the neutral B anomalies, the 6d global fit and new visualisation tools

German Valencia

based on:
Bernat Capdevila, Ursula Laa, G. V. EPJC (2019)
arXiv:1811.10793
and work in progress

the neutral current B anomalies

- detailed measurements of processes with a quark level transition $b \rightarrow s \mu^{+} \mu^{-}$(and also some $b \rightarrow s e^{+} e^{-}$)
- small problems showing up since around 2009, none particularly exciting by itself
- cumulative effect appears to go against the SM with claims of $>5 \sigma$ significance
- three aspects: the global fit (this talk), new physics, matrix elements
- best hints for LFUV are the ratios R_{k} and $R_{K^{*}}$
- more subtle deviations in details of angular distributions and branching ratios

New Physics?

LHCb collaboration, Phys. Rev. Lett. 113 (2014) 151601
after Moriond 2019
2.5σ

$$
R_{K}=\frac{\mathrm{BR}\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\mathrm{BR}\left(B \rightarrow K e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036 \text { vs } 1.00 \pm 0.01 \text { in } \mathrm{SM}
$$

$$
R_{K}^{[1.1,6]}=\frac{\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)}=0.846_{-0.054}^{+0.060}{ }_{-0.014}^{0.016}
$$

LHCb arXiv:1903.09252 [hep-ex].

the less obvious NP case

- Most prominent deviation in $B^{0} \rightarrow K^{0}{ }^{*} \mu^{+} \mu^{-}$is in the angular distribution of the muons for the low di-muon invariant mass region through " ${ }^{\prime}{ }_{5}$ "

The 6d global fit

- our starting point is S. Descotes-Genon, et.al. JHEP 06 (2016) 092

$$
\begin{aligned}
\mathcal{O}_{7} & =\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} \\
\mathcal{O}_{9} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{10} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{7^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu} \\
& \mathcal{O}_{9^{\prime}}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \\
& \mathcal{O}_{10^{\prime}}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
\end{aligned}
$$

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i} O_{i}
$$

$$
\begin{gathered}
C_{i}=C_{i}^{S M}+C_{i}^{N P} \\
C_{7,9,10}^{S M}=-0.29,4.07,-4.31
\end{gathered}
$$

float $C_{7}^{N P}, C_{7^{\prime}}^{N P}, C_{9 \mu}^{N P}, C_{9 \mu}^{N P}, C_{10 \mu}^{N P}, C_{10^{\prime} \mu}^{N P}$
Best fit (BF) parameters obtained by minimising
$\chi^{2}\left(\mathcal{C}_{k}\right)=\sum_{i, j=1}^{N_{\text {obs }}}\left[O_{i}^{\exp }-O_{i}^{\mathrm{th}}\left(\mathcal{C}_{k}\right)\right]\left(C_{\mathrm{exp}}+C_{\mathrm{th}}\right)_{i j}^{-1}\left[O_{j}^{\exp }-O_{j}^{\mathrm{th}}\left(\mathcal{C}_{k}\right)\right]$

the observables

- include 175 observables
- branching ratios and parameters in the angular distributions in different bins of dilepton invariant mass
- processes:
- $B^{(0,+)} \rightarrow K^{*(0,+)} \mu^{+} \mu^{-}, B^{(0,+)} \rightarrow K^{*(0,+)} e^{+} e^{-}, B^{(0,+)} \rightarrow K^{*(0,+)} \gamma$,
- $B^{(0,+)} \rightarrow K^{(0,+)} \mu^{+} \mu^{-}, B^{+} \rightarrow K^{+} e^{+} e^{-}$(through the R_{K} observable),
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \gamma$,
- $B \rightarrow X_{s} \mu^{+} \mu^{-}, B \rightarrow X_{s} \gamma$ and $B_{s} \rightarrow \mu^{+} \mu^{-}$.
- from Belle, LHCb, Atlas, CMS and HFLAV combinations

