

Highlights of Recent LHCb Results on Heavy Flavor & CPV

Liang Sun (Wuhan U.)
On behalf of LHCb collaboration

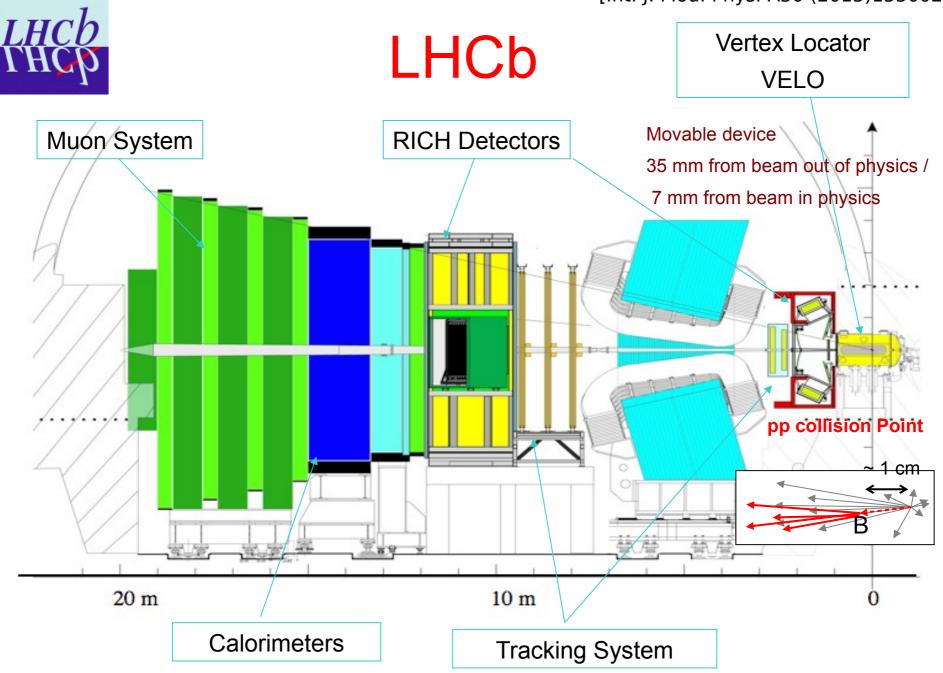
FLASY2019 24/07/2019, Hefei, China

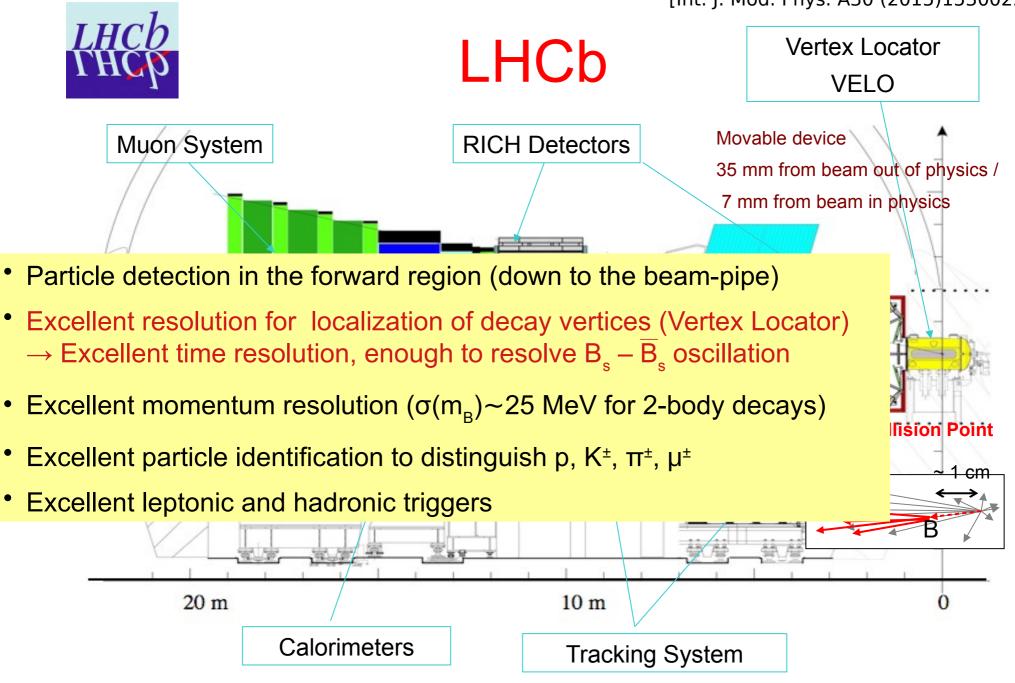
A "biased" selection of recent results

Lepton Universality tests

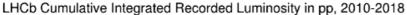
- R(D*) measurement with τ → 3πX [PRL 120 (2018) 171802, PRD 97 (2018) 072013]
- R(K) measurement [PRL 122 (2019) 191801]

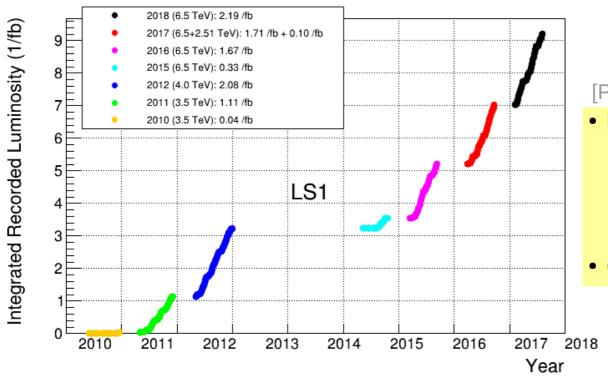
• (Very) Rare B decays


- Search for LFV $B_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$ [arXiv:1905.06614]
- Search for LFV B+ → K+µ±e[∓] [LHCB-PAPER-2019-022]


CPV in B decays

- Results of γ measurements from B → DK^(*) [LHCb-CONF-2018-002, arXiv:1906.08297]
- B_s mixing phase ϕ_s from B_s \rightarrow J/ ψ KK and B_s \rightarrow J/ ψ $\pi\pi$ [arXiv:1903.05530, arXiv:1906.08356]
- CPV measurement in B_s → $\phi\phi$ [LHCb-PAPER-2019-019]

