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the neutral current B anomalies

• detailed measurements of processes with a quark level 
transition b → s μ+ μ-  (and also some b → s e+e-)


• small problems showing up since around 2009, none 
particularly exciting by itself


• cumulative effect appears to go against the SM with claims 
of > �  significance


• three aspects: the global fit (this talk), new physics, matrix 
elements


• best hints for LFUV are the ratios RK and RK*


• more subtle deviations in details of angular distributions 
and branching ratios

5σ
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The            anomalies

Episode 1

2013 : First anomalies found by LHCb

Episode 2

2014 : Lepton universality violation

[Hiller, Kruger, 2004]

Episode 3

2015 : LHCb confirms first anomalies

vs 1.00 ± 0.01 in SM

LHCb collaboration, Phys. Rev. Lett. 113 (2014) 151601 

Results
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Central q2: [1.1-6 GeV2]: SM = 1.000(6)

Low q2 [0.045-1.1 GeV2]: SM = 0.922(22)

Compared to SM…

… and to other experiments

Charged mode:  B+o K+ ℓℓ

PRL 113 (2014) 151601

Both bins 2-2.5σ low

2.6σ low
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1 Introduction

This addendum presents an update of our recent work [1], where we identified the patterns

of New Physics (NP) suggested by b ! s`+`� measurements. It also updates some of the

NP scenarios considered in Ref. [2]. Keeping the theoretical framework and the rest of

the data set unchanged, we update the value of the Lepton-Flavour-Universality-Violating

(LFUV) observable:

R[1.1,6]
K =

B(B ! Kµ+µ�)

B(B ! Ke+e�)
= 0.846+0.060+0.016

�0.054�0.014 (1.1)

as announced recently by the LHCb collaboration [3], corresponding to the average of

Run-1 and part of Run-2 (2015-2016) measurements. The correlations with the (finely

binned) measurements of B(B ! Kµ+µ�) [4] are tiny and are neglected here. Also Belle

has presented new results for RK⇤ in three bins [5] combining the data from charged and

neutral channels:

R[0.045,1.1]
K⇤ = 0.52+0.36

�0.26 ± 0.05

R[1.1,6]
K⇤ = 0.96+0.45

�0.29 ± 0.11 (1.2)

R[15,19]
K⇤ = 1.18+0.52

�0.32 ± 0.10

Our theory treatment for this observable follows the same strategy as described in [1]

for Q4,5 where we introduced a nuisance parameter accounting for the relative weight of

each isospin component. In addition, we include a brief discussion on the impact of these

measurements in two models, where we also take into account the new values of RD(⇤) from

Belle [6]1.

2 Global fits

Tabs. 1-3 and Fig. 1 update the corresponding tables and plots of Ref. [1] based on fits to the

global set of data (“All”) or restricted to quantities measuring Lepton Flavour Universality

Violation (LFUV).

While we do not observe any significant di↵erence in the 1D scenarios with “All” data

compared to Ref. [1], the pulls for the LFUV 1D fits get reduced by half a sigma, except

the scenario C
NP

9µ = �C90µ which favours an SM-like RK (see Ref. [9]). Also now the C
NP

9µ

b.f.p. scenario coincides in the “All” and LFUV fits. Concerning 2D scenarios, the same

picture arises except that CNP

9e is now centered around zero and small contributions to

right-handed currents (RHCs) seem slightly favoured (C90µ > 0, C100µ < 0)2. Indeed

these contributions tend to increase the value of RK as can be seen from the explicit

1We also update B(Bs ! µ+µ�) including the latest ATLAS measurement [7] and the most recent

lattice update of fBs [8]. The comparison between v1 and v2 of this addendum shows the relatively small

numerical impact of such updates.
2Interestingly these small contributions also reduce a bit the mild tension between P 0

5 at large and

low-recoil pointed out in [9] compared to the scenario with only CNP
9µ .
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LHCb arXiv:1903.09252 [hep-ex]. 

after Moriond 2019
2.5σ

New Physics?



the less obvious NP case

• Most prominent deviation in B0 ⇾ K0*μ+μ- is in the 
angular distribution of the muons for the low di-muon 
invariant mass region through “P’5”

b o sμμ angular analysis
• Study the rate as a function of the 

decay angles:  θK, θℓ, φ
• Complicated expression:

• FL = fraction of longitudinal polarization 
of the K*

• Can define “optimized observables”, 
with form-factor cancellations, e.g:
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Descotes-Genon et al, JHEP 05 (2013) 137

3.4σ significance, bearing in 
mind look-elsewhere effect 
(other bins, other observables) 
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The 6d global fit

• our starting point is S. Descotes-Genon, et.al. JHEP 06 (2016) 092

For theoretical correlations, we have produced a correlation matrix by performing a

propagation of error. This is achieved by varying all input parameters following a Gaus-

sian distribution including known correlations, and determining the resulting distribution

of the observables of interest. This is particularly necessary for the form factors: we in-

clude correlations between parameters from the lattice QCD computation at low recoil in

Ref. [97,98]. We treat all parameters as uncorrelated at large recoil in the case of Ref. [17],

whereas we include the available correlations when we use Ref. [20]. We stress that even

the uncorrelated scan of parameters (like power corrections) induces correlations among

the observables (for instance branching ratios at large recoil) because the latter have a

correlated functional dependence on these parameters. The large error bars in Ref. [17]

for B ! K⇤µµ may lead to excursions in parameter space that distort the distribution of

the Pi observables and yield significant non-Gaussianities. These non-Gaussianities are

avoided by scanning over the input parameters after scaling down all uncertainties by a

global factor ⇢, producing the correlation matrix for the Pi observables, and multiplying

all its entries by ⇢2 . The resulting covariance matrix is an accurate representation of the

uncertainties and correlations for the Pi observables in the vicinity of the central values

of the input parameters, as long as it is possible to propagate errors in a linearised way.

This matrix encodes all the relevant information concerning uncertainties and correlations

among observables, with all uncertainties e↵ectively added in quadrature (we explicitly

checked that the results are independent on the exact numerical choice of the rescaling

factor ⇢, and in practice ⇢ = 3 is su�cient). The other sets of form factors yield Gaus-

sian distributions for the Bs ! �µµ and B ! Kµµ observables, because of the smaller

uncertainty ranges.

Finally, we construct a single covariance matrix as the sum of the experimental (Cexp
ij

)

and the theoretical one (Cth
ij
), and we use it to build the usual �2 function corresponding

to observables with correlated Gaussian distributions 12:

�2(Ck) =
NobsX

i,j=1

⇥
Oexp

i
�Oth

i
(Ck)

⇤
(Cexp + Cth)

�1
ij

⇥
Oexp

j
�Oth

j
(Ck)

⇤
. (38)

Once the �2 function is computed, it remains to exploit the information that it car-

ries. Following standard frequentist analysis, a first piece of information is provided by

the global minimum �2
min, which provides an indication of the goodness-of-fit. It can

be expressed as a p-value assessing the agreement between the measurements and the

scenario tested, given as the probability for a �2-distributed random variable with the

corresponding number of degrees of freedom (number of data points minus number of free

parameters) to reach a higher value than the one obtained from the data.

