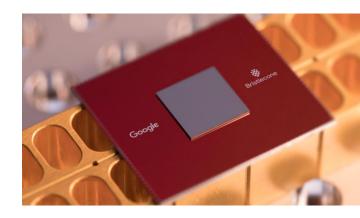
26. March 2018

Quantum Computing

Considerable progress during the last 2 years. Number of qubits sharply rising

- → Intel 49-qubit, IBM 50 , Google 72 for a Quantum gate computer
- → D-wave 2000 qubits, but not a general quantum computer (e.g. no shor's algorithm, no factorization)

Various implementations from Ion traps to silicon, focus is on silicon to re-use the fabrication process of standard chips Coherence time is still well below 1 ms, limits the time for quantum calculations

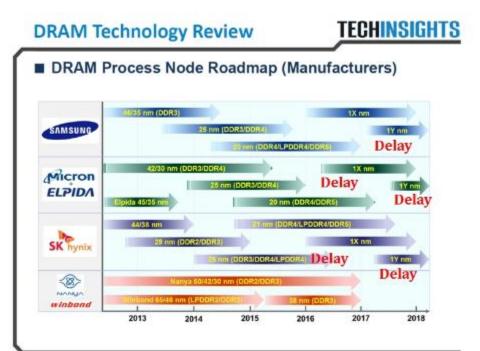

Key problem is the Error handling:

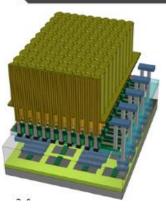
Mitigate by combining qubits

- N physical qubits == one logical qubit , where N varies between 10 and 10000
- Use error correction in software, deal with approximative results Machine learning algorithms

The Programming model is completely new; not clear how many algorithm can be 'converted' for a quantum computer; Very, very high cost structure

→ prognosis: Irrelevant for HL-LHC

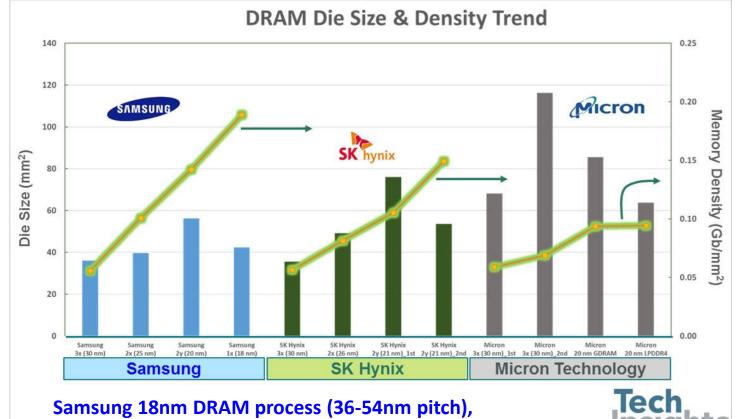

Renaissance of optical computing, this time focused on neural networks


- **Optalysis** First implementation of a Convolutional Neural Network with Optical Processing Technology
- Lightelligence Deep learning with coherent nanophotonics circuits
- Lightmatter Photonics for AI

26. March 2018

Optical Computing

DRAM Roadmap Plan vs. Reality


DRAM scaling slowed down Capacitor aspect ratio increases exponentially with smaller cell size → much higher Fabrication costs

3D DRAM not yet available

DRAM Memory

~70 B\$ market

DRAM price increase during the last 18 month: ~120% Trend to increase a further 5-10% in 2018

Samsung 18nm DRAM process (36-54nm pitch) considerable density improvement

But it is linear not exponential !

New Memory Technologies

■ PERSISTENT MEMORY

JANUARY 24, 2018 | SAN JOSE, CA

Nonvolatile Yes Yes Yes Yes No Yes 1012 1012 106 108 1015 10³ Endurance Write Time ~10ns ~50ns 100ns ~75ns 10ns 10µs Read Time 10ns 20ns 10ns 25µs 70ns 10ns Low Medium/Low Medium Very High Very High Power Low Consumption Cell Size (f²) 6-12 6-12 1-4 6-10 15-20 4 Cost (\$/Gb) \$0.16/Gb \$0.6/Gb \$0.03/Gb \$10/Gb \$30-70/Gb Currently High

Several contenders for a new memory technology Ideally replacing DRAM and NAND at the same time.

No cost effective solution yet.

