

the neutral B anomalies, the 6d global fit and new visualisation tools

German Valencia

based on: Bernat Capdevila, Ursula Laa, G. V. EPJC (2019) arXiv:1811.10793 and work in progress

the neutral current B anomalies

- detailed measurements of processes with a quark level transition b → s μ⁺ μ⁻ (and also some b → s e⁺e⁻)
- small problems showing up since around 2009, none particularly exciting by itself
- cumulative effect appears to go against the SM with claims of $> 5\sigma$ significance
- three aspects: the global fit (this talk), new physics, matrix elements
- best hints for LFUV are the ratios R_K and R_{K^*}
- more subtle deviations in details of angular distributions and branching ratios

New Physics?

LHCb collaboration, Phys. Rev. Lett. 113 (2014) 151601

LHCb arXiv:1903.09252 [hep-ex].

the less obvious NP case

 Most prominent deviation in B⁰ → K^{0*}µ+µ- is in the angular distribution of the muons for the low di-muon invariant mass region through "P'₅"

The 6d global fit

• our starting point is S. Descotes-Genon, et.al. JHEP 06 (2016) 092

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu},$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{9'} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

$$\mathcal{O}_{10'} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i \qquad C_i = C_i^{SM} + C_i^{NP} \\ C_{7,9,10}^{SM} = -0.29, \ 4.07, \ -4.31$$

float C_7^{NP} , $C_{7'}^{NP}$, $C_{9\mu}^{NP}$, $C_{9'\mu}^{NP}$, $C_{10\mu}^{NP}$, $C_{10'\mu}^{NP}$

Best fit (BF) parameters obtained by minimising $\chi^{2}(\mathcal{C}_{k}) = \sum_{i,j=1}^{N_{obs}} \left[O_{i}^{exp} - O_{i}^{th}(\mathcal{C}_{k}) \right] (C_{exp} + C_{th})_{ij}^{-1} \left[O_{j}^{exp} - O_{j}^{th}(\mathcal{C}_{k}) \right]$

the observables

- include 175 observables
- branching ratios and parameters in the angular distributions in different bins of dilepton invariant mass
- processes:

•
$$B^{(0,+)} \to K^{*(0,+)} \mu^+ \mu^-, \ B^{(0,+)} \to K^{*(0,+)} e^+ e^-, \ B^{(0,+)} \to K^{*(0,+)} \gamma,$$

- $B^{(0,+)} \to K^{(0,+)} \mu^+ \mu^-, B^+ \to K^+ e^+ e^-$ (through the R_K observable),
- $B_s \to \phi \mu^+ \mu^-, \ B_s \to \phi \gamma,$
- $B \to X_s \mu^+ \mu^-$, $B \to X_s \gamma$ and $B_s \to \mu^+ \mu^-$.
- from Belle, LHCb, Atlas, CMS and HFLAV combinations