12 The theoretical correlation matrices are obtained for the observables in the context of the SM com-

putation. In the following, we will assume that the theory covariance matrix has only a mild dependence

on the values of the Wilson coe�cients, and we will keep its SM value in the construction of our �2 test

statistics [15]. We have checked that for the scenarios considered in this paper this assumption holds, by

calculating the covariance matrix at the best-fit point and comparing the outcome of the fit with the one

using the SM covariance matrix.
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Best fit (BF) parameters obtained by minimising

CNP
7 , CNP

7′� , CNP
9μ , CNP

9′ �μ , CNP
10μ, CNP

10′�μfloat

1 Introduction

Flavour-Changing Neutral Currents (FCNC) have been prominent tools in high-energy

physics in the search for new degrees of freedom, due to their quantum sensitivity to

energies much higher than the external particles involved. In the current context where

the LHC has discovered a scalar boson completing the Standard Model (SM) picture but

no additional particles that would go beyond this framework, FCNC can be instrumental

in order to determine where to look for New Physics (NP). One particularly interesting

instance of FCNC is provided by b ! s`` and b ! s� transitions, which can be probed

through various decay channels, currently studied in detail at the LHCb, CMS and AT-

LAS experiments. In addition, in some kinematic configurations it is possible to build

observables with a very limited sensitivity to hadronic uncertainties, and thus enhancing

the discovery potential of these decays for NP, based on the use of e↵ective field theories

adapted to the problem at hand. Finally, it is possible to analyse all these decays using a

model-independent approach, namely the e↵ective Hamiltonian [1,2] where heavy degrees

of freedom have been integrated out in short-distance Wilson coe�cients Ci, leaving only

a set of operators Oi describing the physics at long distances:

He↵ = �4GFp
2
VtbV

⇤
ts

X

i

CiOi (1)

(up to small corrections proportional to VubV ⇤
us

in the SM). In the following, the factori-

sation scale for the Wilson coe�cients is µb = 4.8 GeV. We focus our attention on the

operators

O7 =
e

16⇡2
mb(s̄�µ⌫PRb)F

µ⌫ , O70 =
e

16⇡2
mb(s̄�µ⌫PLb)F

µ⌫ ,

O9 =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ`), O90 =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ`),

O10 =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ�5`), O100 =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ�5`), (2)

where PL,R = (1 ⌥ �5)/2 and mb ⌘ mb(µb) denotes the running b quark mass in the

MS scheme. In the SM, three operators play a leading role in the discussion, namely

the electromagnetic operator O7 and the semileptonic operators O9 and O10, di↵ering

with respect to the chirality of the emitted charged leptons (see Ref. [3] for more detail).

NP contributions could either modify the value of the short-distance Wilson coe�cients

C7,9,10, or make other operators contribute in a significant manner (such as O70,90,100 defined

above, or the scalar and pseudoscalar operators OS,S0,P,P 0).

Recent experimental results have shown interesting deviations from the SM. In 2013,

the LHCb collaboration announced the measurement of angular observables describing

the decay B ! K⇤µµ in both regions of low- and large-K⇤ recoil [4]. Two observables, P2

and P 0
5 [5–7], were in significant disagreement with the SM expectations in the large-K⇤

3

Ci = CSM
i + CNP

i

CSM
7,9,10 = − 0.29, 4.07, − 4.31
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the observables

• include 175 observables


• branching ratios and parameters in the angular distributions 
in different bins of dilepton invariant mass


• processes:


• from Belle, LHCb, Atlas, CMS and HFLAV combinations

1 Introduction

Many measurements have been performed in recent years on decay modes with an underlying

quark transition b ! s`+`�, where ` includes muons and electrons. Not surprisingly, some of

these measurements show deviations from the standard model (SM) predictions by a few standard

deviations. More interesting is the fact that several of these deviations from the SM appear to be

‘in the same direction’, in such a way that when quantified by a global fit the discrepancy with

the SM is at just over the 5 � level.

Several global fits that allow for the possibility of new physics (NP) in a model independent

fashion described in the framework of e↵ective field theory have been performed in the literature

[1–9]. The basis for our study will be the fit of Ref. [1] which allows for NP by floating six Wilson

coe�cients of the e↵ective low energy Hamiltonian responsible for the quark-level transition:

He↵ = �4GFp
2
VtbV

?

ts

X

i

CiOi. (1)

The six operators in question are

O7 =
e

16⇡2
mb(s̄�µ⌫PRb)F

µ⌫ , O70 =
e

16⇡2
mb(s̄�µ⌫PLb)F

µ⌫ ,

O9` =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ`), O90` =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ`),

O10` =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ�5`), O100` =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ�5`). (2)

The factorization scale is taken at 4.8 GeV, so that mb(µb) is the M̄S running b-quark mass

at that scale, and the SM values of the Wilson coe�cients are CSM
7,9,10 = �0.29, 4.07,�4.31 and

CSM
70,90,100 = 0. New physics would be parametrized in a model independent way by deviations in

these coe�cients from their SM values, Ci` ⌘ CSM
i

+ CNP
i`

(i = 7(
0), 9(

0), 10(
0), ` = µ), that is, we

only treat the muon coe�cients as free parameters. We assume these deviations to be real and

drop any CP violating observables. We note that this fit does not include (pseudo) scalar or tensor

operators.

The full fit includes all available results for the following decay channels (see appendix for a

full list of the 175 observables with references):

• B(0,+) ! K⇤(0,+)µ+µ�, B(0,+) ! K⇤(0,+)e+e�, B(0,+) ! K⇤(0,+)�,

• B(0,+) ! K(0,+)µ+µ�, B+ ! K+e+e� (through the RK observable),

• Bs ! �µ+µ�, Bs ! ��,

• B ! Xsµ+µ�, B ! Xs� and Bs ! µ+µ�.

Although experimental data on the baryonic decay ⇤b ! ⇤µ+µ� is available, it is not included

in the fit because for the low-q2 region the QCD factorization is poorly understood [10], while at

high-q2, where a recent determination of the ⇤b ! ⇤ form factors from lattice QCD [11] reduces

theory uncertainties, experimental errors are large [12] (see discussion in [2, 13]).

Ref. [1] discussed several scenarios with one or two non-zero NP contributions at a time in

detail and analysed the general scenario where NP contributions are allowed to all six muonic

2



P5’: the angular distributionb o sμμ angular analysis
• Study the rate as a function of the 

decay angles:  θK, θℓ, φ
• Complicated expression:

• FL = fraction of longitudinal polarization 
of the K*

• Can define “optimized observables”, 
with form-factor cancellations, e.g:

Roger Forty Rare Decays and Flavour Anomalies 21

Descotes-Genon et al, JHEP 05 (2013) 137

3.4σ significance, bearing in 
mind look-elsewhere effect 
(other bins, other observables) 
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b→sl+l‒ anomalies

The rare decay B0 ! K⇤0µ+µ�, where K⇤0

indicates the K⇤(892)0 ! K+⇡� decay, is a
flavor-changing neutral current process that
proceeds via loop and box amplitudes in the
Standard Model (SM). In extensions of the SM,
contributions from new particles can enter in
competing amplitudes and modify the angular
distributions of the decay products. This decay
has been widely studied from both theoreti-
cal [1–3] and experimental [4–7] perspectives.
Its angular distribution is described by three
angles (✓`, ✓K and �) and the dimuon invariant

mass squared, q2; ✓` is the angle between the
flight direction of the µ+ (µ�) and the B0 (B0)
meson in the dimuon rest frame; ✓K is the an-
gle between the flight direction of the charged
kaon and the B0 (B0) meson in the K⇤0 (K⇤0)
rest frame; and � is the angle between the de-
cay planes of the K⇤0 (K⇤0) and the dimuon
system in the B0 (B0) meson rest frame. A
formal definition of the angles can be found
in Ref. [7]. Using the definitions of Ref. [1]
and summing over B0 and B0 mesons, the dif-
ferential angular distribution can be written
as

1

d�/dq2
d4�

d cos ✓` d cos ✓K d� dq2
=

9

32⇡


3

4
(1� FL) sin

2 ✓K + FL cos
2 ✓K +

1

4
(1� FL) sin

2 ✓K cos 2✓`

� FL cos
2 ✓K cos 2✓` + S3 sin

2 ✓K sin2 ✓` cos 2�

+ S4 sin 2✓K sin 2✓` cos� + S5 sin 2✓K sin ✓` cos�

+ S6 sin
2 ✓K cos ✓` + S7 sin 2✓K sin ✓` sin�

+ S8 sin 2✓K sin 2✓` sin�+ S9 sin
2 ✓K sin2 ✓` sin 2�

i
,

(1)

where the q2 dependent observables FL and
Si are bilinear combinations of the K⇤0 decay
amplitudes. These in turn are functions of
the Wilson coe�cients, which contain infor-
mation about short distance e↵ects and are
sensitive to physics beyond the SM, and form-
factors, which depend on long distance e↵ects.
Combinations of FL and Si with reduced form-
factor uncertainties have been proposed inde-
pendently by several authors [2, 3, 8–10]. In
particular, in the large recoil limit (low-q2) the
observables denoted as P 0

4, P
0
5, P

0
6 and P 0

8 [11]
are largely free from form-factor uncertainties.
These observables are defined as

P 0
i=4,5,6,8 =

Sj=4,5,7,8p
FL(1� FL)

. (2)