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Technology Comparison

Resistive RAM, 40nm process, Fujitsu/Panasonic Aimed at Neuromorphic Computing

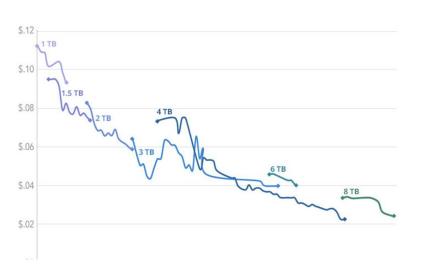
Magnetic RAM, 80nm process, Everspin, first 1-2GB SSDs

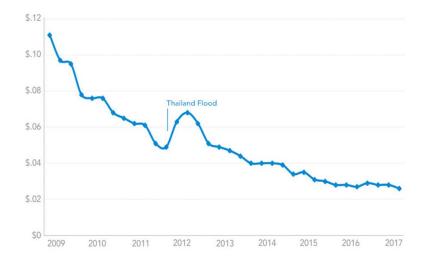
PCM Intel Optane, in production, but focus not clear

Ferroelectric RAM, very small scale products, difficult to scale

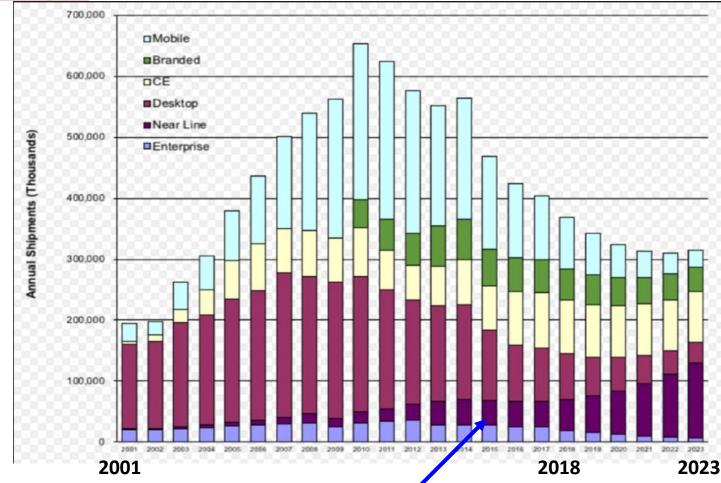
NAND Storage

- 60 B\$ market
- Fabrication moved from 2D to 3D, 64 layers in the market, 96 layer production started, 128 layers expected for 2020
- NAND prices increased over the last 18 month, high request for smartphones and SSDs (Apple busy 20% of the world-wide NANDs), now 50% of all sold NAND chip are 3D, in 2017 the largest consumer of NAND chips were SSDs (surpassing smartphones)
- 2018 price trend not clear +- 5-10% price in- or decrease → 4 new Chinese fabs will start production this year
- 4-bit cells are now feasible with 3D : ECC code easier with 2D cell size increased ; lab demos exist with hundreds of layers
- investment 3D fabrication process is up to 5x higher than 2 D, ~10B\$ for fabrication facility
- Technical challenges: > 64 layers show exponential scaling problems (current density, cell uniformity) a wafer stays up to 3 month in the fab before the 100 defect-free layers are done
- Density improvements are now linear, adding 8/16/32 layers


Figure: NAND Flash Factories Map in 2020


Backblaze Average Cost per Drive Size

Hard Disk Storage I


By Quarter: Q1 2009 - Q2 2017

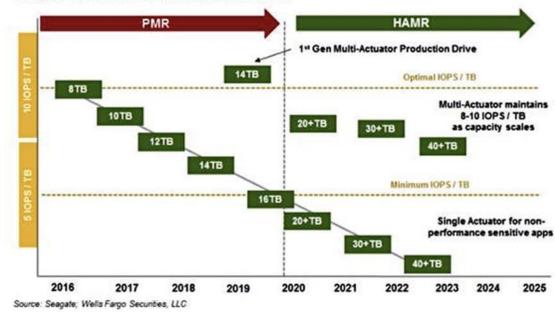
Backblaze Average Cost per GB for Hard Drives By Quarter: Q1 2009 - Q2 2017

BACKBLAZE

Only growth rate in Near Line disks (high capacity), HEP and Cloud Storage area

Desktop, Mobile, Enterprise replaced by SSDs

Price/space evolution flattening

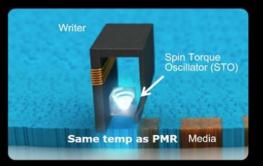

Bernd Panzer-Steindel, CTO CERN/IT

Capacity Growth Outlook

9 platter in one disk 14 TB capacity today He filled Max with SMR is probably around 20 TB per HDD