P_{5}^{\prime} : the angular distribution

optimised observables Descotes-Genon et al, JHEP 05 (2013) 137

$$
\begin{aligned}
& P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}} \\
& P_{1,2,3}=\frac{2 S_{3},-1 / 2 S_{6},-S_{9}}{\left(1-F_{\mathrm{L}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\mathrm{~d} \Gamma / d q^{2}} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
& +S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

Correlation Map: some correlations are known

Previous Results

Tabulated results from B. Capdevila et. al. JHEP 01 (2018) 093

2d fits show correlations between parameters
for 1d results, show projections or slices? where?

six parameter fit - 6d picture

	$\mathcal{C}_{7}^{\mathrm{NP}}$	$\mathcal{C}_{9 \mu}^{\mathrm{NP}}$	$\mathcal{C}_{10 \mu}^{\mathrm{NP}}$	$\mathcal{C}_{7^{\prime}}$	$\mathcal{C}_{9^{\prime} \mu}$	$\mathcal{C}_{10^{\prime} \mu}$
Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02
1σ	$[-0.01,+0.05]$	$[-1.34,-0.88]$	$[+0.10,+0.57]$	$[+0.00,+0.06]$	$[-0.17,+1.04]$	$[-0.28,+0.36]$
2σ	$[-0.03,+0.07]$	$[-1.54,-0.63]$	$[-0.08,+0.84]$	$[-0.02,+0.08]$	$[-0.59,+1.58]$	$[-0.54,+0.68]$

- Characterisation beyond just the best fit (BF) point
- meaning of 1σ ranges?
- How does the 6d fit differ from lower dimensional ones
- Which observables are important in constraining the parameters
- Fit in observable space and role of correlation
- Predictions in the context of the fit rather than for the BF only

Visualising the 6d 1 sigma region relative to BF, lower dimensional best fits and the SM

PPI maximising distance to SM produces the projection shown before

visualisation of 1 sigma region

- axes centred with respect to point cloud, not at BF
- directions are centred and scaled

data vs SM and vs BF: $\quad \operatorname{Pull}(p)=\frac{T(p)-0}{\sqrt{S_{z p}^{2}+\Delta_{T(P)}^{2}}}$

SM

44
52 $\quad \begin{aligned} & P_{5}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[4-6] \\ & P_{5}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[6-8]\end{aligned}$

$$
\begin{array}{c|c}
98 & R_{K}\left(B^{+} \rightarrow K^{+}\right)[1-6] \\
99 & R_{K^{*}}\left(B^{0} \rightarrow K^{0 *}\right)[0.045-1.1] \\
100 & R_{K^{*}}\left(B^{0} \rightarrow K^{0 *}\right)[1.1-6]
\end{array}
$$

52 stands out against both the SM and the BF no so $44,98,99,100$

Pull Differences and Correlation

$$
\begin{aligned}
\operatorname{Pull}_{\sigma}(p) & =\sum_{j} \sigma_{i j}^{-1 / 2}(T(p)-O)_{j} \\
\Delta(\operatorname{Pull}) & =|\operatorname{Pull}(\mathrm{SM})|-|\operatorname{Pull}(\mathrm{BF})|
\end{aligned}
$$

include correlated uncertainties
>0 implies better agreement with BF

correlations reduce the significance of some angular observables, like $P_{5}^{\prime}(44,52)$ which appear in the left but not the right plot. This is in contrast to $R_{K}, R_{K^{*}}(98,100)$

predictions in context of the fit

- the χ^{2} function is only known numerically for a discrete set of points
- use Hessian matrix to approximate the χ^{2} function near the global minimum

$$
\begin{gathered}
\chi^{2}=\chi_{0}^{2}+\sum_{i, j} H_{i j} y_{i} y_{j} \\
H_{i j}=\frac{1}{2}\left(\frac{\partial^{2} \chi^{2}}{\partial y_{i} \partial y_{j}}\right)_{0} \\
y_{i}=a_{i}-a_{i}^{0} \\
\text { fit parameter } \begin{array}{c}
\text { value at the } \\
\text { minimum }
\end{array}
\end{gathered}
$$