This Letter presents the measurement of the
observables Sj and the respective observables
P 0
i . This is the first measurement of these quan-

tities by any experiment. Moreover, these ob-
servables provide complementary information
about physics beyond the SM with respect to
the angular observables previously measured in
this decay [4–7]. The data sample analyzed cor-
responds to an integrated luminosity of 1.0 fb�1

of pp collisions at a center-of-mass energy of 7
TeV collected by the LHCb experiment in 2011.
Charged conjugation is implied throughout this
Letter, unless otherwise stated.
The LHCb detector [12] is a single-arm for-

ward spectrometer covering the pseudorapidity
range 2 < ⌘ < 5, designed for the study of
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What is P5 ?ʹ

optimised observables

Descotes-Genon et al, 

JHEP 05 (2013) 137

P1,2,3 =
2S3, − 1/2S6, − S9

(1 − FL)

b→sl+l‒ anomalies
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of pp collisions at a center-of-mass energy of 7
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this decay [4–7]. The data sample analyzed cor-
responds to an integrated luminosity of 1.0 fb�1

of pp collisions at a center-of-mass energy of 7
TeV collected by the LHCb experiment in 2011.
Charged conjugation is implied throughout this
Letter, unless otherwise stated.
The LHCb detector [12] is a single-arm for-

ward spectrometer covering the pseudorapidity
range 2 < ⌘ < 5, designed for the study of

1

What is P5 ?ʹ



Correlation Map: some correlations 
are known

1

15

63

74

90
94
98101

113

131

156

168

1 15 63 74 90 94 98 10
1

11
3

13
1

15
6

16
8

−1.0

−0.5

0.0

0.5

1.0
Correlation

Figure 3: Correlation map derived from the full covariance matrix.

3.2 Pull

Here we compare all observables directly to the SM and the BF respectively in the top two panels

of Figure 4. We have highlighted in red those observables with Pull greater than 2. The Pull(SM)

metric simply updates known results from Ref. [2]: four of the largest over-predictions of the SM

occur for BR and R
K(?) LHCb measurements, whereas the largest under-predictions occur for P 0

5

measurements by three di↵erent experiments (IDs 44, 52, 108, 128).

The top-right panel of Figure 4 presents the Pull(BF) metric for all observables. We observe

that three of the standout points against the SM also stand out against the BF. Two of the P 0
5

measurements (IDs 52 and 108) are also above the BF prediction whereas an ATLAS P 0
4 (ID 127)

falls below both the SM and BF predictions by more than 2�.

In the bottom two panels of Figure 4 we show �(Pull) for all observables. The idea of this

metric is to highlight those observables in better agreement with the BF point than with the SM.

The results are shown both ignoring correlations (lower left panel) and including them (lower right

panel). The majority of the points are clustered at small values of�(Pull) (or��(Pull)), indicating

insignificant resolving power between the SM and the BF. The distribution shows, however, that

even among these points with small �(Pull) there is an average preference for positive values. This

is of course just the statement that the global fit prefers the BF to the SM, but the distribution

shows how much of this overall preference is built from many small di↵erences that go in the same

direction.
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Figure 1. From left to right: allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C9′µ) and (CNP

9µ , CNP
9e ) planes

for the corresponding two-dimensional hypotheses, using all available data (fit “All”). We also show
the 3 σ regions for the data subsets corresponding to specific experiments. Constraints from b → sγ
observables, B(B → Xsµµ) and B(Bs → µµ) are included in each case (see text).

In figure 1 we show the corresponding constraints for the fit “All” under the three

hypotheses (CNP
9µ , CNP

10µ), (CNP
9µ , C9′µ) and (CNP

9µ , CNP
9e ), as well as the 3 σ regions according

to the results from individual experiments (for each region, we add the constraints from

b → sγ observables, B(B → Xsµµ) and the world average for B(Bs → µµ) [29]). As

expected, the LHCb results drive most of the effect, with a clear exclusion of the origin,

i.e., the SM point.

We can now move to the fit “LFUV” in figure 2, where we consider the same hypothe-

ses favoured by global analyses. It is interesting to notice that this restricted subset of

observables excludes the SM point with a high significance, and it favours regions similar

to the fit “All” dominated by different b → sµµ-related observables (B → K∗µµ opti-

mised angular observables as well as low- and large-recoil branching ratios for B → Kµµ,

B → K∗µµ and Bs → φµµ). This is also shown in tables 2 and 3, where the scenarios

with the highest pulls are confirmed with significances between 3 and 4 σ, but get harder

to distinguish on the basis of their significance. Scenarios like CNP
9µ = −C9′µ that would fail

to explain RK are not disfavoured due to their good compatibility with RK∗ data. Inter-

estingly, the inclusion of the RK∗ measurement now disfavours solutions with right-handed

currents only, as proposed in refs. [5, 6]. Such a scenario was valid considering only RK

(excluding the other b → sµ+µ− data), but is now disfavoured by the measurement of

RK∗ . This was solved later on in [39], by modifying the model via a scalar leptoquark with

hypercharge Y = 7/6.

Finally, we have performed a six-dimensional fit allowing for NP contributions in

C7(′),9(′)µ,10(′)µ. The SM pull has shifted from 3.6σ in the fit of ref. [2] to 5.0 σ if one

considers the fit “All” described above. The 1 and 2 σ CL intervals are given in table 4,

with the pattern:

CNP
7 ! 0, CNP

9µ < 0, CNP
10µ > 0, C7′ ! 0, C9′µ > 0, C10′µ ! 0 (4.1)

where C9µ is compatible with the SM beyond 3 σ, C10µ, C7′ at 2 σ and all the other

coefficients at 1 σ.

– 8 –

Previous Results

Tabulated results from B. Capdevila et. al. JHEP 01 (2018) 093 4

All LFUV

1D Hyp. Best fit 1 � 2 � PullSM p-value Best fit 1 � 2 � PullSM p-value

CNP
9µ -1.11 [�1.28,�0.94] [�1.45,�0.75] 5.8 68 -1.76 [�2.36,�1.23] [�3.04,�0.76] 3.9 69

CNP
9µ = �CNP

10µ -0.62 [�0.75,�0.49] [�0.88,�0.37] 5.3 58 -0.66 [�0.84,�0.48] [�1.04,�0.32] 4.1 78

CNP
9µ = �C0

9µ -1.01 [�1.18,�0.84] [�1.34,�0.65] 5.4 61 -1.64 [�2.13,�1.05] [�2.52,�0.49] 3.2 32

CNP
9µ = �3CNP

9e -1.07 [-1.24,-0.90] [-1.40,-0.72] 5.8 70 -1.35 [�1.82,�0.95] [�2.38,�0.59] 4.0 72

TABLE II: Most prominent patterns of New Physics in b ! sµµ under the 1D hypothesis. The p-values are quoted in % and
PullSM in units of standard deviation.

Regarding the theory computation of all observables,
we follow Refs. [2, 34], which take into account the the-
oretical updates for the branching ratios of B ! Xs�,
B ! Xsµµ and Bs ! µµ in Refs. [35–37]. For the
B ! K

? form factors at large recoil we use the calcula-
tion in Ref. [9], which has more conservative uncertain-
ties than the ones in Ref. [38], obtained with a di↵erent
method. For Bs ! � the corresponding calculation is
not available, and therefore we use Ref. [38]. This leads
to smaller hadronic uncertainties quoted for Bs ! �``

and R�, but we stress that this is only due to the choice
of input.

We follow the same statistical method as in Ref. [2].
We perform a frequentist analysis with all known theory
and experimental correlations taken into account through
the covariance matrix when building the �

2 function,
which is minimised to find best-fit points, pulls, p-values
and confidence-level intervals. Depending on the dimen-
sionality of the hypothesis, the minimisation is performed
either using a simple scan or the Markov-Chain Monte
Carlo Metropolis-Hastings algorithm.

4. RESULTS

4.1. Fit results

In Tabs. II and III, we give the fit results for several
one- or two-dimensional hypothesis for NP contributions
to the various operators, with two di↵erent datasets: ei-
ther we include all available data from muon and elec-
tron channels presented in the previous section (column
“All”, 175 measurements), or we include only LFUV ob-
servables, i.e., RK and RK⇤ from LHCb and Qi (i = 4, 5)
from Belle (column “LFUV”, 17 measurements). In both
cases, we include also the b ! s� observables, as well as
B(B ! Xsµµ) and B(Bs ! µµ). The SM point yields a
�

2 corresponding to a p-value of 11.3% for the fit “All”
and 4.4% for the fit “LFUV”.