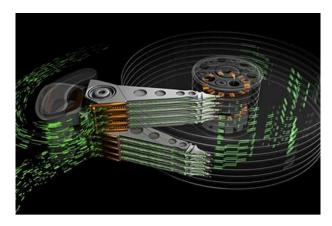
Hard Disk Storage II

Seagate Roadmap for Multi-Actuator HDDs


Seagate HAMR first products now in 2020

How HAMR Works

- Heat from laser lowers the energy barrier to write on media and magnets can be switched with smaller magnetic field
- When media cools, the data is harder to erase

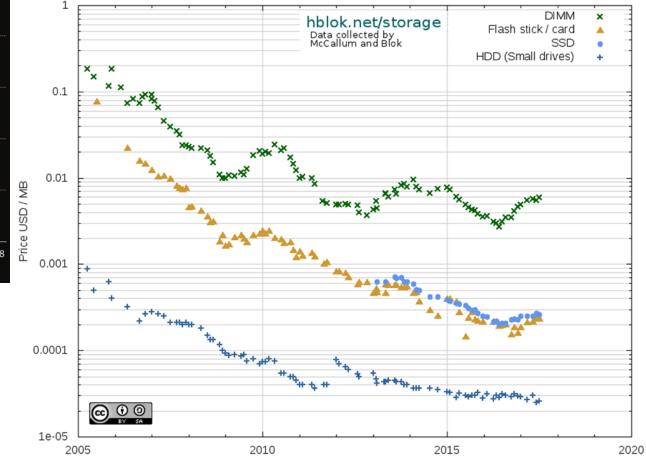

Western Digital new density approach: MAMR production in 2019

How MAMR Works

 Microwave fields emitted by a Spin Torque Oscillator (STO) located near the write pole allows writing of perpendicular media at lower magnetic fields

Seagate: multiple actuators per HDD to keep IOPS/TB constant

HDD vs. Flash SSD \$/TB Annual Takedown Trend


MAMR will enable continued \$/TB advantage over Flash SSDs

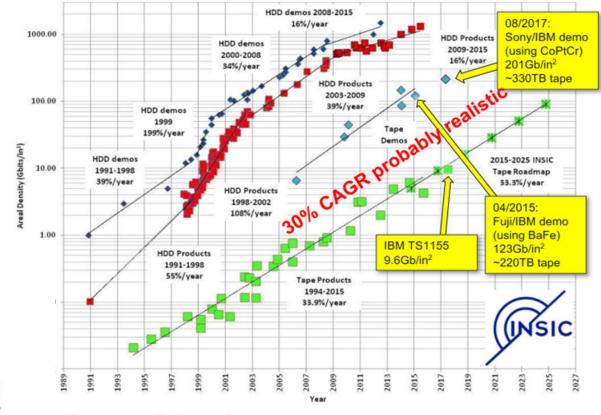
100000 SLC 2008-10 63% \$/TB 10000 MLC 2010-16 -38% \$/TB TLC + 3DSupply 1000 Constraint 2017-22 OLC -20% \$/TB 2022-28 Supply -16% \$/TB Constrain 100 PMR >10x 2008-11 -30% \$/TB He/Damascene 10 2013-20 MAMR -18% \$/TB 2020-28 -15% \$/TB 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 Calendar Year

Total HDD + SSD Capacity (Exabytes); SSD as % of Total 1,600 22% 1,500 20% 1,400 Total SSD 19.3% 18% 1,300 Total HDD 1,200 - SSD as % of Total Ship - % 16% 16.5% 1,100 14% 1,000 900 12% 13.7% 800 10% 700 11.1% 600 8% 500 8.4% 6% 400 7.0% 0 300 4% 200 4.5% 2% 100 0 0% 2021E 2015 2016 2017E 2018E 2019E 2020E