- Eigenvectors are principal axes of the approximate confidence level ellipsoids
- Eigenvalues encode how tightly each direction is constrained by the data

Iower dimensional fits from the Hessian

- very quickly produce any lower dimensional fit
- i.e.: after Moriond BF fit has a reduced $\Delta \chi^{2}$ from the SM implied change of $<0.1 \sigma$
- 2d projections or slices of 6d 1σ cloud
- fast test of NP scenarios

Normalised eigenvectors

eigenvalues: $H D=\operatorname{diag}(6621,5647,115.6,72.6,44.7,6.1)$

eigenvector	C_{7}	C_{9}	C_{10}	$C_{7^{\prime}}$	$C_{9^{\prime}}$	$C_{10^{\prime}}$
1	0.996	0.0317	-0.000796	-0.0841	0.00334	-0.00924
2	-0.0836	-0.01	-0.00843	-0.996	-0.0114	0.0181
3	0.0192	-0.267	-0.306	0.023	-0.361	0.839
4	0.0169	-0.466	0.859	-0.000316	-0.192	0.0824
5	0.023	-0.843	-0.374	0.0015	0.243	-0.3
	0.0212	0.166	-0.0036	0.88	0.445	

- large alignment with one WC only for 1+- directions. These are the most constrained (largest eigenvalues), corresponding closely to the parameters $\mathrm{C}_{7}, \mathrm{C}_{7}$, respectively
- PCA: in this case all six directions are important, explaining between 31% to 13% of the variance in the data

visualising projections

- 12 SVD point envelope shown in two projections
- line in the left plot shows direction 5 (mostly along C_{9}): the Hessian approximation does not capture the asymmetric shape in this case
- right plot reveals a strong correlation between C_{9} and $C_{10^{\prime}}$
- right plot illustrates the importance of the SVD envelope

Fit Uncertainty

- Use the SVD points to evaluate fit uncertainty (6d or maximum)
- can also visualise as 6d uncertainty

Measured
 SM prediction
 BF prediction

Fit uncertainty

ID	Observable	Exp
91	$10^{7} \times \operatorname{Br}\left(B_{s} \rightarrow \Phi \mu \mu\right)[2-5]$	LHCb $[26]$
92	$10^{7} \times \operatorname{Br}\left(B_{s} \rightarrow \Phi \mu \mu\right)[5-8]$	LHCb [26]
93	$10^{7} \times \operatorname{Br}\left(B_{s} \rightarrow \Phi \mu \mu\right)[15-18.8]$	LHCb $[26]$
94	$F_{L}\left(B \rightarrow K^{*} e e\right)[0.0020-1.120]$	LHCb [27]
95	$P_{1}\left(B \rightarrow K^{*} e e\right)[0.0020-1.120]$	LHCb [27]
96	$P_{2}\left(B \rightarrow K^{*} e e\right)[0.0020-1.120]$	LHCb [27]
97	$P_{3}\left(B \rightarrow K^{*} e e\right)[0.0020-1.120]$	LHCb [27]
98	$R_{K}\left(B^{+} \rightarrow K^{+}\right)[1-6]$	LHCb [28]
99	$R_{K^{*}}\left(B^{0} \rightarrow K^{0 *}\right)[0.045-1.1]$	LHCb [29]
100	$R_{K^{*}}\left(B^{0} \rightarrow K^{0 *}\right)[1.1-6]$	LHCb [29]
101	$P_{4}^{\prime}\left(B \rightarrow K^{*} e e\right)[0.1-4]$	Belle [30]
102	$P_{4}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[0.1-4]$	Belle [30]
103	$P_{5}^{\prime}\left(B \rightarrow K^{*} e e\right)[0.1-4]$	Belle [30]
104	$P_{5}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[0.1-4]$	Belle [30]
105	$P_{4}^{\prime}\left(B \rightarrow K^{*} e e\right)[4-8]$	Belle [30]
106	$P_{4}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[4-8]$	Belle [30]
107	$P_{5}^{\prime}\left(B \rightarrow K^{*} e e\right)[4-8]$	Belle [30]
108	$P_{5}^{\prime}\left(B \rightarrow K^{*} \mu \mu\right)[4-8]$	Belle [30]

large $\Delta \chi^{2} \longleftrightarrow$ error \ll fit uncertainty, important observable