We start by discussing NP hypotheses for the fit “All”.
The measurement of RK⇤ increases further the signifi-
cance of already prominent hypotheses in previous stud-
ies, namely, the first three hypotheses (CNP

9µ , CNP
9µ =

�CNP
10µ and CNP

9µ = �C90µ) already identified in Refs. [1, 2].
The SM pull exceeds 5 � in each case: the hypotheses can
hardly be distinguished on this criterion, and as discussed

in Ref. [20], the Qi observables will be very powerful tools
to lift this quasi-degeneracy.

Besides providing the results for one- and two-
dimensional hypotheses with SM pulls above 5 �, we
discuss four illustrative examples of NP hypotheses with
specific chiral structures, leading to correlated shifts in
Wilson coe�cients. These hypotheses are:

1. (CNP
9µ = �C90µ, CNP

10µ = C100µ),

2. (CNP
9µ = �C90µ, CNP

10µ = �C100µ),

3. (CNP
9µ = �CNP

10µ, C90µ = C100µ),

4. (CNP
9µ = �CNP

10µ, C90µ = �C100µ).

Hypothesis 1 has the highest SM pull, in agreement
with our previous global analysis [2]. Taking CNP

10µ =
�C100µ (i.e., Hypothesis 2) reduces the significance from
5.7 � to 5.0 �, similarly to Hypotheses 3 and 4 taking
CNP
9µ = �CNP

10µ (irrespectively of the relative sign taken to
constrain C90µ = ±C100µ). From a model-independent
point of view, Hypothesis 1 is particularly interesting
to yield a low value for RK⇤ (especially if a contribu-
tion CNP

7 > 0 is allowed). Let us add that a scenario
with only CNP

9µ = �C90µ would predict RK = 1 and
RK⇤ < 1 [2, 25, 26]. One could however obtain RK < 1
by adding a positive contribution to C10µ and/or C100µ

(see Tab. 9 in Ref. [2]).
Up to now, we have discussed scenarios where NP con-

tributions occur only in b ! sµµ transitions. It is also
interesting to consider scenarios with NP in both muon
and electron channels, in particular (CNP

9µ , CNP
9e ), with a

SM pull of 5.5 �, and a p-value of 68%. While CNP
9µ ⇠ �1

is preferred over the SM with a significance around 5 �,
C9e is compatible with the SM already at 1 �, in agree-
ment with the LFUV data included in the fit. One can as-
sess more precisely the need for LFUV in the framework
where NP is allowed in both (CNP

9e and CNP
9µ ) through the

pull of the hypothesis (CNP
9e = CNP

9µ ) which reaches 3.3 �.
Considering the results for the (CNP

9e , CNP
9µ ) hypothesis,

one can notice that a very good fit is also obtained for
the one-dimensional hypothesis CNP

9µ = �3CNP
9e favoured

in some models discussed in the next section.
In Fig. 1 we show the corresponding constraints for

the fit “All” under the three hypotheses (CNP
9µ , CNP

10µ),

1-d

1-d fit can quantify uncertainty
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 between parameters
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slices? where?

-1.4 -1.2 -1.0 -0.8 -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C9

C
10



six parameter fit - 6d picture

– Characterisation beyond just the best fit (BF) point

– meaning of �  ranges?

– How does the 6d fit differ from lower dimensional ones

– Which observables are important in constraining the 

parameters

– Fit in observable space and role of correlation

– Predictions in the context of the fit rather than for the BF 

only

1σ

5

All LFUV

2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , CNP

10µ) (-1.01,0.29) 5.7 72 (-1.30,0.36) 3.7 75

(CNP
9µ , C0

7) (-1.13,0.01) 5.5 69 (-1.85,-0.04) 3.6 66

(CNP
9µ , C90µ) (-1.15,0.41) 5.6 71 (-1.99,0.93) 3.7 72

(CNP
9µ , C100µ) (-1.22,-0.22) 5.7 72 (-2.22,-0.41) 3.9 85

(CNP
9µ , CNP

9e ) (-1.00,0.42) 5.5 68 (-1.36,0.46) 3.5 65

Hyp. 1 (-1.16,0.38) 5.7 73 (-1.68,0.60) 3.8 78

Hyp. 2 (-1.15, 0.01) 5.0 57 (-2.16,0.41) 3.0 37

Hyp. 3 (-0.67,-0.10) 5.0 57 (0.61,2.48) 3.7 73

Hyp. 4 (-0.70,0.28) 5.0 57 (-0.74,0.43) 3.7 72

TABLE III: Most prominent patterns of New Physics in b ! sµµ with high significances. The last four rows corresponds
to hypothesis 1: (CNP

9µ = �C90µ, CNP
10µ = C100µ), 2: (CNP

9µ = �C90µ, CNP
10µ = �C100µ), 3: (CNP

9µ = �CNP
10µ, C90µ = C100µ) and 4:

(CNP
9µ = �CNP

10µ, C90µ = �C100µ). The “All” columns include all available data from LHCb, Belle, ATLAS and CMS, whereas the
“LFUV” columns are restricted to RK , RK⇤ and Q4,5 (see text for more detail). The p-values are quoted in % and PullSM in
units of standard deviation.

CNP
7 CNP

9µ CNP
10µ C70 C90µ C100µ

Best fit +0.03 -1.12 +0.31 +0.03 +0.38 +0.02

1 � [�0.01,+0.05] [�1.34,�0.88] [+0.10,+0.57] [+0.00,+0.06] [�0.17,+1.04] [�0.28,+0.36]

2 � [�0.03,+0.07] [�1.54,�0.63] [�0.08,+0.84] [�0.02,+0.08] [�0.59,+1.58] [�0.54,+0.68]

TABLE IV: 1 and 2 � confidence intervals for the NP contributions to Wilson coe�cients in the six-dimensional hypothesis
allowing for NP in b ! sµµ operators dominant in the SM and their chirally-flipped counterparts, for the fit “All”. The SM
pull is 5.0 �.

(CNP
9µ , C9µ0) and (CNP

9µ , CNP
9e ), as well as the 3 � regions

according to the results from individual experiments (for
each region, we add the constraints from b ! s� ob-
servables, B(B ! Xsµµ) and the world average for
B(Bs ! µµ) [29]). As expected, the LHCb results drive
most of the e↵ect, with a clear exclusion of the origin,
i.e., the SM point.

We can now move to the fit “LFUV” in Fig. 2, where
we consider the same hypotheses favoured by global anal-
yses. It is interesting to notice that this restricted sub-
set of observables excludes the SM point with a high
significance, and it favours regions similar to the fit
“All” dominated by di↵erent b ! sµµ-related observ-
ables (B ! K

⇤
µµ optimised angular observables as well

as low- and large-recoil branching ratios for B ! Kµµ,
B ! K

⇤
µµ and Bs ! �µµ). This is also shown in

Tabs. II and III, where the scenarios with the highest
pulls are confirmed with significances between 3 and 4
�, but get harder to distinguish on the basis of their sig-
nificance. Scenarios like CNP

9µ = �C90µ that would fail to
explain RK are not disfavoured due to their good compat-
ibility with RK⇤ data. Interestingly, the inclusion of the
RK⇤ measurement now disfavours solutions with right-
handed currents only, as proposed in Ref. [5, 6]. Such
a scenario was valid considering only RK (excluding the
other b ! sµ

+
µ

� data), but is now disfavoured by the
measurement of RK⇤ . This was solved later on in [39],
by modifying the model via a scalar leptoquark with hy-
percharge Y = 7/6.

Finally, we have performed a six-dimensional fit allow-
ing for NP contributions in C7(0),9(0)µ,10(0)µ. The SM pull
has shifted from 3.6� in the fit of Ref. [2] to 5.0 � if one
considers the fit “All” described above. The 1 and 2 �

CL intervals are given in Tab. IV, with the pattern:

CNP
7 & 0, CNP

9µ < 0, CNP
10µ > 0, C70 & 0, C90µ > 0, C100µ & 0

(9)
where C9µ is compatible with the SM beyond 3 �, C10µ,
C70 at 2 � and all the other coe�cients at 1 �.