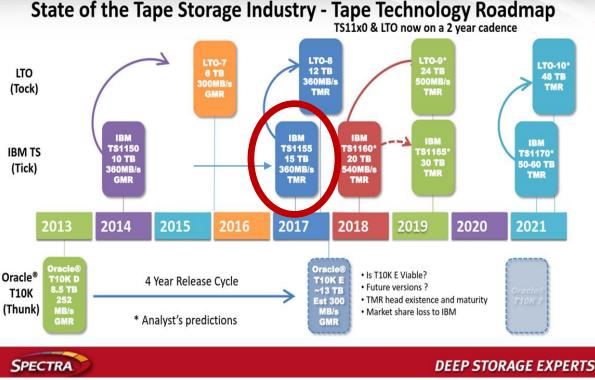
Solid State Disk Storage

Historical Cost of Computer Memory and Storage

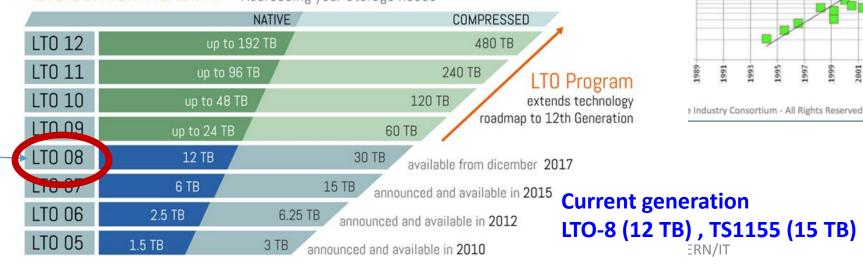
SSD versus HDD, Price difference in capacity drives will stay high For the foreseeable future

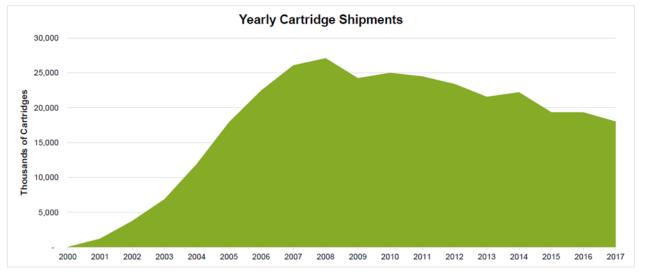

Slowdown of yearly price improvements in all areas

3ernd Panzer-Steindel, CTO CERN/IT



Quite some headroom for density Areal Density Trends


Chart provided courtesy of the Information Storage Industry Consortium (INSIC)


Technology change to Tunnel Magnetoresistive heads (used already in HDDs) For IBM TS1155 and LTO-8

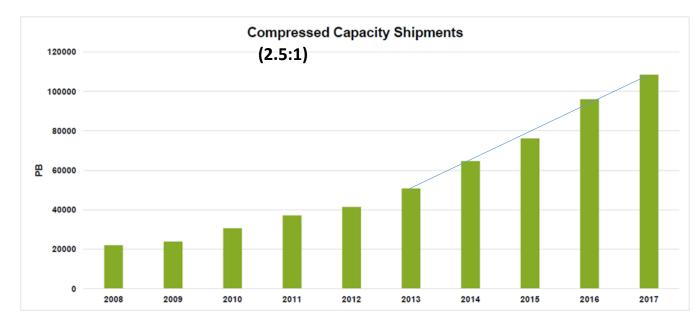
LTO ULTRIUM ROADMAP Addressing your storage needs

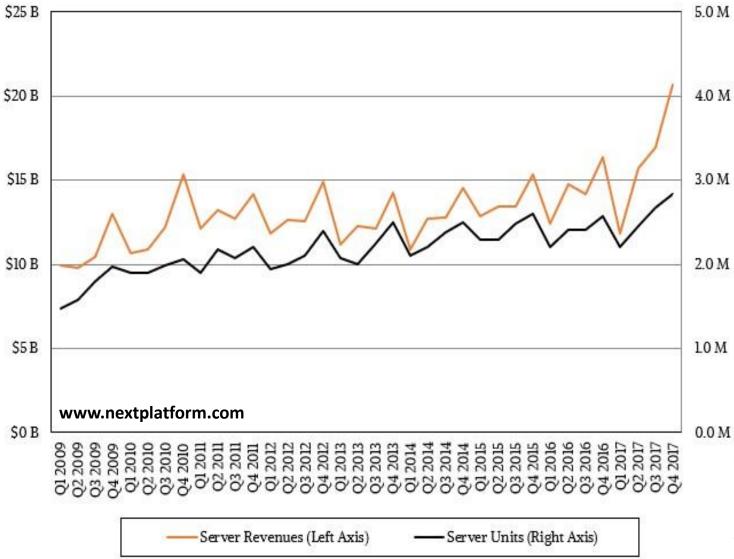
Unit Shipments: Calendar Year

Tape Storage II

LTO tape market domination >95% Enterprise tapes 4%

44 EB of tape media in 2017 compared to 750 EB HDD Linear increase in EB sold per year


Total Capacity Shipped: Calendar Year


Declining media shipment since 10 years

factor 2 decrease in #drives sold over the last 4 years

Only two suppliers of media: Fujifilm and Sony Fujifilm only supplier in the US (patent 'war')