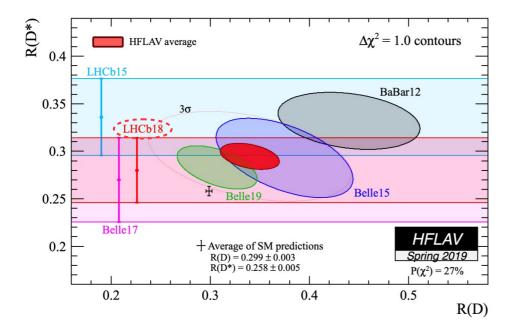

CPV in charm


- $-\Delta A_{CP}$ of D⁰ \to KK, D⁰ $\to \pi\pi$ [PRL 122 (2019) 211803]
- $-A_{\Gamma}$ in D⁰ \rightarrow KK, D⁰ \rightarrow $\pi\pi$ [LHCb-CONF-2019-001]
- Oscillation of charm mesons in D₀ \rightarrow K_s $\pi\pi$ [PRL 122 (2019) 231802]
- Search for CPV in D⁺ \rightarrow K_SK⁺, D_S⁺ \rightarrow K_S π ⁺, and D⁺ \rightarrow $\phi\pi$ ⁺ [PRL 122 (2019) 191803]
- Not included: Radiative decays, spectroscopy, multi-quark states, etc.
- For a complete list, see here

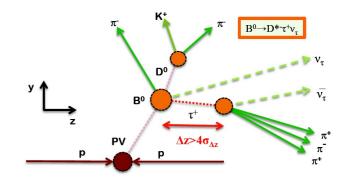
LHCb dataset

[PRL 118 (2017) 052002]

- bb cross-section @ \sqrt{s} = 13 TeV: 154.3 ± 1.5 ± 14.3 µb
 - ~10 5 bb pairs produced/second and all species of b hadrons: B $^\pm$, B 0 , B $_s^0$, B $_c^+$, Λ_b^0 ,...
- Charm production ~20x higher


Most of the present analyses use:

- Run I: 1.0 fb⁻¹ @ 7 TeV (2011) + 2.0 fb⁻¹ @ 8 TeV (2012)
- Run II: 0.3 fb⁻¹ (2015) + 1.7 fb⁻¹ (2016)
 - + 1.7 fb⁻¹ (2017) + 2.2 fb⁻¹ (2018) @ 13 TeV

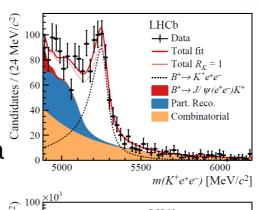

Lepton universality test: R(D*)

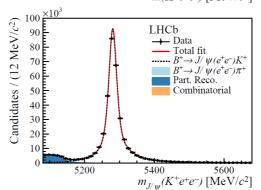
- τ/μ ratio well predicted in the SM
 - Sensitive to charged Higgs bosons and leptoquarks
- LHCb measurement with Run1 3fb⁻¹ data by reconstructing τ through $\tau \to \pi\pi\pi(\pi^0)\nu$
 - Normalized to B

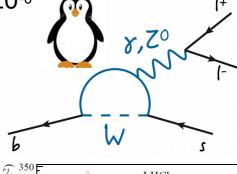
 0 → D*+πππ
 - Major backgrounds B⁰ → D*+D_(s)+ with D_(s)+ → $\pi\pi\pi$ X, can be better understood with BESIII data
- Ongoing work with full Run2 6 fb-1 data

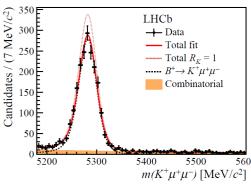
$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

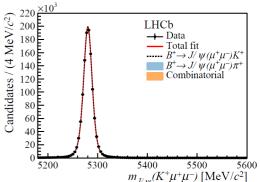
R(D^(*)) still 3 σ from SM after inclusion of new results from Belle @ Moriond EW 2019

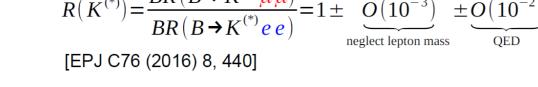

Lepton universality test: R(K)


- FCNC b → sll processes highly suppressed at loop level → BR ~ 10-6
- SM predicts R(K) to be very close to one:


$$R(K^{(*)}) = \frac{BR(B \to K^{(*)} \mu \mu)}{BR(B \to K^{(*)} e e)} = 1 \pm \underbrace{O(10^{-3})}_{\text{neglect lepton mass}} \pm \underbrace{O(10^{-2})}_{\text{QED}}$$
[EPJ C76 (2016) 8, 440]


- Previous LHCb R(K) result based on Run1 3fb-1 was different from one with 2.6σ significance [PRL 113 (2014) 151601]
- New measurement adds 2 fb-1 Run2 data
 - Double ratio to cancel systematic uncertainties


$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$$

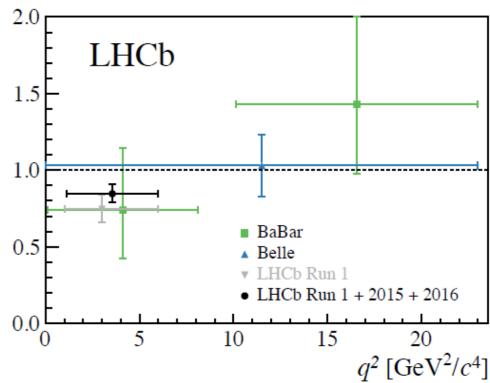

8,20

W

Lepton universality test: R(K)

- FCNC b→sll processes highly suppressed at loop level → BR ~ 10-6
- SM predicts R(K) to be very close to one:

$$R(K^{(*)}) = \frac{BR(B \to K^{(*)} \mu \mu)}{BR(B \to K^{(*)} e e)} = 1 \pm \underbrace{O(10^{-3})}_{\text{neglect lepton mass}} \pm \underbrace{O(10^{-2})}_{\text{QED}}$$
[EPJ C76 (2016) 8, 440]