4.2. RK and RK⇤ : A closer look

Theoretical predictions in the SM for RK and RK⇤ are
very accurate: hadronic uncertainties cancel to a large
extent and electromagnetic corrections have been esti-
mated to be small and under control [40]. This is true
as long as there are no significant LFUV e↵ects. If there
are, interference e↵ects between LFUV and LFU conserv-
ing contributions spoil the cancellation of hadronic un-
certainties. These e↵ects might come from NP or from
lepton-mass e↵ects in the SM. The latter are only impor-
tant at very low q

2, wherever m
2
`/q

2 is not small com-
pared to 1 (say, below q

2 ⇠ 1GeV2), and a↵ect in par-
ticular the first measured bin in RK⇤ . In this bin one
thus expects larger theoretical uncertainties than in the
region above 1 GeV2, as well as at any value of q

2 in the
presence of LFUV new physics [20, 41]. This enhance-
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visualisation of 1 sigma region

We then search for appropriate projections that illustrate the separation between the BF point

and the SM point. Finally, to show these projections we center the view by subtracting the mean

position of the points in S1�. Notice that the axes are centered with respect to the point cloud

and therefore the origin is somewhat shifted with respect to the BF point.

Most notably in this example we observe how the SM point moves away from the cloud of BF

region points along with the change in the importance of C9 in the projections. The animation

provides a striking picture of the separation between the BF region and the SM that is mostly

along the C9 direction, a result that is well known in the literature. We further illustrate this with

a static picture in Figure 1, where the projection has been selected for showing the large distance

between the SM and BF point. For comparison we illustrate the positions of the SM, BF and

selected one and two dimensional best fits from Ref. [1] (listed in the first column of Table 1) as

described in the caption. Another interesting feature that can be seen in the animation is that all

these lower dimensional best fits are found roughly in the same half of the 6-d 1� region.

C7
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C7ʹ

C9ʹ

C10ʹ

Figure 1: Visualization of parameter space in six dimensions via a general two dimensional projec-

tion. The set S1� of points within 1� of the BF is shown in yellow, the black symbols mark the SM

point (box); the BF point (diamond); one dimensional best fits (upwards pointing triangle); and

two dimensional best fits (downwards pointing triangle). The S1� cloud is seen to be separated

from the SM point mostly along the C9 direction.

2.2 Quadratic approximation

The Hessian matrix is the standard tool to construct a quadratic approximation to the �2 function

in the vicinity of the global minimum. The eigenvectors of this matrix correspond to the directions

of the principal axes of the six-dimensional confidence level ellipsoids around the BF that occur in

this approximation. These ellipsoids can be used to study variations in the fit defined by parameter

displacements along these principal axes away from the BF point. In this case there are twelve,

six dimensional, sets of points Ci that result in fits that di↵er from the BF by approximately one

standard deviation. The Hessian at the minimum, in the basis (C7, C9, C10, C70 , C90 , C100), is given

4
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• axes centred with respect to point cloud, not at BF

• directions are centred and scaled 




data vs SM and vs BF:     
experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (7)

The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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Figure 4: The top panels show the Pull of each observable with respect to the SM (left) and the

best fit (right). The bottom panels show �(Pull) for all observables ignoring correlations (left)

and with correlations (right). Values larger than 2 for the top panels (1 and 0.84) for the bottom)

have been labeled in red and selected for discussion in the text.

Points with values of |�(Pull)| � 1 (left) and |��(Pull)| � 0.84 (left) are highlighted in red

in Figure 4. The particular cuto↵s for this are rather arbitrary. For individual pulls, we have

a statistical interpretation since �(Pull) is normalised to the total uncorrelated errors. When

including correlations, we follow the argument sketched in App. B. The largest values without

correlations are found for branching ratio measurements and for RK . The points that are singled

out as large by both definitions are:

• 68: 107 ⇥Br(B0 ! K0⇤µµ) [15-19] LHCb

• 73: 107 ⇥Br(B0 ! K+⇤µµ) [15-19] LHCb

• 92: 107 ⇥Br(Bs ! �µµ) [5-8] LHCb

• 93: 107 ⇥Br(Bs ! �µµ) [15-18.8] LHCb

• 98: RK(B+ ! K+) [1-6] LHCb

• 100: RK⇤(B0 ! K0⇤) [1.1-6] LHCb

• 167: 107 ⇥Br(B ! K⇤µµ) [16-19] CMS-7

Of the observables in this list, (167) is the only one that has a large preference for the SM over

the BF.

There are several other observables highlighted in the bottom-left panel as showing a pull

di↵erence between 1 and 2 that no longer stand out when correlations are included (bottom-right

11
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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52 stands out against both the SM and the BF
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Figure 4: The top panels show the Pull of each observable with respect to the SM (left) and the

best fit (right). The bottom panels show �(Pull) for all observables ignoring correlations (left)

and with correlations (right). Values larger than 2 for the top panels (1 and 0.84) for the bottom)

have been labeled in red and selected for discussion in the text.

Points with values of |�(Pull)| � 1 (left) and |��(Pull)| � 0.84 (left) are highlighted in red

in Figure 4. The particular cuto↵s for this are rather arbitrary. For individual pulls, we have

a statistical interpretation since �(Pull) is normalised to the total uncorrelated errors. When

including correlations, we follow the argument sketched in App. B. The largest values without

correlations are found for branching ratio measurements and for RK . The points that are singled

out as large by both definitions are:

• 68: 107 ⇥Br(B0 ! K0⇤µµ) [15-19] LHCb

• 73: 107 ⇥Br(B0 ! K+⇤µµ) [15-19] LHCb

• 92: 107 ⇥Br(Bs ! �µµ) [5-8] LHCb

• 93: 107 ⇥Br(Bs ! �µµ) [15-18.8] LHCb

• 98: RK(B+ ! K+) [1-6] LHCb

• 100: RK⇤(B0 ! K0⇤) [1.1-6] LHCb

• 167: 107 ⇥Br(B ! K⇤µµ) [16-19] CMS-7

Of the observables in this list, (167) is the only one that has a large preference for the SM over

the BF.

There are several other observables highlighted in the bottom-left panel as showing a pull

di↵erence between 1 and 2 that no longer stand out when correlations are included (bottom-right
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experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (7)

The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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correlations reduce the significance of some angular observables, like 
�  (44, 52) which appear in the left but not the right plot.

This is in contrast to �  (98, 100)
P′�5

RK, RK*

98 RK(B+ ! K
+)[1� 6] LHCb (1)

100 RK⇤(B0 ! K
0⇤)[1.1� 6] LHCb (2)

Pull�(p) =
X

j

�
�1/2
ij (T (p)�O)j include correlated uncertainties

Pull Differences and Correlation

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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>0 implies better agreement with BF



predictions in context of the fit

• the 𝜒2 function is only known numerically for a discrete set of points

• use Hessian matrix to approximate the 𝜒2 function near the global 

minimum

The first problem we address is a technical one that is important in practice: If the
uncertainties are very disparate for different directions in the n-dimensional parameter space
{ai}, i.e., if the eigenvalues of Hij span many orders of magnitude, how can one calculate the
matrix Hij with sufficient accuracy that reliable predictions are obtained for all directions?
To solve this problem, we have developed an iterative procedure that adapts the step sizes
used in the numerical calculation of the Hessian to the uncertainties in each eigenvector
direction. We demonstrate the effectiveness of this procedure in our specific application,
where the standard tool fails to yield reliable results.

The second problem we address concerns the reliability of estimating the uncertainty
∆X in the prediction for some physical variable X that is a function of the {ai}: How
can one estimate ∆X in a way that takes into account the variation of χ2 over the entire
parameter space {ai}, without assuming the quadratic approximation to χ2 and the linear
approximation to X that are a part of the error matrix approach? We solve this problem
by using Lagrange’s method of the undetermined multiplier to make constrained fits that
derive the dependence of χ2 on X . Because this method is more robust, it can be used by
itself or to check the reliability of the Hessian method.

Section 2 summarizes the error matrix formalism and establishes our notation. Section
3 describes the iterative method for calculating the Hessian, and demonstrates its superiority
in a concrete example. Section 4 introduces the Lagrange multiplier method and compares
its results with the Hessian approach to the same application. Section 5 concludes.

2 Error Matrix and Hessian

First we review the well-known connection between the error matrix and the Hessian matrix
of second derivatives. We emphasize the eigenvector representations of those matrices, which
are used extensively later in the paper.