Only IBM left for LTO and Enterprise drives

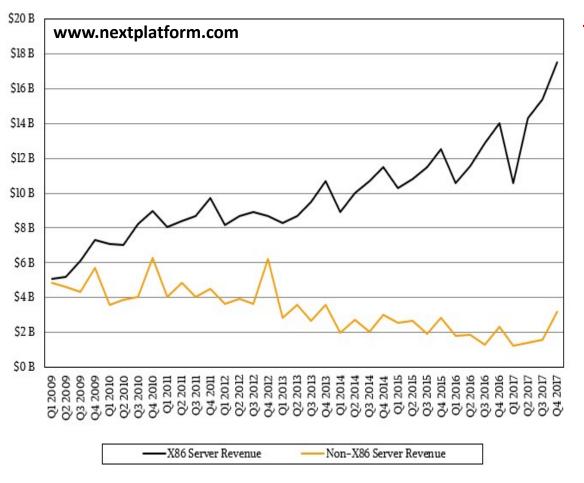
Server Market I 5.0 M

The total server market revenues reached 20.7 B\$ In Q4 2017 with 2.8 M servers shipped. 4.0 M Large revenue jump \rightarrow general price increases, memory price explosion, big Iron sales (z14 IBM), **HPC/AI** investment

> The market is split into three parts based on the cost per server:

- 1. < 25000\$ 15.8B\$
- 25k-250k **1.9 B\$**
- > 250k 2.9B\$ 3.

(HEP buys < 5000 \$/server)


Intel takes 85% of the revenues and ships 99.3 % of the x86 servers processors

0.0 M

The increase in units sold is due to several factors:

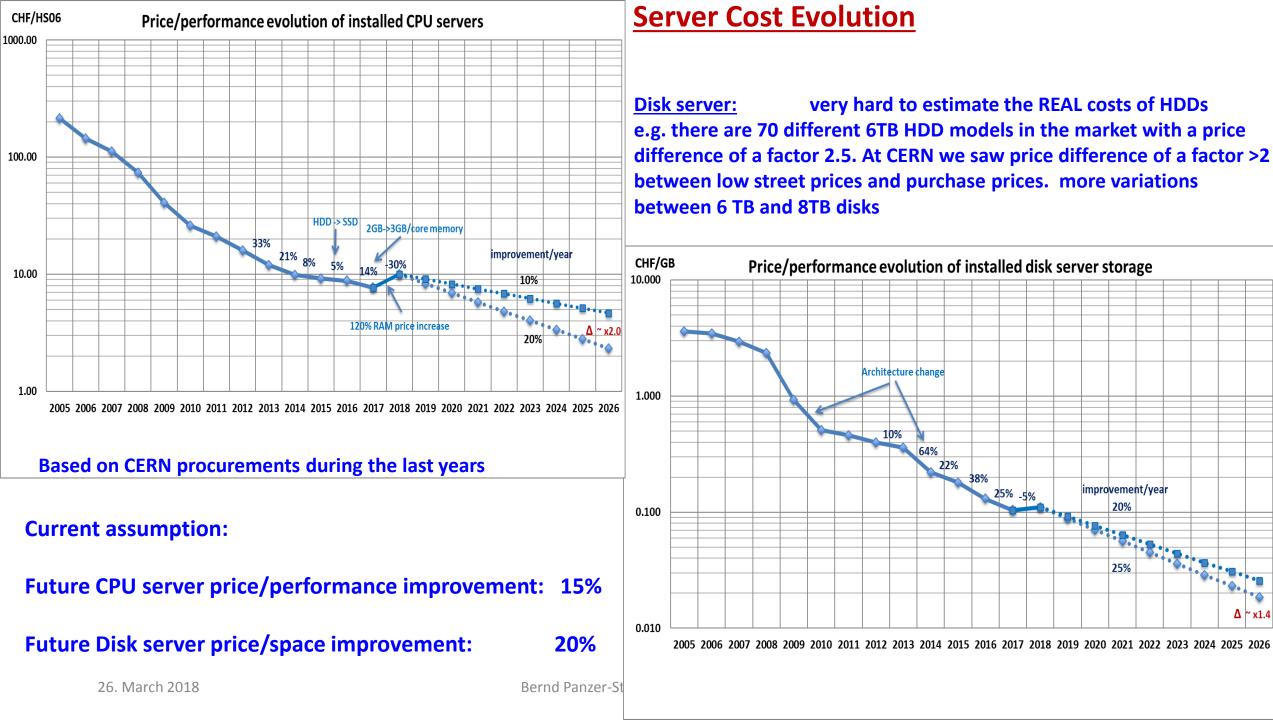
new Skylake architecture, shift from DELL/HP/etc to cheaper ODM sellers and high demand for high end machines with GPUs (> 25000\$ a piece)