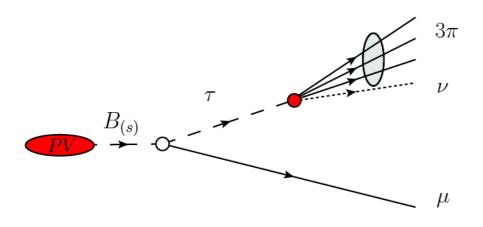

- Previous LHCb R(K) result based on Run1 3fb-1 was different from one with 2.6σ significance [PRL 113 (2014) 151601]
- New measurement adds 2 fb-1 Run2 data
 - Double ratio to cancel systematic uncertainties

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$$

$$1.1 \text{ GeV} < q^2 < 6 \text{ GeV}$$

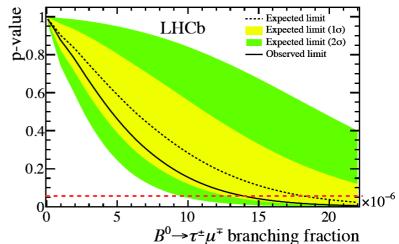
$$R_K = 0.846 ^{+0.060}_{-0.054} (\text{stat.}) ^{+0.016}_{-0.014} (\text{syst.})$$

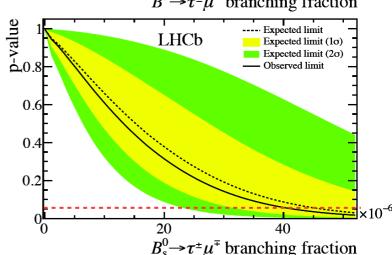
 \rightarrow Still consistent, lower, than the SM at 2.5 σ



Search for LFV $B^0_{(s)} \rightarrow \tau \mu$

- BR in SM highly suppressed: ~10-54 [arXiv:1709.00294]
 - Beyond the reach of current experiments
- Recent hints of deviation from LU in B decays ($R(K^{(*)})$, $R(D^{(*)})$, ...) strongly motivate searches for LFV decays
 - Some NP models foresee BR enhancement to levels accessible at LHC
- LHCb measurement with Run1 3fb-1 data
 - Reconstruction of τ: three prong
 - Normalization channel with similar topology:

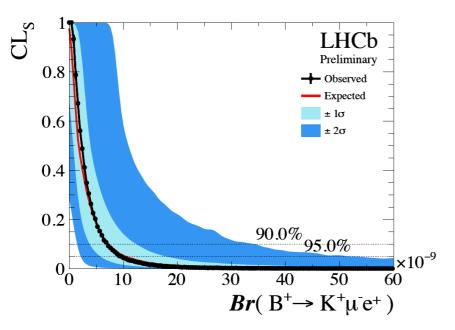

$$B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$$

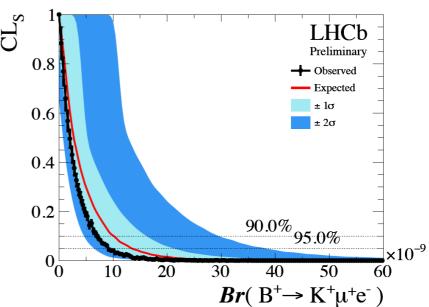

- Same-sign data employed to model background

 No presence of signal, limits are set at 95% CL

$$\mathcal{B}(B^0 \to \tau^{\pm} \mu^{\mp}) < 1.4 \times 10^{-5}$$

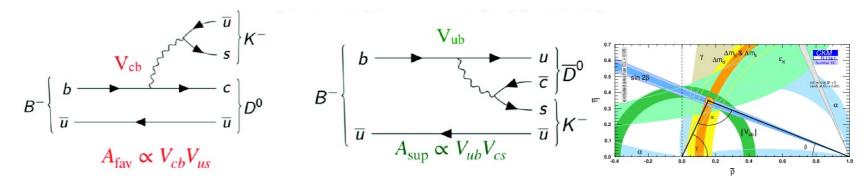
 $\mathcal{B}(B_s^0 \to \tau^{\pm} \mu^{\mp}) < 4.2 \times 10^{-5}$


Search for LFV $B^+ \rightarrow K^+e^\mp\mu^\pm$


- LHCb measurement with Run1 3fb-1 data
 - Normalization channel with similar topology: $B^+ \to J/\psi(\mu^+\mu^-)K^+$
 - Sideband data employed to model background
- No presence of signal: limits on BRs are set:

$B/10^{-9}$	90% C. L.	95% C. L.
$B^+ \rightarrow K^+ \mu^- e^+$	7.0	9.5
$B^+ \rightarrow K^+ \mu^+ e^-$	7.1	9.1

LHCb preliminary


- Limits improved by more than one order of magnitude

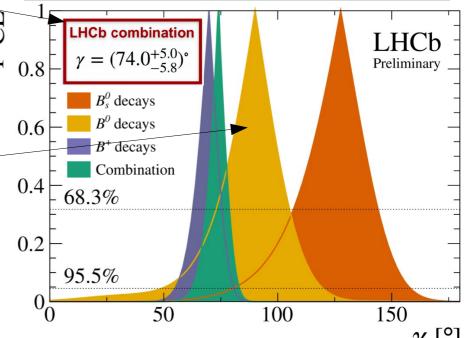
Measuring CKM angle γ

- Can be measured using exclusively tree-level decays such as B
 - \rightarrow Dh (h = K, K*, π , $\pi\pi$)
 - Interference between $b \rightarrow c$ (favored) and $b \rightarrow u$ (suppressed) transitions

$$\gamma = \arg\left(-rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}
ight) \qquad \qquad rac{A_{
m sup}}{A_{
m fav}} = r_{B}^{Dh}e^{\delta_{B}^{Dh}\pm\gamma}$$

$$\frac{A_{\text{sup}}}{A_{\text{fav}}} = r_B^{Dh} e^{\delta_B^{Dh} \pm \gamma}$$

where **r** is the ratio of magnitudes and δ the strong phase difference


- Can be obtained via time-dependent or time-integrated methods (GLW, ADS, ...)
 - Best precision achieved by combing measurements from many decay modes

LHCb γ combination

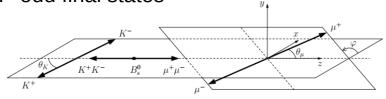
- \bullet Combing many tree-level determinations of γ
 - New and updated results using Run 2 2 fb-1
 data
 - Analyses with full Run 2 6 fb-1 data yet to come
- The γ world average is currently dominated by the 2018 LHCb combination
 - LHCb combination is dominated by B+ decays
- New inputs from the ADS/GLW analysis of Σ B⁰ → DK*⁰ (D → KK, Kπ, ππ, Kπππ, ππππ) [arXiv:1906.08297] to be added to the combination
 - Reduction in the yellow region!