The basic assumption of the error matrix approach is that χ2 can be approximated by
a quadratic expansion in the fit parameters {ai} near the global minimum. This assumption
will be true if the variation of the theory values TI with {ai} is approximately linear near
the minimum. Defining yi = ai − a0i as the displacement of parameter ai from its value a0i
at the minimum, we have

χ2 = χ 2
0 +

∑

i,j

Hij yi yj , (2)

Hij =
1

2

(

∂2χ2

∂yi ∂yj

)

0

, (3)

where the derivatives are evaluated at the minimum point yi = 0 and Hij are the elements
of the Hessian matrix.1 There are no linear terms in yi in (2), because the first derivatives
of χ2 are zero at the minimum.

Being a symmetric matrix, Hij has a complete set of n orthonormal eigenvectors V (k)
i ≡

1We include a factor 1/2 in the definition of H , as is the custom in high energy physics.
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Figure 1: For illustrative purposes, two data sets of gluon parton distribution function, in the form

p(x)±�p(x) for 15 and 16 values of x, respectively (shown in red and blue). The left (right) panel

shows the low (high) x region respectively.
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Figure 2: Di↵erence between the �2-function (black), and quadratic approximation (orange). Their

intersection with a 95% confidence level plane is shown on the right panel. The intersections of the

principal axes with the ellipse (that occurs in the quadratic approximation) are shown as the black

dots in the right panel. The numbers label the eigenvector of H corresponding to that direction.

The set of responses, �±i,l, in this example is shown in Figure 3. From inspecting the limiting

behaviour of Eq. 6 it is clear that the description at low x is dependent mainly on a while large

values of x are mostly sensitive to b. This is reflected in the uncertainty curves in Figure 1, and

also when looking at the �s. For this simple example the main directions identified by the Hessian

method are in fact well aligned with the original directions in parameter space. Considering the

values of � we find that �±1 , which corresponds mainly to a variation of a, takes large values for bins

with low values of x, while �±2 takes large values for bins with large values of x. We conclude that

the parameter dependence is captured by the �s as expected. Going to more complex descriptions

4

• Eigenvectors are principal axes of the approximate confidence level ellipsoids

• Eigenvalues encode how tightly each direction is constrained by the data



lower dimensional fits from the 
Hessian

• very quickly produce any 
lower dimensional fit


• i.e.: after Moriond BF fit 
has  a reduced �  from 
the SM implied change of 
� 


• 2d projections or slices of 
6d �  cloud


• fast test of NP scenarios
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Normalised eigenvectors

• large alignment with one WC only for 1+- directions. These 
are the most constrained ( largest eigenvalues), 
corresponding closely to the parameters C7, C7’ respectively


• PCA: in this case all six directions are important,  explaining 
between 31% to 13% of the variance in the data

eigenvector C7 C9 C10 C70 C90 C100

1 0.996 0.0317 -0.000796 -0.0841 0.00334 -0.00924

2 -0.0836 -0.01 -0.00843 -0.996 -0.0114 0.0181

3 0.0192 -0.267 -0.306 0.023 -0.361 0.839

4 0.0169 -0.466 0.859 -0.000316 -0.192 0.0824

5 0.023 -0.843 -0.374 0.0015 0.243 -0.3

6 0.000335 0.0212 0.166 -0.0036 0.88 0.445

Table 2: Normalized eigenvectors of the Hessian matrix in the space of Wilson coe�cients. The

ordering corresponds to decreasing eigenvalue.

3.1 Comparing predictions and observations

In order to quantify the comparison between the di↵erent predictions and the experimental results

we will use the following metrics

1. The Pull, which measures the di↵erence between the prediction T (p) for a given set of

parameters p and the observation O in terms of the uncertainty constructed by adding

experimental and theoretical errors in quadrature and ignoring correlations:5

Pull(p)i =
T (p)i �Oiq
�2

exp,i
+�2

T (p)i

(7)

We will use the parameter sets, p, corresponding to the SM and the BF point in what follows.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull)i = |Pull(SM)i|� |Pull(BF)i|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (8)

where ��1/2 is the square root of the inverse of the full covariance matrix (including both

experimental and theoretical errors evaluated at the SM point).

Notice that these measures allow an explicit and systematic comparison between Pulls in the

SM and BF scenarios. However, the distribution of �(Pull) will not follow a �2 distribution

(but is measuring di↵erences in units of the total uncertainty).6

The absolute value ensures that a positive number indicates that the BF prediction is in

better agreement with the observation, and a negative value signals better agreement of the

SM prediction with the observation. �(Pull) captures the improvement in matching the

observed value for the BF as compared to the SM. Notice that �(Pull) and ��(Pull)i have

di↵erent connotations. While �(Pull) measures the absolute preference for the BF over the

5
This Pull is defined for each observable, while the definition in Eq. 6 is defined in the parameter space of the six

Wilson coe�cients.

6
Alternatively, one may wish to define a measure comparing how much each measurement contributes to the

total �2
in each scenario, i.e. comparing quadratic Pulls rather than linear ones. We find that such a definition

gives qualitatively similar results here (an explicit comparison is given in the Appendix). Since our aim is a direct

comparison between SM and BF predictions and measured values (rather than statistical interpretation of the

results), we will not consider such a definition here.
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eigenvalues: HD =diag(6621,5647,115.6,72.6,44.7, 6.1) 
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Fit Uncertainty

– Use the SVD points to evaluate fit 
uncertainty (6d or maximum)


– can also visualise as 6d uncertainty

Measured 
SM prediction 
BF prediction 
Fit uncertainty

ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Figure 6: Measured value (black), SM prediction (green), best fit (brown) and error in the fit

(purple) for the 175 observables.

picture is obtained when taking into account correlations, see Tables 6, 7, and direct comparison

of the two gives indications of which observables are most sensitive to such e↵ects.

Direction two is constrained predominantly by low q2 bin observations of P1, and direction

four is dominated by the single observable 98 (LHCb measurement of RK), especially when taking

into account correlation e↵ects. A very di↵erent picture is observed in direction three, which does

not exhibit a large hierarchy in �2. This indicates that it is really the combination of multiple

observables that constrains this direction. Observable 98 is found to be relevant in constraining

15

large � error << fit uncertainty, important observableΔχ2 ⟷



Relating Observables and Parameter Directions

experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (7)

The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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How important are correlation effects



Ranking Observables

1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 2.48 16 2.28 68 1.02 57 0.87

170 0.58 170 0.74 95 1.25 95 1.19 57 0.89 98 0.85

41 0.56 41 0.52 114 0.83 114 0.74 155 0.85 68 0.80

90 0.34 90 0.46 173 0.74 173 0.74 172 0.85 172 0.69

49 0.31 49 0.39 74 0.73 74 0.72 98 0.75 155 0.68

Table 4: Ranking of observables by � along directions 1,2,3.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.33 98 2.87 57 0.93 49 0.64 98 1.42 68 2.07

68 1.41 68 1.67 49 0.72 68 0.58 172 0.97 155 1.64

13 1.33 13 1.62 52 0.56 155 0.49 13 0.91 93 1.44

155 1.08 155 1.28 44 0.56 41 0.43 40 0.61 20 0.80

93 0.93 93 1.10 171 0.35 93 0.42 19 0.54 73 0.80

Table 5: Ranking of observables by � along directions 4,5,6.

constraining multiple directions. An alternative way of looking at this information is to study

which parameter combinations result in the largest variance in theory predictions. One approach

is therefore to perform a principal component analysis (PCA) on the set of delta vectors. PCA is

an orthogonal linear transformation onto a coordinate system such that the first basis direction

is aligned with the maximum variance in the data, the second basis is the direction of maximum

variation orthogonal to the first coordinate, and the remaining bases are sequentially computed

analogously. It can be used for dimension reduction as the first few principal components (PCs)

capture most of the information.

For this we consider each observable as one data point with 12 parameters, the values of �

in the 12 shifted points. The first two principal components, for example, provide the directions

with largest variations, and plotting the data points in these projections shows which observables

dominate. Di↵erent information is captured by looking at each observable in isolation (using �)

or in the context of correlations within the global fit (using ��), and we therefore reproduce this

analysis for both cases.

For the PCA analysis the data should first be centered, i.e. the mean in each direction has to

be subtracted. In our case, the mean values are close to zero so the e↵ect of centering is not very

large. We find very symmetric behavior: the main di↵erence between plus/minus directions is just

the sign of �. This means that we can fully describe the 12 dimensional distribution in the space

of the first six PCs. These six remaining PCs are found to contain considerable variance in the

distribution: whereas the first PC explains 31% of the variance, the sixth one explains 8% when

correlations are ignored. When correlations are kept the first PC explains 20% of the variance

and the sixth one explains 13%. This suggests that all six dimensions (i.e. WCs) still allow for

considerable variance in the predictions of the considered observables. The full rotation matrix

transforming from delta space to the first six PC space is given explicitly in Table 8.