 $\pm D_6 \sin U_K \cos U_\ell \pm D_7 \sin$ **P5': the angular distribution** $\theta_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi$ - $= \frac{3}{4}(1-F_{\rm L})\sin^2\theta_K + F_{\rm L}\cos^2\theta_K + \frac{1}{4}(1-F_{\rm L})\sin^2\theta_K\cos 2\theta_\ell$ $d\phi da^2$ $-F_{\rm L}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$ $\begin{array}{c} + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ \text{optimised observables} \\ S_6 \sin \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \end{array}$ Des cotes Genon $e_{1,S9}^{+} \sin^{2}\theta_{\ell} \sin^$ This S_i are bilinear combinations of the K_{K}^{*0} decay observa $P'_{i=4,5,6,8} =$ P. Thi These in turn are functions of The Letter presents the measurement of the contain infort observables $F_{\rm L}$ and tities by ions of the K^{*0} degay $\operatorname{P}_{1,2,3}^{\operatorname{function}} \stackrel{2}{\longrightarrow} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{ist}} \stackrel{1}{\operatorname{ist}} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{ist}} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{ist}} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{ist}} \stackrel{1}{\operatorname{mation}} \stackrel{1}{\operatorname{m$ servable sensitive to physics beyond the SM, and formabout p the ang factors, which depend on long distance effects. Combinations of $F_{\rm L}$ and S_i with reduced formthis dec $\frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{factor}}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} \exp \frac{1}{32\pi} \frac{1}{4} \operatorname{ties} \mathcal{H}_{\mathrm{h}} \operatorname{sine}^2 \operatorname{heen}_{\mathrm{L}} \operatorname{pos}^2 \operatorname{pos}_{\mathrm{f}} \operatorname{sen}^1 \operatorname{lin}_{\mathrm{f}} \operatorname{fe}_{\mathrm{f}} \operatorname{sin}^2 \theta_K \operatorname{res}_{\mathrm{f}} \operatorname{pos}^2 \operatorname{fo}_{\mathrm{f}} \operatorname{sen}^2 \operatorname{fo}_{\mathrm{f}} \operatorname{sen}^2 \theta_K \operatorname{res}_{\mathrm{f}} \operatorname{fo}_{\mathrm{f}} \operatorname{fe}_{\mathrm{f}} \operatorname{sen}^2 \theta_K \operatorname{res}_{\mathrm{f}} \operatorname{fo}_{\mathrm{f}} \operatorname{fe}_{\mathrm{f}} \operatorname{sen}^2 \theta_K \operatorname{res}_{\mathrm{f}} \operatorname{fo}_{\mathrm{f}} \operatorname{fe}_{\mathrm{f}} \operatorname{sen}^2 \theta_K \operatorname{res}_{\mathrm{f}} \operatorname{sen}^2 \theta_K \operatorname{res}_{\mathrm{res}} \operatorname{res}_{\mathrm{res}} \operatorname{sen}^2 \theta_K \operatorname{re$ pendently by several authors $2_{\theta_{x}}3_{in}$ $3_{\theta_{x}}10_{2\phi}$ In of pp co particular, in she barge receil limitsihlow sa?) the ${
m TeV}$ col observables+denior ed case P_4' , S7 P_5' , 2 P_6' sia endin P_8' [11] Charge are largely free stron storm if actor surregestrations Letter,

Tha

These observables are defined as

Correlation Map: some correlations are known

Previous Results

six parameter fit - 6d picture

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	${\cal C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02
1σ	[-0.01, +0.05]	[-1.34, -0.88]	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]
2σ	$\left\ \left[-0.03, +0.07 \right] \right\ $	[-1.54, -0.63]	[-0.08, +0.84]	[-0.02, +0.08]	[-0.59, +1.58]	[-0.54, +0.68]

- Characterisation beyond just the best fit (BF) point meaning of 1σ ranges?
- How does the 6d fit differ from lower dimensional ones
- Which observables are important in constraining the parameters
- Fit in observable space and role of correlation
- Predictions in the context of the fit rather than for the BF only

1 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 130

Visualising the 6d 1 sigma region relative to BF, lower dimensional best fits and the SM

PPI maximising distance to SM produces the projection shown before

visualisation of 1 sigma region

- axes centred with respect to point cloud, not at BF
- directions are centred and scaled

BF

52 stands out against both the SM and the BF no so 44, 98, 99, 100

Pull Differences and Correlation

$$\operatorname{Pull}_{\sigma}(p) = \sum_{j} \sigma_{ij}^{-1/2} (T(p) - O)_{j}$$
$$\Delta(\operatorname{Pull}) = |\operatorname{Pull}(\operatorname{SM})| - |\operatorname{Pull}(\operatorname{BF})|$$

include correlated uncertainties

>0 implies better agreement with BF

correlations reduce the significance of some angular observables, like P'_5 (44, 52) which appear in the left but not the right plot. This is in contrast to R_K , R_{K^*} (98, 100)

predictions in context of the fit

- the χ^2 function is only known numerically for a discrete set of points
- use Hessian matrix to approximate the χ^2 function near the global minimum

- Eigenvectors are principal axes of the approximate confidence level ellipsoids
- Eigenvalues encode how tightly each direction is constrained by the data

lower dimensional fits from the Hessian

- very quickly produce any lower dimensional fit
- i.e.: after Moriond BF fit has a reduced $\Delta\chi^2$ from the SM implied change of $<0.1~\sigma$
- 2d projections or slices of 6d 1σ cloud
- fast test of NP scenarios