Direct BESIII measurements on strong phase parameters in D decays are important for LHCb y measurements

	B decay	D decay	Method	Ref.	$\mathrm{Dataset}^{^{\dagger}}$
	$B^+ \to DK^+$	$D \to h^+h^-$	GLW	[14]	Run 1 & 2
	$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1
	$B^+ \to DK^+$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	GLW/ADS	[15]	Run 1
	$B^+ \to DK^+$	$D o h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1
	$B^+ \to DK^+$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	GGSZ	[17]	Run 1
	$B^+ \to DK^+$	$D o K_{\rm S}^{ m 0} h^+ h^-$	GGSZ	[18]	Run 2
-	$B^+ \to DK^+$	$D \rightarrow K_{\rm S}^{0} K^{+} \pi^{-}$	GLS	[19]	Run 1
	$B^+ \to D^* K^+$	$D ightarrow h^+ h^-$	GLW	[14]	Run 1 & 2
	$B^+ \to DK^{*+}$	$D \rightarrow h^+h^-$	GLW/ADS	[20]	Run 1 & 2
	$B^+ \to DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	Run 1 & 2
	$B^+ o DK^+\pi^+\pi^-$	$D \rightarrow h^+h^-$	GLW/ADS	[21]	Run 1
	$B^0 o DK^{*0}$	$D o K^+\pi^-$	$\mathrm{ADS}^{'}$	[22]	Run 1
	$B^0\! o DK^+\pi^-$	$D \rightarrow h^+ h^-$	GLW-Dalitz	[23]	Run 1
	$B^0 o DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1
	$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1
	$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1

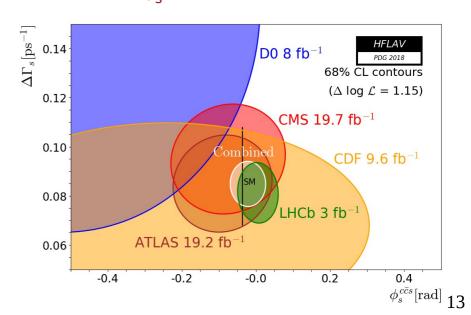
B_s mixing phase ϕ_s

• Mixing-induced CPV phase in $b \rightarrow c\overline{c}s$ processes

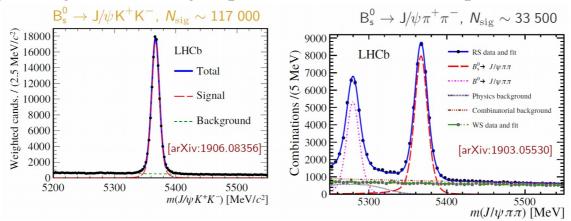

$$\phi_{\rm s} = -\arg(\lambda) = \phi_{\rm mix} - 2\phi_{\rm dec} \approx -2\beta_{\rm s}$$

 ϕ_{mix} $\mathsf{B}^0_{\mathsf{s}}$ $-\phi_{\mathsf{dec}}$

 $\beta_s \equiv \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$

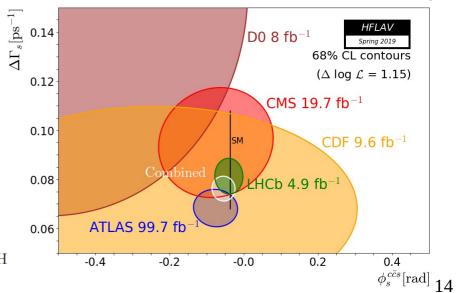

 $\lambda \equiv \arg \left[(q/p) \left(\overline{A}/A \right) \right]$

- Well predicted in SM, NP could bring in sizable contribution
- Accessed through LHCb measurement of time-dependent CP asymmetries in B_s decays to CP eigenstates e.g. B_s \rightarrow J/ $\psi \phi$ with
 - Good decay time resolution (fast B_s oscillation)
 - Efficient flavor tagging power ~5%
 - Angular analysis to disentangle CP-even and CP-odd final states


World average, then dominated by LHCb
 Run 1 results, compatible with SM

Status of ϕ_s before Moriond EW 2019

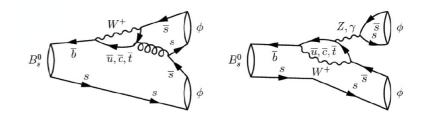
Measurements of ϕ_s with $B_s \rightarrow J/\psi hh$

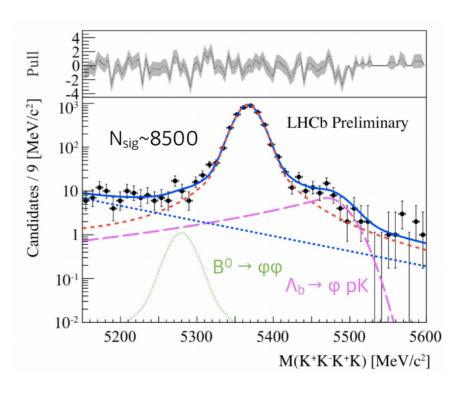

 Update with 2 fb⁻¹ Run2 data using B_s → J/ψKK [arXiv:1906.08356] and B_s → J/ψππ decays [arXiv:1903.05530]

Current status of ϕ_s

• Combination of Run1 and Run2 gives the most precise ϕ_s result to date, from a single experiment

arXiv:1906.08356 $\phi_{\rm s}\!=\!\!-0.041\!\pm\!0.025\,{\rm rad}$ $\Delta\,\Gamma_{\rm s}\!=\!0.0816\!\pm\!0.0048\,{\rm ps}^{-1}$ Compatible with SM $\Delta\Gamma_{s}\equiv\Gamma_{\rm L}-\Gamma_{\rm H}$