Hyperscale data centers (>100000 server) grew in 2017 from 300 to 390 Amazon, Google, Microsoft, IBM have at least 45 centers each

<u>Server Market II</u>

Intel x86 dominating server market, 99.3% of server units

Possible contender:


IBM Power9

Aimed at high-end server and HPC/AI market (combined with Nvidia GPUs), not power efficient, 14nm process, no plans for 10/7nm

- AMD EPYC, low market penetration so far, 2018 will be key year
- ShenWei 260-core processor (based on alpha, 6 Tflops SP) China only, TaihuLight supercomputer, public market?

ARM

Applied Micro → Ampere : new design 32 core 3.3 GHz end 2018, Qualcomm Centriq : 48-core, 2.6 GHz, 10nm process, first contract with cloud gaming company
(but strong rumor that Qualcomm is cancelling the project....) Cavium → Marvell : ThunderX2 (available in techlab, power/HS06 similar to Intel Broadwell, price/performance x2 off)

Δ~x1.4

Summary

- Technology progress per se is good, but obstacles ahead (CPU, RAM, NAND)
- Key computing markets in the hand of very few companies
- Price/performance advances are slowing down
- Memory prices will still increase, but major price reductions expected end 2018
- New processors and architectures are mainly focused on Machine Learning, highly profitable markets expected
- HDD still key storage for the foreseeable future, SSDs not cost effective
- Have to closely watch the tape development
- Server market still 99% Intel some competition is advancing, but not yet convincing

References

http://www.digitaltvnews.net/?p=30009

https://www.statista.com/chart/12798/global-smartphone-shipments/

http://www.transformingnetworkinfrastructure.com/topics/virtualization/articles/437082-almost-13-billion-cloud-waste-predicted-2018.htm

https://www.gartner.com/newsroom/id/3845563

https://www.semiconductors.org/news/2018/01/02/global_sales_report_2017/global_semiconductor_sales_increase_21.5_percent_year_to_year_in_november/

https://www.qstar.com/index.php/ltfs-linear-tape-file-system/

http://techinsights.com/about-techinsights/overview/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics/

https://www.extremetech.com/computing/249075-foundry-futures-tsmc-samsung-globalfoundries-intel-gear-7nm-beyond

https://www.quora.com/When-is-Samsung-going-to-produce-7nm-and-is-it-comparable-to-Intel-10nm-in-terms-of-performance

https://www.neogaf.com/threads/glofo-7nm-details-revealed-the-most-likely-process-node-for-the-next-gen-consoles.1402083/

http://www.icinsights.com/news/bulletins/Semiconductor-Shipments-Forecast-To-Exceed-1-Trillion-Devices-In-2018/

https://www.forbes.com/sites/tomcoughlin/2018/02/05/hdd-growth-in-nearline-markets/2/#66cf02aa3e39

http://www.theregister.co.uk/2018/03/21/seagate_to_drop_multiactuator_hamr_in_2020/

https://www.theregister.co.uk/2017/12/19/seagate_disk_drive_multi_actuator/

http://www.tomshardware.com/news/seagate-wd-hamr-mamr-20tb,35821.html

https://www.extremetech.com/computing/266031-ibms-power9-dent-x86-server-market-oems-prep-new-systems-emphasize-gpu-compute

https://www.nextplatform.com/2018/03/01/server-market-booms-last/

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte

https://www.theregister.co.uk/2017/12/22/bit price decline and computestorage closeness to send enterprise flash use sky high/

https://hblok.net/blog/posts/2017/12/

https://www.businesswire.com/news/home/20180314005070/en/Record-Breaking-Amount-Total-Tape-Capacity-Shipments

https://www.dramexchange.com/WeeklyResearch/Post/5/4871.html

https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/14 PM Summit 18 Analysts Session Oros Final Post UPDATED R2.pdf

https://marketrealist.com/2018/01/micron-optimistic-falling-nand-prices

https://www.nextplatform.com/2018/02/09/just-large-can-nvidias-datacenter-business-grow/

https://www.eetimes.com/author.asp?section_id=36&doc_id=1331415