Normalised eigenvectors

eigenvalues: *HD* =diag(6621,5647,115.6,72.6,44.7, 6.1)

eigenvector	C_7	C_9	C_{10}	$C_{7'}$	$C_{9'}$	$C_{10'}$
1	0.996	0.0317	-0.000796	-0.0841	0.00334	-0.00924
2	-0.0836	-0.01	-0.00843	-0.996	-0.0114	0.0181
3	0.0192	-0.267	-0.306	0.023	-0.361	0.839
4	0.0169	-0.466	0.859	-0.000316	-0.192	0.0824
5	0.023	-0.843	-0.374	0.0015	0.243	-0.3
6	0.000335	0.0212	0.166	-0.0036	0.88	0.445

- large alignment with one WC only for 1+- directions. These are the most constrained (largest eigenvalues), corresponding closely to the parameters C₇, C₇, respectively
- PCA: in this case all six directions are important, explaining between 31% to 13% of the variance in the data

visualising projections

- 12 SVD point envelope shown in two projections
- line in the left plot shows direction 5 (mostly along C₉): the Hessian approximation does not capture the asymmetric shape in this case
- right plot reveals a strong correlation between $C_{9'}$ and $C_{10'}$
- right plot illustrates the importance of the SVD envelope

ID	Observable	Exp
91	$10^7 \times Br(B_s \to \Phi \mu \mu)[2-5]$	LHCb [26]
92	$10^7 \times Br(B_s \to \Phi \mu \mu)[5-8]$	LHCb [26]
93	$10^7 \times Br(B_s \to \Phi \mu \mu)[15 - 18.8]$	LHCb [26]
94	$F_L(B \to K^* ee)[0.0020 - 1.120]$	LHCb [27]
95	$P_1(B \to K^*ee)[0.0020 - 1.120]$	LHCb [27]
96	$P_2(B \to K^*ee)[0.0020 - 1.120]$	LHCb [27]
97	$P_3(B \to K^*ee)[0.0020 - 1.120]$	LHCb [27]
98	$R_K(B^+ \to K^+)[1-6]$	LHCb [28]
99	$R_{K^*}(B^0 \to K^{0*})[0.045 - 1.1]$	LHCb [29]
100	$R_{K^*}(B^0 \to K^{0*})[1.1-6]$	LHCb [29]
101	$P_4'(B \to K^* ee)[0.1-4]$	Belle $[30]$
102	$P_4'(B \to K^* \mu \mu)[0.1 - 4]$	Belle $[30]$
103	$P_5'(B \rightarrow K^* ee)[0.1-4]$	Belle $[30]$
104	$P_5'(B\to K^*\mu\mu)[0.1-4]$	Belle $[30]$
105	$P_4'(B \to K^* e e)[4-8]$	Belle $[30]$
106	$P_4'(B \to K^* \mu \mu)[4-8]$	Belle $[30]$
107	$P_5'(B \to K^* ee)[4-8]$	Belle $[30]$
108	$P_5'(B \to K^* \mu \mu)[4-8]$	Belle [30]

error << fit uncertainty, important observable large ╟╌ 뿌 Ŧ pl. Т -

- T

Change in predicted value when moving 1σ in SVD a given direction, normalised to the error

$$\delta_i = \frac{(T_i - T_{BF})}{\sqrt{\Delta_{exp}^2 + \Delta_{BF}^2}}$$

Taking into account correlated $\delta_{\sigma,i} = \sum_{l} \sigma_{il}^{-1/2} (T_{pt} - T_{BF})_{l}$ errors

? Which observables change most in each direction? Which directions result in the largest variation in predictions? How important are correlation effects

Constraints completely dominated by observable 171: $Br(B \rightarrow X_s \gamma)$. The next one is 170: $Br(B_s \rightarrow \phi \gamma)$. Correlations do not change the picture