We find that �6 is the only direction which exhibits strongly asymmetric behavior: for certain
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Mostly C7

Constraints completely dominated by observable 171: 
� . The next one is 170: � . Correlations 
do not change the picture
Br(B → Xsγ) Br(Bs → ϕγ)

Without correlation

Mostly C7

Similar picture as before

1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 1.95 16 1.77 172 0.85 98 0.85

170 0.49 170 0.64 95 0.96 95 0.91 98 0.75 172 0.69

41 0.30 49 0.35 173 0.74 173 0.74 100 0.53 93 0.42

49 0.24 41 0.27 74 0.74 74 0.73 93 0.51 100 0.42

169 0.13 169 0.17 114 0.66 114 0.59 57 0.40 13 0.36

Table 6: Ranking of observables by �� in the first three directions.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.34 98 2.88 49 1.20 49 1.14 98 1.42 100 1.07

100 0.66 100 0.79 57 1.15 41 0.47 172 0.97 172 0.78

172 0.51 13 0.61 52 0.66 171 0.37 19 0.60 93 0.71

13 0.50 172 0.61 44 0.48 44 0.27 13 0.49 40 0.61

93 0.41 93 0.49 56 0.42 57 0.26 40 0.45 20 0.61

Table 7: Ranking of observables by �� in the last three directions.

observables there are di↵erences between the change in prediction in plus/minus directions, see

Figure 9 (left). This figure compares the values in the two directions of �6� (a similar but more

crowded picture is found plotting �6), and shows as an extreme example observable 100, RK? , for

which the theory prediction varies significantly along one direction but not the opposite. �6� is

the only one of the twelve points with a large negative C90 , and to a lesser extent C100 .

Another observation is that �3 (mostly C100) is an important contribution to PC2 based on �,

but not relevant in the first two PCs when for PCA based on ��. This suggests that including

correlations reduces the variance in that direction.

We now focus on the first two PCs to study which directions and observables are responsible

for the largest variation. To get an overview of the distribution of �s we show the projection of

observables onto the first two principal components in Figure 8 in the form of so-called biplots.

These show the projected data points, as well as a visualisation of the projection in the form of

labeled arrows pointing outwards from the center. This format makes it easy to relate directions

on the projection to the original parameters.

When considering each observable in isolation (left view), clear trends can be observed. For

example, observables aligned with direction 6�, 5� and anti-aligned with direction 5+ are mainly

branching ratio observations in bins of large q2 (e.g. IDs 68, 93, ...). There are di↵erences in

branching ratio observables depending on the final state: notably most observables with negative

PC1 but positive PC2 correspond to decays into K⇤, while decays into K+ and K0 appear to take

negative values in PC2 (e.g. IDs 98, 13, 14). Angular observables on the other hand show a very

di↵erent behavior. For example observables 28, 41 and 44 are found to have the largest values of

PC1. Large q2 bins are di↵erent, e.g. IDs 56, 57, 60, take small positive values in PC1 but large

absolute values in PC2.

The picture changes drastically when considering correlations (right view), where the relevance

of large q2 bins of branching ratio observables is no longer dominant. Note also the di↵erent e↵ect
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With correlation
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Figure 6: Measured value (black), SM prediction (green), best fit (brown) and error in the fit

(purple) for the 175 observables.

picture is obtained when taking into account correlations, see Tables 6, 7, and direct comparison

of the two gives indications of which observables are most sensitive to such e↵ects.

Direction two is constrained predominantly by low q2 bin observations of P1, and direction

four is dominated by the single observable 98 (LHCb measurement of RK), especially when taking

into account correlation e↵ects. A very di↵erent picture is observed in direction three, which does

not exhibit a large hierarchy in �2. This indicates that it is really the combination of multiple

observables that constrains this direction. Observable 98 is found to be relevant in constraining
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SM prediction 
BF prediction 
Fit uncertainty 
Experiment



Ranking Observables
Mostly C9

Quite different, BR observables 
drop out, angular observables 

become more important

With correlation

moving towards 
the SM 

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 1.95 16 1.77 172 0.85 98 0.85

170 0.49 170 0.64 95 0.96 95 0.91 98 0.75 172 0.69

41 0.30 49 0.35 173 0.74 173 0.74 100 0.53 93 0.42

49 0.24 41 0.27 74 0.74 74 0.73 93 0.51 100 0.42

169 0.13 169 0.17 114 0.66 114 0.59 57 0.40 13 0.36

Table 6: Ranking of observables by �� in the first three directions.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.34 98 2.88 49 1.20 49 1.14 98 1.42 100 1.07

100 0.66 100 0.79 57 1.15 41 0.47 172 0.97 172 0.78

172 0.51 13 0.61 52 0.66 171 0.37 19 0.60 93 0.71

13 0.50 172 0.61 44 0.48 44 0.27 13 0.49 40 0.61

93 0.41 93 0.49 56 0.42 57 0.26 40 0.45 20 0.61

Table 7: Ranking of observables by �� in the last three directions.

observables there are di↵erences between the change in prediction in plus/minus directions, see

Figure 9 (left). This figure compares the values in the two directions of �6� (a similar but more

crowded picture is found plotting �6), and shows as an extreme example observable 100, RK? , for

which the theory prediction varies significantly along one direction but not the opposite. �6� is

the only one of the twelve points with a large negative C90 , and to a lesser extent C100 .

Another observation is that �3 (mostly C100) is an important contribution to PC2 based on �,

but not relevant in the first two PCs when for PCA based on ��. This suggests that including

correlations reduces the variance in that direction.

We now focus on the first two PCs to study which directions and observables are responsible

for the largest variation. To get an overview of the distribution of �s we show the projection of

observables onto the first two principal components in Figure 8 in the form of so-called biplots.

These show the projected data points, as well as a visualisation of the projection in the form of

labeled arrows pointing outwards from the center. This format makes it easy to relate directions

on the projection to the original parameters.

When considering each observable in isolation (left view), clear trends can be observed. For

example, observables aligned with direction 6�, 5� and anti-aligned with direction 5+ are mainly

branching ratio observations in bins of large q2 (e.g. IDs 68, 93, ...). There are di↵erences in

branching ratio observables depending on the final state: notably most observables with negative

PC1 but positive PC2 correspond to decays into K⇤, while decays into K+ and K0 appear to take

negative values in PC2 (e.g. IDs 98, 13, 14). Angular observables on the other hand show a very

di↵erent behavior. For example observables 28, 41 and 44 are found to have the largest values of

PC1. Large q2 bins are di↵erent, e.g. IDs 56, 57, 60, take small positive values in PC1 but large

absolute values in PC2.

The picture changes drastically when considering correlations (right view), where the relevance

of large q2 bins of branching ratio observables is no longer dominant. Note also the di↵erent e↵ect
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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As compared to C7 the constraints 
much more balanced 

→ combination 

of observables is important

1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 2.48 16 2.28 68 1.02 57 0.87

170 0.58 170 0.74 95 1.25 95 1.19 57 0.89 98 0.85

41 0.56 41 0.52 114 0.83 114 0.74 155 0.85 68 0.80

90 0.34 90 0.46 173 0.74 173 0.74 172 0.85 172 0.69

49 0.31 49 0.39 74 0.73 74 0.72 98 0.75 155 0.68

Table 4: Ranking of observables by � along directions 1,2,3.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.33 98 2.87 57 0.93 49 0.64 98 1.42 68 2.07

68 1.41 68 1.67 49 0.72 68 0.58 172 0.97 155 1.64

13 1.33 13 1.62 52 0.56 155 0.49 13 0.91 93 1.44

155 1.08 155 1.28 44 0.56 41 0.43 40 0.61 20 0.80

93 0.93 93 1.10 171 0.35 93 0.42 19 0.54 73 0.80

Table 5: Ranking of observables by � along directions 4,5,6.

constraining multiple directions. An alternative way of looking at this information is to study

which parameter combinations result in the largest variance in theory predictions. One approach

is therefore to perform a principal component analysis (PCA) on the set of delta vectors. PCA is

an orthogonal linear transformation onto a coordinate system such that the first basis direction

is aligned with the maximum variance in the data, the second basis is the direction of maximum

variation orthogonal to the first coordinate, and the remaining bases are sequentially computed

analogously. It can be used for dimension reduction as the first few principal components (PCs)

capture most of the information.