Relating Observables and Parameter Directions

Change in predicted value when moving 1σ in SVD a given direction, normalised to the error

$$
\delta_{i}=\frac{\left(T_{i}-T_{B F}\right)}{\sqrt{\Delta_{\text {exp }}^{2}+\Delta_{B F}^{2}}}
$$

Taking into account correlated errors

$$
\delta_{\sigma, i}=\sum_{l} \sigma_{i l}^{-1 / 2}\left(T_{p t}-T_{B F}\right)_{l}
$$

? Which observables change most in each direction ? Which directions result in the largest variation in predictions ? How important are correlation effects

Ranking Observables

Without correlation

$$
\text { Mostly } \mathrm{C}_{7}
$$

$1+$		$1-$	
ID	δ^{2}	ID	δ^{2}
171	4.07	171	5.03
170	0.58	170	0.74
41	0.56	41	0.52
90	0.34	90	0.46
49	0.31	49	0.39

With correlation

Mostly C_{7}

$1+$		$1-$	
ID	δ^{2}	ID	δ^{2}
171	4.07	171	5.03
170	0.49	170	0.64
41	0.30	49	0.35
49	0.24	41	0.27
169	0.13	169	0.17

Similar picture as before

Constraints completely dominated by observable 171:
$\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)$. The next one is 170: $\operatorname{Br}\left(B_{s} \rightarrow \phi \gamma\right)$. Correlations do not change the picture

Ranking Observables

Mostly C 9

$5+$		$5-$	
ID	δ^{2}	ID	δ^{2}
57	0.93	49	0.64
49	0.72	68	0.58
52	0.56	155	0.49
44	0.56	41	0.43
171	0.35	93	0.42

$$
\begin{aligned}
& P_{2}\left(B \rightarrow K^{*} \mu \mu\right)[6-8] \\
& 10^{7} \times \operatorname{Br}\left(B^{0} \rightarrow K^{0 *} \mu \mu\right)[15-19] \\
& 10^{7} \times \operatorname{Br}\left(B \rightarrow K^{*} \mu \mu\right)[16-19]
\end{aligned}
$$

Without correlation

As compared to C_{7} the constraints much more balanced
\rightarrow combination
of observables is important

With correlation

Quite different, BR observables drop out, angular observables become more important
useful to place new results in context: example Moriond 2019

- The LHCb collaboration has a new measurement of R_{K}

$$
R_{K}^{[1.1,6]}=\frac{\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)}=0.846_{-0.054-0.014}^{+0.060+0.016}
$$

- The Belle collaboration has new results for $R_{K^{\star}}$

$$
\begin{aligned}
R_{K^{\star}}^{[0.045,1.1]} & =0.52_{-0.26}^{+0.36} \pm 0.05 \\
R_{K^{\star}}^{[1.1,6]} & =0.96_{-0.29}^{+0.45} \pm 0.11 \\
R_{K^{\star}}^{[0.1,8]} & =0.90_{-0.21}^{+0.27} \pm 0.10 \\
R_{K^{\star}}^{[15,19]} & =1.18_{-0.32}^{+0.52} \pm 0.10 \\
R_{K^{\star}}^{[0.045,]} & =0.94_{-0.14}^{+0.17} \pm 0.08
\end{aligned}
$$