Ranking Observables

					Mostly C ₉	Without correlation
	5-	+	ļ	5-		WITHOUT CONCLATION
Ι	D	δ^2	ID	δ^2		As compared to C7 the constraints
E.	57	0.93	49	0.64	$P_2(B \to K^* \mu \mu)[6-8]$	much more balanced
4	19	0.72	68	0.58	$10^7 \times Br(B^0 \to K^{0*} \mu \mu)[15-19]$	→ combination of observables is important
E.	52	0.56	155	0.49	$10^7 \times Br(B \to K^* \mu \mu) [16-19]$	
4	14	0.56	41	0.43		
1	71	0.35	93	0.42	moving towards	
-				/	the SM	
		5 +		5-		
	ID	δ^2	ID	δ^2		With correlation
	49	1.20	49	1.14	$P_2(B \to K^* \mu \mu)[6-8]$	Ouite different DD sheerschler
	57	1.15	41	0.47	$P_2(B \to K^* \mu \mu)[4-6]$	Quite different, BR observables drop out, angular observables
	52	0.66	171	0.37		become more important
	44	0.48	44	0.27		
	56	0.42	57	0.26		

useful to place new results in context: example Moriond 2019

• The LHCb collaboration has a new measurement of R_K

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060+0.016}_{-0.054-0.014}$$

• The Belle collaboration has new results for $R_{K^{\star}}$

$$R_{K^{\star}}^{[0.045,1.1]} = 0.52^{+0.36}_{-0.26} \pm 0.05$$

$$R_{K^{\star}}^{[1.1,6]} = 0.96^{+0.45}_{-0.29} \pm 0.11$$

$$R_{K^{\star}}^{[0.1,8]} = 0.90^{+0.27}_{-0.21} \pm 0.10$$

$$R_{K^{\star}}^{[15,19]} = 1.18^{+0.52}_{-0.32} \pm 0.10$$

$$R_{K^{\star}}^{[0.045,]} = 0.94^{+0.17}_{-0.14} \pm 0.08$$

• A new combination of the new ATLAS result with previous CMS and LHCb results

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = 2.65^{+0.43}_{-0.39} \times 10^{-9}$$

without redoing the fit

- new value of $R_K^{[1.1-6]}$ shifts BF towards SM along direction 4-
- results in a reduction in C₁₀
- *R_K* now completely dominates direction 4, (mostly C₁₀ with a smaller admixture of C₉)

ID	$ \delta^{3+} ^2$	$ \delta^{3-} ^2$	$ \delta^{4+} ^2$	$ \delta^{4-} ^2$	$ \delta^{5+} ^2$	$ \delta^{5-} ^2$	$ \delta^{6+} ^2$	$ \delta^{6-} ^2$
98	0.75	0.85	2.30	2.90	0.14	0.05	1.40	0.28
	2.00	2.30	6.30	7.80	0.38	0.14	3.80	0.75
$ \delta ^2_{\max}$	1.0(68)	0.9(57)	2.3(98)	2.9(98)	0.9(57)	0.6(49)	1.4(98)	2.0(68)

without redoing the fit

ID	$ \delta^{3+} ^2$	$ \delta^{3^{-}} ^2$	$ \delta^{4+} ^2$	$ \delta^4^- ^2$	$ \delta^{3+} ^2$	$ \delta^{3-} ^2$	$ \delta^{0+} ^2$	$ \delta^{0-} ^2$
172	0.85	0.69	0.51	0.61	0.01	0.01	0.97	0.78
	1.90	1.60	1.20	1.40	0.02	0.02	2.20	1.80
$ \delta ^2_{ m max}$	1.0(68)	0.9(57)	2.3 (98)	2.9(98)	0.9(57)	0.6~(49)	1.4(98)	2.0(68)

Summary of six-d fit

- •The 6d-1 σ region is separated from the SM mostly along C_{9.} This is the only direction where the SM point is not inside the 1 σ region.
- •Correlations reduce the preference for the BF over the SM for angular observables (such as P₅')
- used the Hessian to discuss fit uncertainties, lower dimensional fits and relations between parameter directions and observables
- estimate of the effect of future measurements in the global fit