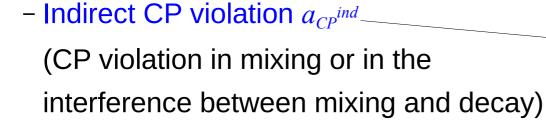


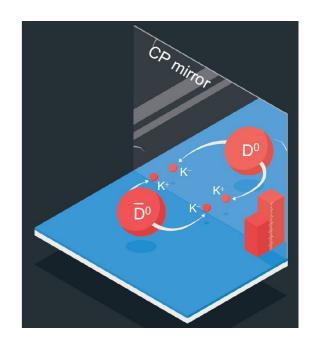

Measurement of CPV in B → \phi\phi

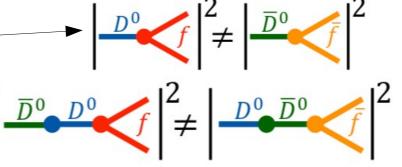
- Enhanced sensitivity to NP since this charmless decay is dominated by b → sss penguin loop
- Mixing with B_s osculations could give rise to time-dependent CPV
 - CPV phase $\phi_s^{s\bar{s}s}$ predicted < 0.02 rad [PRD 80 (2009) 114026]
- Time-dependent angular analysis to disentangle CP eigenstates SS, SV, VV with Run1 + Run2 (2 fb⁻¹) data

$$\begin{array}{lll} \phi_s^{s\overline{s}s} &=& -0.073\,\pm 0.115\, ({\rm stat})\,\pm 0.027\, ({\rm syst})\ \, {\rm rad},\\ |\lambda| &=& 0.99\,\pm\ \, 0.05\, ({\rm stat})\,\pm 0.01\, ({\rm syst})\,. \end{array}$$

LHCb preliminary

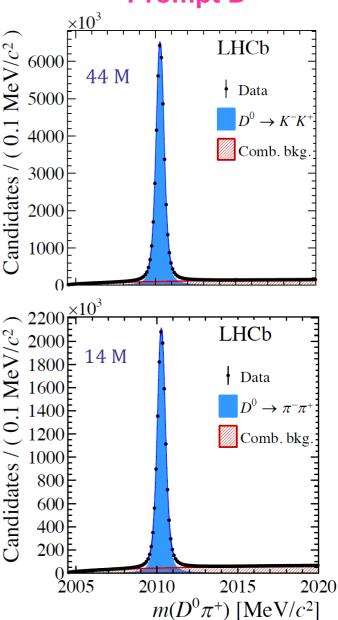



CP violation in charm


- Charm decays allow CP violation to be probed in the up-sector
 - Complementary to studies in neutral K and $B_{(s)}$ systems
- Expected to be very small in SM ($\sim 10^{-3} 10^{-4}$)
 - Although theory predictions are not very precise due to large long-distance effects
- CP asymmetries $A_{CP} = \frac{\Gamma(D^0 \to f) \Gamma(\overline{D^0} \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to \overline{f})}$

are sensitive to

ΔA_{CP} measurement

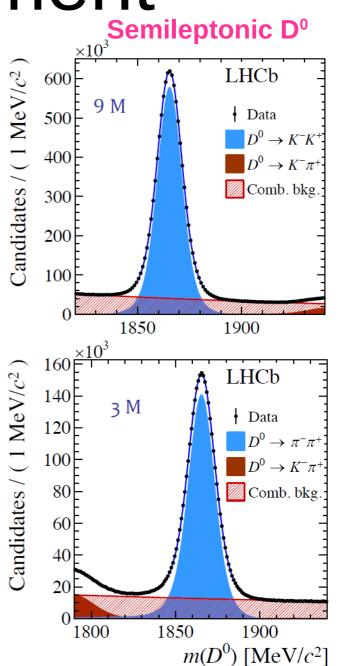

- LHCb uses full Run2 5.9 fb-1 data
- Tagging of initial flavor of D^o
 - **Prompt**: coming from PV, i.e., $D^{*+} \rightarrow D^0\pi^+$
 - Semileptonic: coming from B decays, i.e., B → D⁰µ-X
- Raw asymmetry for tagged D^o decays to a final state f (K+K-, π + π -):

$$A_{\text{raw}}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to f)}{N(D^0 \to f) + N(\overline{D}^0 \to f)}$$

 With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Prompt D⁰


ΔA_{CP} measurement

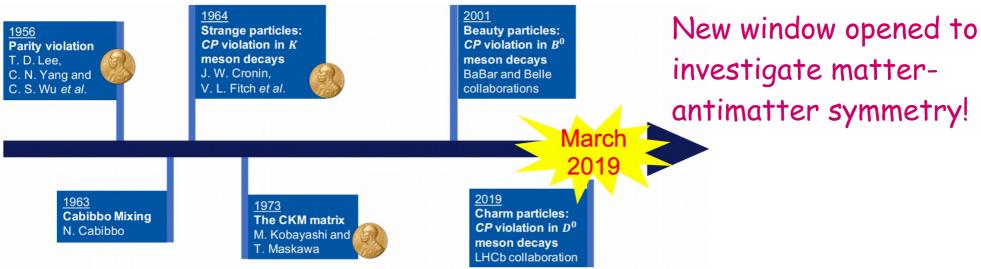
- LHCb uses full Run2 5.9 fb-1 data
- Tagging of initial flavor of D^o
 - **Prompt**: coming from PV, i.e., $D^{*+} \rightarrow D^{0}\pi^{+}$
 - Semileptonic: coming from B decays, i.e., B → D⁰µ-X
- Raw asymmetry for tagged D^o decays to a final state f (K+K-, π + π -):

$$A_{\text{raw}}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to f)}{N(D^0 \to f) + N(\overline{D}^0 \to f)}$$

 With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

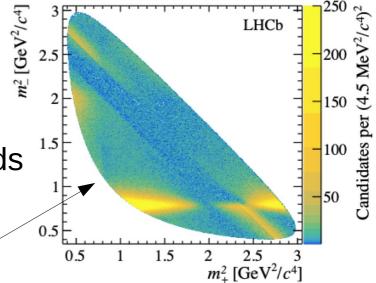
Observation of charm CPV


From full Run2 5.9 fb-1 data:

$$\Delta A_{CP}^{\pi-tag} = (-18.2 \pm 3.2 \pm 0.9) \times 10^{-4},$$

 $\Delta A_{CP}^{\mu-tag} = (-9 \pm 8 \pm 5) \times 10^{-4}$

Combination with Run1 results:


$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

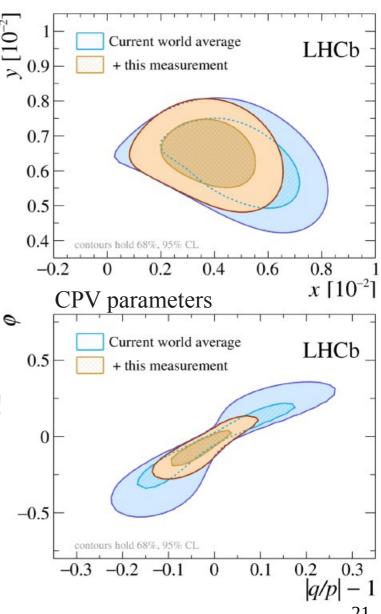
- Observation of CP violation with 5.3σ significance!

Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi \pi$

- Do mass eigenstates and their weak eigenstates:
 - $-\ket{\mathsf{D}_{1,2}} = \mathsf{p}\ket{\mathsf{D}^0} \pm \mathsf{q}\ket{\overline{\mathsf{D}^0}}$
 - $-m_{1,2}$ ($\Gamma_{1,2}$) as mass (width) of $D_{1,2}$
- Mixing parameters: $x \equiv \frac{m_1 m_2}{\Gamma}$; $y \equiv \frac{\Gamma_1 \Gamma_2}{2\Gamma}$
- x determines the oscillation rate
 - x is very small for D₀, but x and CPV can be enhanced by NP
 - CPV can occur in the mixing → oscillation rates differ for D⁰ and \overline{D}^0
- LHCb Run1, tagged D⁰ → K_S⁰ππ decay yields
 - Prompt: ~1.3M, Semileptonic: ~1M
- $D^0 \rightarrow K_S^0 \pi \pi$ has rich resonance structures

Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi \pi$

- Model-independent approach (bin-flip method) [PRD 99 (2019) 012007]
 - To avoid efficiency modeling
- Results with Run1 data:


$$y_{CP} = [0.74 \pm 0.36 (stat) \pm 0.11 (syst)]\%$$

$$\Delta y = [-0.06 \pm 0.16 (stat) \pm 0.03 (syst)]\%$$

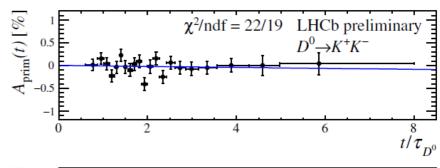
$$x_{CP} = [0.27 \pm 0.16 (stat) \pm 0.04 (syst)]\%$$

$$\Delta x = [-0.053 \pm 0.070 (stat) \pm 0.022 (syst)]\%$$

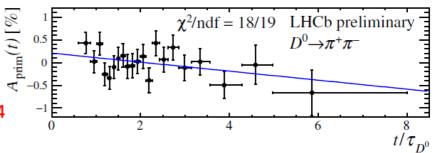
- Best precision on x from a single experiment!
- Combination with current global knowledge gives x > 0 at more than 3σ
 - First evidence that masses of Do eigenstates differ

A_{Γ} in $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

- A_{Γ} probes CPV in mixing and interference $A_{CP}(f,t) \approx A_{CP}^{\mathrm{decay}}(f) \boxed{\mathbf{A}_{\Gamma}} \frac{t}{\tau_{D0}}$
 - A linear fit to A_{CP} in bins of D^0 decay time extracts A_Γ as slope parameter
- With Run2 2fb-1 data we have


$$A_{\Gamma}(D^0 \to K^+K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$$

 $A_{\Gamma}(D^0 \to \pi^+\pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$


• A_{Γ} does not depend on D decay channel, the two values can be combined

$$A_{\Gamma}(D^0 \to h^+h^-) = (3.4 \pm 3.1 \pm 0.6) \times 10^{-4}$$
 $(h = K, \pi)$

Combining with Run1 results [PRL 118 (2017) 261803]:

$$A_{\Gamma}(D^0 \to h^+h^-) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$$

 $(h = K, \pi)$

 A_{Γ} is consistent with SM!

Search for CPV in $D_{(s)}^+$ decays

- CPV can arise from interference between $c \rightarrow d\overline{d}u$ and $c \rightarrow s\overline{s}u$
- Simultaneous fits to extract raw asymmetries

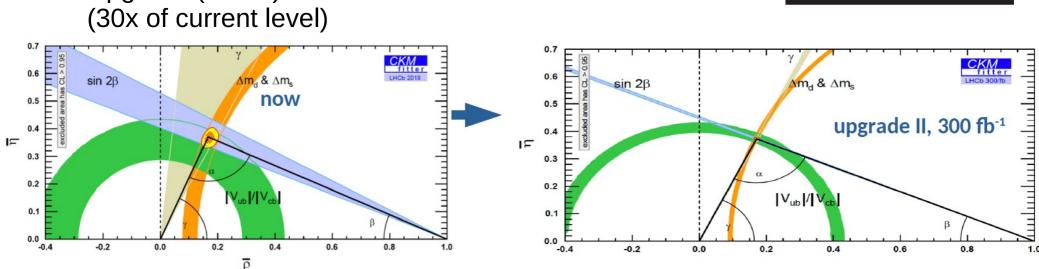
$$A_{CP}(D_s^+ o K_S^0 \pi^+) pprox A(D_s^+ o K_S^0 \pi^+) - A(D_s^+ o \phi \pi^+)$$
 $A_{CP}(D^+ o K_S^0 K^+) pprox A(D^+ o K_S^0 K^+) - A(D^+ o K_S^0 \pi^+)$
 $- A(D_s^+ o K_S^0 K^+) + A(D_s^+ o \phi \pi^+)$
 $A_{CP}(D^+ o \phi \pi^+) pprox A(D^+ o \phi \pi^+) - A(D^+ o K_S^0 \pi^+)$