- A new combination of the new ATLAS result with previous CMS and LHCb results

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=2.65_{-0.39}^{+0.43} \times 10^{-9}
$$

without redoing the fit

without redoing the fit

ID	$\left\|\delta^{3+}\right\|^{2}$	$\left\|\delta^{3-}\right\|^{2}$	$\left\|\delta^{4+}\right\|^{2}$	$\left\|\delta^{4-}\right\|^{2}$	$\left\|\delta^{5+}\right\|^{2}$	$\left\|\delta^{5-}\right\|^{2}$	$\left\|\delta^{6+}\right\|^{2}$	$\left\|\delta^{6-}\right\|^{2}$
172	0.85	0.69	0.51	0.61	0.01	0.01	0.97	0.78
	1.90	1.60	1.20	1.40	0.02	0.02	2.20	1.80
$\|\delta\|_{\max }^{2}$	$1.0(68)$	$0.9(57)$	$2.3(98)$	$2.9(98)$	$0.9(57)$	$0.6(49)$	$1.4(98)$	$2.0(68)$

Summary of six-d fit

-The $6 d-1 \sigma$ region is separated from the SM mostly along C_{9}. This is the only direction where the SM point is not inside the 1σ region.
-Correlations reduce the preference for the BF over the SM for angular observables (such as $\mathrm{P}_{5}{ }^{\prime}$)

- used the Hessian to discuss fit uncertainties, lower dimensional fits and relations between parameter directions and observables
-estimate of the effect of future measurements in the global fit

For specific directions

- the most constrained direction 1 corresponds mostly to C_{7} and is dominated by $B \rightarrow X_{s} \gamma$
- the next most constrained direction $2\left(\mathrm{C}_{7^{\prime}}\right)$ is also dominated by one observable: low q^{2} bins for P_{1}
- in direction 3 (mostly $\mathrm{C}_{10^{\prime}}$) the constraints accumulate from multiple observables and correlations play an important role
- direction 4 is dominated by R_{K} (especially after Moriond) and constrains mostly C_{10}
- direction 5 (mostly C_{9}) is quite complex with multiple observables providing similar constraints. We find that it is more sensitive to P_{2} than to $P_{5}^{\prime}, R_{K}, R_{K^{*}}$

general 2HDM (FCNC) Yukawa's with PhD student Cristian Sierra

$$
\begin{aligned}
& u_{i} \\
& \Gamma_{i j}^{L} P_{L}+\Gamma_{i j}^{R} P_{R} \\
& \Gamma_{i j}^{L}=\frac{\sqrt{2} m_{u_{i}}}{v} V_{l j}\left(Y \delta_{i l}-\frac{f(Y)}{\sqrt{2}} \sqrt{\frac{m_{u l}}{m_{u_{i}}}} \tilde{\chi}_{i l}^{u}\right), \Gamma_{i j}^{R}=\frac{\sqrt{2} m_{d_{l}}}{v} V_{i l}\left(X \delta_{l j}-\frac{f(X)}{\sqrt{2}} \sqrt{\frac{m_{d_{j}}}{m_{d l}}} \tilde{\chi}_{l j}^{d}\right), \\
& \Gamma_{\nu_{i} l_{j}}^{R}=\frac{\sqrt{2} m_{l i}}{v}\left(Z \delta_{i j}-\frac{f(Z)}{\sqrt{2}} \sqrt{\frac{m_{l_{j}}}{m_{l_{i}}}} \tilde{\chi}_{i j}^{l}\right), \Gamma_{h i j}^{u, d l}=\frac{m_{f_{i}}}{v}\left(\xi_{h}^{f} \delta_{i j} \mp \frac{\left(\xi_{H}^{f} \pm x \xi_{h}^{f}\right)}{\sqrt{2} f(x)} \sqrt{\frac{m_{f j}}{m_{f_{i}}}} \tilde{\chi}_{i j}^{f}\right), \\
& \Gamma_{H i j}^{u, d l}=\frac{m_{f_{i}}}{v}\left(\xi_{H}^{f} \delta_{i j} \pm \frac{\left(\xi_{h}^{f} \mp x \xi_{H}^{f}\right)}{\sqrt{2} f(x)} \sqrt{\frac{m_{f j}}{m_{f_{i}}}} \tilde{\chi}_{i j}^{f}\right), \Gamma_{A i j}^{f}=-\frac{i m_{f_{i}}}{v}\left(X \delta_{i j}-\frac{f(X)}{\sqrt{2}} \sqrt{\frac{m_{f j}}{m_{f_{i}}}} \tilde{\chi}_{i j}^{f}\right),
\end{aligned}
$$