For specific directions

- the most constrained direction 1 corresponds mostly to C₇ and is dominated by $B \rightarrow X_s \gamma$
- the next most constrained direction 2 (C₇) is also dominated by one observable: low q² bins for P₁
- in direction 3 (mostly C₁₀) the constraints accumulate from multiple observables and correlations play an important role
- direction 4 is dominated by R_K (especially after Moriond) and constrains mostly C_{10}
- direction 5 (mostly C₉) is quite complex with multiple observables providing similar constraints. We find that it is more sensitive to P_2 than to P'_5 , R_K , R_{K^*}

general 2HDM (FCNC) Yukawa's with PhD student Cristian Sierra

$\chi \rightarrow$ 0 recover the flavour conserving models

2HDM-III	X	Y	Z	ξ^d_h	ξ^d_H	ξ_h^l	ξ_{H}^{l}
Model I	$-\cot\beta$	$\cot eta$	$-\cot\beta$	c_{lpha}/s_{eta}	s_{lpha}/s_{eta}	c_{lpha}/s_{eta}	s_{lpha}/s_{eta}
Model II	aneta	\coteta	aneta	$-s_{lpha}/c_{eta}$	c_{lpha}/c_{eta}	$-s_{lpha}/c_{eta}$	c_{lpha}/c_{eta}
Model Y	aneta	$\cot eta$	$-\cot\beta$	$-s_{lpha}/c_{eta}$	c_{lpha}/c_{eta}	c_{lpha}/s_{eta}	$ s_{lpha}/s_{eta} $
Model X	$-\coteta$	\coteta	aneta	c_{lpha}/s_{eta}	s_lpha/s_eta	$-s_{lpha}/c_{eta}$	c_{lpha}/c_{eta}

operators for $b \rightarrow s \mu \mu$

- The model will in general produce all the operators listed before, $O_{7,9,10}$ and $O_{7',9',10'}$ in addition to scalar and pseudo scalar operators
- at tree level: $O_{S,P}$ (below) and $O_{S',P'}$ with $P_R \rightarrow P_L$

$$\mathcal{O}_S = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} m_b (\bar{s}P_R b)(\bar{\ell}\ell) \qquad \qquad \mathcal{O}_P = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} m_b (\bar{s}P_R b)(\bar{\ell}\gamma_5 \ell),$$

$$C_{S}^{(0)} = C_{S}^{(0)'} = \left(\frac{\Gamma_{hbs}^{d}\Gamma_{h\mu\mu}^{l}}{m_{h}^{2}} + \frac{\Gamma_{Hbs}^{d}\Gamma_{H\mu\mu}^{l}}{m_{H}^{2}}\right) \qquad C_{P}^{(0)} = -C_{P}^{(0)'} = \frac{\Gamma_{Abs}^{d}\Gamma_{A\mu\mu}^{l}}{m_{A}^{2}}$$

- the rest at one loop.
- We will only keep C_{9,10} at one loop

-prejudice from previous fits, $C_{9',10'}$ relatively suppressed by masses

–use C_{7,7'} as constraints (
$$B
ightarrow X_s \gamma$$
)

the 4 parameter fit

allowed region in model parameters

- would like to map the allowed (1 sigma) region (red points) to the model parameters
- equivalently the excluded (>1 sigma) region (blue points)
- usual 2d plots can't do it as inclusion (exclusion) depends on the other dimensions

projection pursuit

- find the "most interesting" projection
- define interesting
- in this case the overlap between the allowed (1 sigma) region and the excluded (> 1 sigma) region in model parameter space
- minimise the function that parametrises this overlap as the tour moves through projections
- stop when minimum is found

some combination consisting mostly of $\tan\beta$ and χ_{sb} is most determining for exclusion

App developed by Ursula Laa: <u>https://uschilaa.github.io/galahr/</u>

zalabr izzut uzzulte bita	s://arxiv.org/pdf/1905.06047.pdf
galahr input results http	s.//arxiv.org/pui/1905.06047.pui
	Coloct display trac
Parameter values (CSV format)	Select display type
Browse	density
Chaosa paramatars ta display	
Choose parameters to display 🕗 PC1	
✓ PC2	
 PC2 PC3 	
 PC4 	
PC5	
PC6	
□ y	
🗆 mu	
Rescale	
Select tour type	
Grand tour	•
Number of planes to generate:	
10	٥
Angular step size	
0.05	٢
0.05	(S)
Update results	