For this we consider each observable as one data point with 12 parameters, the values of �

in the 12 shifted points. The first two principal components, for example, provide the directions

with largest variations, and plotting the data points in these projections shows which observables

dominate. Di↵erent information is captured by looking at each observable in isolation (using �)

or in the context of correlations within the global fit (using ��), and we therefore reproduce this

analysis for both cases.

For the PCA analysis the data should first be centered, i.e. the mean in each direction has to

be subtracted. In our case, the mean values are close to zero so the e↵ect of centering is not very

large. We find very symmetric behavior: the main di↵erence between plus/minus directions is just

the sign of �. This means that we can fully describe the 12 dimensional distribution in the space

of the first six PCs. These six remaining PCs are found to contain considerable variance in the

distribution: whereas the first PC explains 31% of the variance, the sixth one explains 8% when

correlations are ignored. When correlations are kept the first PC explains 20% of the variance

and the sixth one explains 13%. This suggests that all six dimensions (i.e. WCs) still allow for

considerable variance in the predictions of the considered observables. The full rotation matrix

transforming from delta space to the first six PC space is given explicitly in Table 8.

We find that �6 is the only direction which exhibits strongly asymmetric behavior: for certain
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Without correlation



useful to place new results in context: 
example Moriond 2019

• The LHCb collaboration has a new measurement of RK

R[1.1,6]
K =

B(B ! Kµ+µ�
)

B(B ! Ke+e�)
= 0.846+0.060+0.016

�0.054�0.014

• The Belle collaboration has new results for RK?

R[0.045,1.1]
K? = 0.52+0.36

�0.26 ± 0.05

R[1.1,6]
K? = 0.96+0.45

�0.29 ± 0.11

R[0.1,8]
K? = 0.90+0.27

�0.21 ± 0.10

R[15,19]
K? = 1.18+0.52

�0.32 ± 0.10

R[0.045,]
K? = 0.94+0.17

�0.14 ± 0.08

• A new combination of the new ATLAS result with previous CMS and

LHCb results

B(Bs ! µ+µ�
) = 2.65+0.43

�0.39 ⇥ 10
�9



without redoing the fit
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98
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0.8

1.

98

0.6

0.8

1.

old measurement

measurement 2019

SM prediction 
BF prediction 
Fit uncertainty

ID |�3+|2 |�3�|2 |�4+|2 |�4�|2 |�5+|2 |�5�|2 |�6+|2 |�6�|2
98 0.75 0.85 2.30 2.90 0.14 0.05 1.40 0.28

2.00 2.30 6.30 7.80 0.38 0.14 3.80 0.75
|�|2max 1.0 (68) 0.9 (57) 2.3 (98) 2.9 (98) 0.9 (57) 0.6 (49) 1.4 (98) 2.0 (68)

• new value of �  shifts BF 
towards SM along direction 4-


• results in a reduction in C10


• �  now completely dominates 
direction 4, (mostly C10 with a 
smaller admixture of C9)

R[1.1−6]
K

RK



without redoing the fit
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old measurement

measurement 2019

SM prediction 
BF prediction 
Fit uncertainty

ID |�3+|2 |�3�|2 |�4+|2 |�4�|2 |�5+|2 |�5�|2 |�6+|2 |�6�|2
172 0.85 0.69 0.51 0.61 0.01 0.01 0.97 0.78

1.90 1.60 1.20 1.40 0.02 0.02 2.20 1.80
|�|2max 1.0 (68) 0.9 (57) 2.3 (98) 2.9 (98) 0.9 (57) 0.6 (49) 1.4 (98) 2.0 (68)

• new number �  
is pushing away from both 
SM and BF


• largest impact on 6 and 3 
with shifts along 6- and 3-.


• competing in 6 with 98, don’t 
expect large effect on C9


• shift along 3- prefers a 
negative �

Br(Bs → μ+μ−)

C10′�



•The 6d-1σ region is separated from the SM mostly 
along C9. This is the only direction where the SM 
point is not inside the 1σ region.

•Correlations reduce the preference for the BF over 
the SM for angular observables (such as P5’)

•used the Hessian to discuss fit uncertainties, lower 
dimensional fits and relations between parameter 
directions and observables

•estimate of the effect of future measurements in 
the global fit

Summary of six-d fit



• the most constrained direction 1 corresponds mostly to C7 
and is dominated by B → Xs 𝛾

• the next most constrained direction 2 (C7’) is also 
dominated by one observable: low q2 bins for P1


• in direction 3 (mostly C10’) the constraints accumulate from 
multiple observables and correlations play an important 
role

•direction 4 is dominated by �  (especially after Moriond) 
and constrains mostly C10


•direction 5 (mostly C9) is quite complex with multiple 
observables providing similar constraints. We find that it is 
more sensitive to  than to 

RK

P2 P′�5, RK, RK*

For specific directions



general 2HDM (FCNC) Yukawa’s

𝞆 → 0 recover the flavour conserving models
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with PhD student Cristian Sierra



operators for b → s μ μ

• The model will in general produce all the operators listed 
before, O7,9,10 and O7’,9’,10’ in addition to scalar and pseudo 
scalar operators


• at tree level: OS,P (below) and OS’,P’ with PR → PL


• the rest at one loop.


• We will only keep C9,10 at one loop 

–prejudice from previous fits, C9’,10’ relatively suppressed by masses


–use C7,7’ as constraints ( )B → Xsγ

where x = I, II, X, Y and the � = �
1
Ỹ f

2
Feynman rules are given in the Appendix. We have

implemented the Cheng-Sher ansatz [12],

Ỹ f

ij
=

Ò
mf

i
mf

j

‚
‰̃f

ij
. (8)

in such a way that the additional parameters occurring as a consequence of allowing flavour changing
couplings are ‰̃f

ij
.

3 E�ective Hamiltonian for b æ sµ+µ≠

The e�ective Hamiltonian responsible for b æ sµ+µ≠ transitions that results from new physics (NP)
operators can be written as:
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È
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where

O9 = 4GFÔ
2
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ú
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–

4fi
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2
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ú
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2
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ú
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4fi
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where the prime operators are obtained by the replacement PR æ PL. Here we will not take into
account neither the OÕ

9 nor the OÕ
10 operators suppressed by ms. The Wilson coe�cients thus defined

will be given by

C9 = C(1)
9 = C“

9 + CZ

9 + Cbox

9 , (12)

C10 = C(1)
10 = CZ

10 + Cbox

10 , (13)

C(1)
S

= Cpen

S
+ Cbox

S , (14)

C(1)
P

= Cpen

P
+ Cbox

P . (15)

According to Refs.[5, 6], only the box diagrams are relevant in the limit of large tan — so we will
compare them with respect to the tree level contribution.

3.1 Wilson coe�cients

3.1.1 CS,P tree level

For the process sb æ µµ at tree level we have
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rewriting the product sb ¢ µµ = (sRb + sLb) ¢ µµ and with
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with the respective Feynman rules given in the Appendix.

3.1.2 CS,P boxes

The box diagrams have been already studied in the literature and are given by [5, 7],
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where the functions g4,5,6(xH± , xt) are given in the Appendix. Let us check the order of magnitude
of these contributions for one model in the decoupling limit c–— æ 0, let’s say model-II, assuming ‰̃’s
real for simplicity and mH± = mH . Ignoring the small couplings �d
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the 4 parameter fit



allowed region in model parameters

• would like to map the allowed (1 sigma) region (red points) 
to the model parameters


• equivalently the excluded (>1 sigma) region (blue points)


• usual 2d plots can’t do it as inclusion (exclusion) depends on 
the other dimensions
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projection pursuit

• find the “most interesting” projection


• define interesting


• in this case the overlap between the allowed (1 sigma) 
region and the excluded (> 1 sigma) region in model 
parameter space


• minimise the function that parametrises this overlap as the 
tour moves through projections


• stop when minimum is found



some combination consisting mostly of 

�  and �  is most determining for exclusiontan β χsb



 App developed by Ursula Laa: https://uschilaa.github.io/galahr/

https://uschilaa.github.io/galahr/