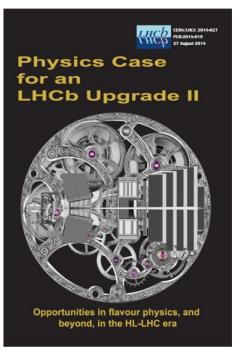
Results with Run2 3.8 fb⁻¹ data:

$$\begin{array}{lll} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}_{\mathsf{s}}^{+} \to \mathsf{K}_{\mathsf{S}}^{0}\pi^{+}) &= (1.3 \pm 1.9 \pm 0.5) \times 10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+} \to \mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}) &= (-0.09 \pm 0.65 \pm 0.48) \times 10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+} \to \phi\pi^{+}) &= (0.05 \pm 0.42 \pm 0.29) \times 10^{-3} \end{array}$$

Results with Run1 & Run2 combined:

$$egin{array}{lll} {\sf A}_{\sf CP}({\sf D}_{\sf s}^+
ightarrow {\sf K}_{\sf S}^0 \pi^+) &= (1.6 \pm 1.7 \pm 0.5) imes 10^{-3} \ {\sf A}_{\sf CP}({\sf D}^+
ightarrow {\sf K}_{\sf S}^0 {\sf K}^+) &= (-0.04 \pm 0.61 \pm 0.45) imes 10^{-3} \ {\sf A}_{\sf CP}({\sf D}^+
ightarrow \phi \pi^+) &= (0.03 \pm 0.40 \pm 0.29) imes 10^{-3} \ \end{array}$$

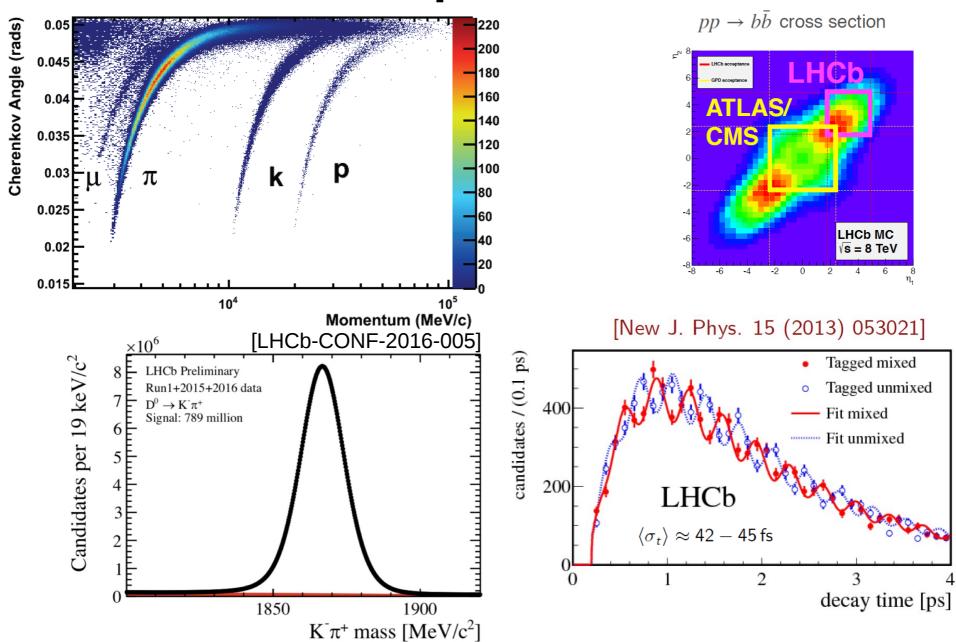

Best A_{CP} measurements on these channels!


Prospects of LHCb

Major upgrade phases

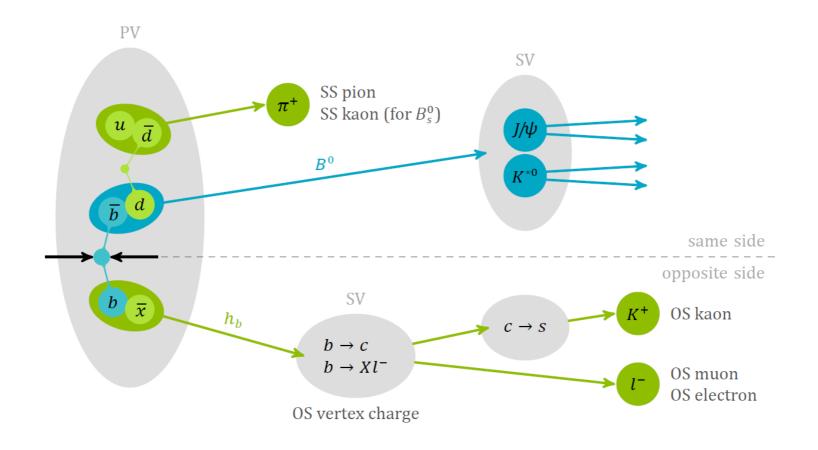
- Upgrade (2020-2023) will provide 3x larger dataset
- Upgrade (2025-) will be for HL-LHC to collect > 300/fb (30x of current level)