$\chi \rightarrow 0$ recover the flavour conserving models

2HDM-III	X	Y	Z	ξ_{h}^{d}	ξ_{H}^{d}	ξ_{h}^{l}	ξ_{H}^{l}
Model I	$-\cot \beta$	$\cot \beta$	$-\cot \beta$	c_{α} / s_{β}	s_{α} / s_{β}	c_{α} / s_{β}	s_{α} / s_{β}
Model II	$\tan \beta$	$\cot \beta$	$\tan \beta$	$-s_{\alpha} / c_{\beta}$	c_{α} / c_{β}	$-s_{\alpha} / c_{\beta}$	c_{α} / c_{β}
Model Y	$\tan \beta$	$\cot \beta$	$-\cot \beta$	$-s_{\alpha} / c_{\beta}$	c_{α} / c_{β}	c_{α} / s_{β}	s_{α} / s_{β}
Model X	$-\cot \beta$	$\cot \beta$	$\tan \beta$	c_{α} / s_{β}	s_{α} / s_{β}	$-s_{\alpha} / c_{\beta}$	c_{α} / c_{β}

operators for $\mathbf{b} \rightarrow \boldsymbol{s} \mu \mu$

- The model will in general produce all the operators listed before, $O_{7,9,10}$ and $O_{7^{\prime}, 9^{\prime}, 10^{\prime}}$ in addition to scalar and pseudo scalar operators
- at tree level: $O_{\mathrm{S}, \mathrm{P}}$ (below) and $\mathrm{O}_{\mathrm{S}^{\prime}, \mathrm{P}^{\prime}}$ with $\mathrm{P}_{\mathrm{R}} \rightarrow \mathrm{P}_{\mathrm{L}}$

$$
\begin{array}{cc}
\mathcal{O}_{S}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} m_{b}\left(\bar{s} P_{R} b\right)(\bar{\ell} \ell) & \mathcal{O}_{P}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} m_{b}\left(\bar{s} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right), \\
C_{S}^{(0)}=C_{S}^{(0)^{\prime}}=\left(\frac{\Gamma_{h b s}^{d} \Gamma_{h \mu \mu}^{l}}{m_{h}^{2}}+\frac{\Gamma_{H b s}^{d} \Gamma_{H \mu \mu}^{l}}{m_{H}^{2}}\right) & C_{P}^{(0)}=-C_{P}^{(0)^{\prime}}=\frac{\Gamma_{A b s}^{d} \Gamma_{A \mu \mu}^{l}}{m_{A}^{2}}
\end{array}
$$

- the rest at one loop.
- We will only keep $C_{9,10}$ at one loop
- prejudice from previous fits, $C_{9^{\prime}, 10^{\prime}}$ relatively suppressed by masses
- use $C_{7,7^{\prime}}$ as constraints $\left(B \rightarrow X_{s} \gamma\right)$

the 4 parameter fit

allowed region in model parameters

- would like to map the allowed (1 sigma) region (red points) to the model parameters
- equivalently the excluded (>1 sigma) region (blue points)
- usual 2d plots can't do it as inclusion (exclusion) depends on the other dimensions

projection pursuit

- find the "most interesting" projection
- define interesting
- in this case the overlap between the allowed (1 sigma) region and the excluded (> 1 sigma) region in model parameter space
- minimise the function that parametrises this overlap as the tour moves through projections
- stop when minimum is found

some combination consisting mostly of
$\tan \beta$ and $\chi_{s b}$ is most determining for exclusion

App developed by Ursula Laa: https://uschilaa.github.io/galahr/

galahr input results https://arxiv.org/pdf/1905.06047.pdf
Parameter values (CSV format)
Browse...
Choose parameters to display
PC1 display type
PC2
PC3sity
PC3
PC4
PC5
PC6
y mu
Rescale
Select tour type
Grand tour Number of planes to generate: 10 Angular step size 0.05 Undate results