LHCb upgrade and beyond

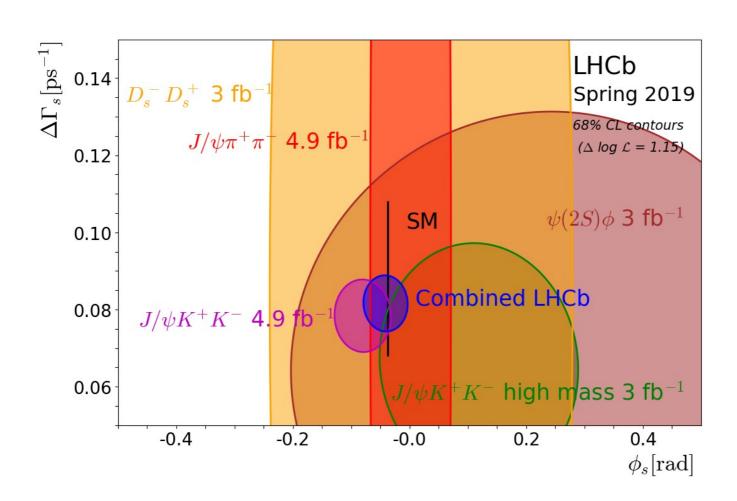

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	_	0.02,0.02,0.05	_
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}$ ° [136]	4°		1°	_
γ , all modes	$\binom{+5.0}{-5.8}$ ° [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [606]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi \phi$	$49 \operatorname{mrad} [44]$	14 mrad	_	4 mrad	$22 \operatorname{mrad} [607]$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	$154 \operatorname{mrad}[94]$	39 mrad		11 mrad	Under study [608]
$a_{ m sl}^s$	$33 \times 10^{-4} [211]$	10×10^{-4}	-	3×10^{-4}	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B_s^0, B^0{ ightarrow}\mu^+\mu^-$					
$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	90% [264]	34%	_	10%	21% [609]
$ au_{B^0_s o\mu^+\mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}$	-	_	_	0.2	_
$b \to c \ell^- \bar{\nu_l}$ LUV studies					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24[220]	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [610]	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x\sin\phi$ from $D^0\to K^+\pi^-$	$13 \times 10^{-4} \ \overline{[228]}$	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x\sin\phi$ from multibody decays	<u> </u>	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)\ 1.2\times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

Summary

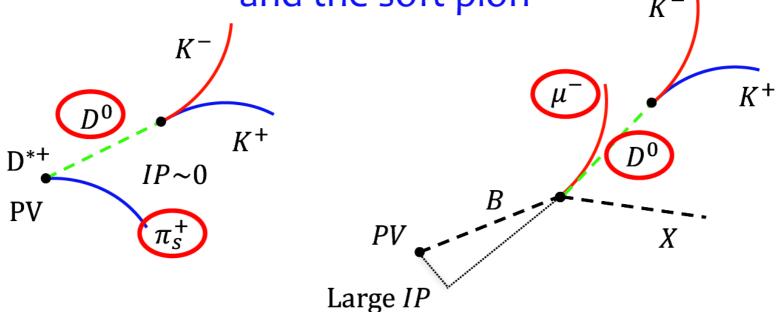
- LHCb has been quite successful in the fields of heavy flavor and CPV
- Many interesting results based on Run1 2 data are still in the pipeline
- LHCb upgrade opens the door to many improvements in precision, so interesting times are still ahead on NP searches

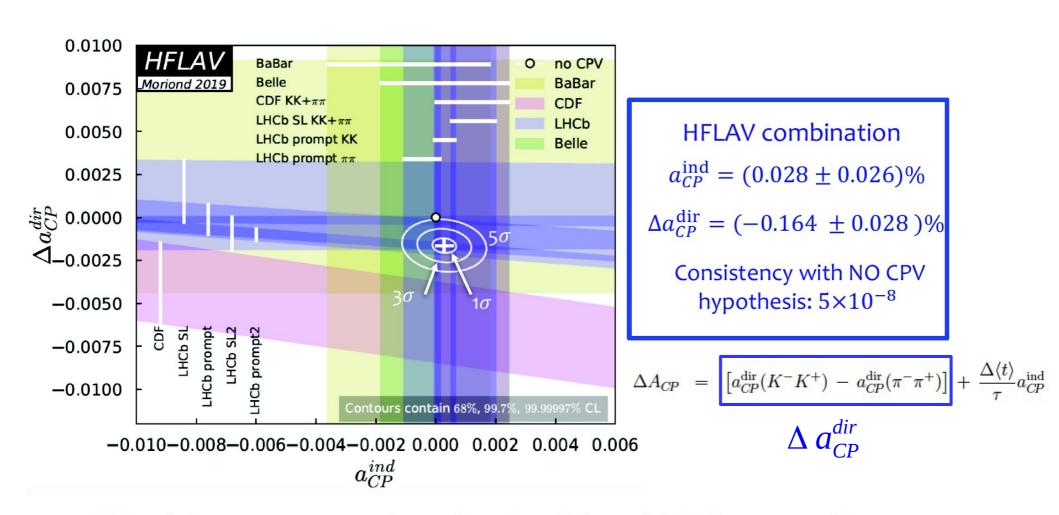

Backer Stices

Detector performance



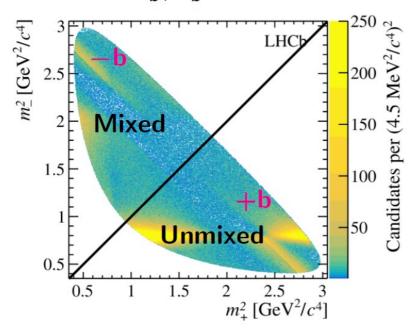
Flavor tagging [PoS(LHCP2018)230]


• Tagging in Run 2 improved \Rightarrow 30% higher tagging power than Run 1 $\varepsilon_{\rm tag}(\mathsf{B}^0_\mathsf{s} \to \mathsf{J}/\psi\,\mathsf{K}^+\mathsf{K}^-) = 4.73 \pm 0.34\% \text{ (vs} \approx 3.73\% \text{ in Run 1)}$ $\varepsilon_{\rm tag}(\mathsf{B}^0_\mathsf{s} \to \mathsf{J}/\psi\pi^+\pi^-) = 5.06 \pm 0.38\% \text{ (vs} \approx 3.89\% \text{ in Run 1)}$


LHCb ϕ_s combination

Experimentally we can tag D^0 flavour at production by means of the charge of the muon and the soft pion

HFLAV updates



World average dominated by LHCb results

provided by the courtesy of M. Gersabeck

Model-independent Bin-flip method

▶ Used c_b , s_b from CLEO-c

Phys. Rev. Lett. 122, 231802

- ▶ Bin Dalitz into $\pm b$ about $m_+^2 = m_-^2$
- D decay time into bins j
- ► Measure ratio of signal in -b and +b in bin j

$$R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]}{\left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + r_b \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_{\mathbf{b}}^* (z_{CP} \pm \Delta z) \right]},$$

where $z_{CP} \pm \Delta z = -(\frac{q}{p})^{\pm}(y+ix)$ and r_b is ratio without mixing $\mathbf{X_b} = \mathbf{c_b} - \mathbf{is_b}$

 R^{\pm} changes with time \Rightarrow Mixing $R^{+} \neq R^{-} \Rightarrow$ Indirect CPV