Direct CP violation in charmed meson decays

Hai-Yang Cheng
 Academia Sinica, Taipei

- Diagrammatical approach
- SU(3) breaking
- CP violation at tree and loop levels

FLASY2019
Hefei, July 24, 2019

Experiment

Time-dependent CP asymmetry $\quad A_{C P}(f(t))=\frac{\Gamma(D \rightarrow f(t))-\Gamma(\bar{D} \rightarrow \bar{f}(t))}{\Gamma(D \rightarrow f(t))+\Gamma(\bar{D} \rightarrow \bar{f}(t))}$
Time-integrated asymmetry $\quad A_{C P}(f)=a_{C P}^{d i r}(f)+\frac{\langle t\rangle}{\tau} a_{C P}^{\text {ind }}(f)$
LHCb: (11/14/2011) $0.92 \mathrm{fb}^{-1}$ based on 60% of 2011 data

$$
\Delta A_{C P} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-(0.82 \pm 0.21 \pm 0.11) \%
$$

3.5σ effect: first evidence of CPV in charm sector

CDF: (2/29/2012) $9.7 \mathrm{fb}^{-1}$

$$
\begin{aligned}
\Delta A_{C P} & =-(2.33 \pm 0.14) \%-(-1.71 \pm 0.15) \% \\
& =-(0.62 \pm 0.21 \pm 0.10) \% \quad 2.7 \sigma \text { effect }
\end{aligned}
$$

Belle: (ICHEP2012) $540 \mathrm{fb}^{-1}$

$$
\Delta A_{C P}=-(0.87 \pm 0.41 \pm 0.06) \% \quad 2.1 \sigma \text { effect }
$$

World averages of LHCb + CDF + BaBar + Belle

$$
\begin{aligned}
\Delta a_{C P}{ }^{\text {dir }} & =-(0.678 \pm 0.147) \%, \quad 4.6 \sigma \text { effect } \\
a_{C P}{ }^{\text {ind }} & =-(0.027 \pm 0.163) \%
\end{aligned}
$$

Fermilab Today, Dec 13, 2012 :

"Another charm revolution?"

The discovery of the charm quark is known in physicists' lingo as the "November revolution" . (1974)

This measurement (of CP violating asymmetry parameter) puts much pressure on the need for revising and improving the prediction techniques to make a clear distinction between the contributions expected from Standard Model physics and those from possible new interaction forces.

Ideas for new precision measurements are likely to turn out as well. Our hope is that this is the beginning of a second revolution in charm physics.

Another November revolution?

Isidori, Kamenik, Ligeti, Perez [1111.4987]
Brod, Kagan, Zupan [1111.5000]
Wang, Zhu [1111.5196]
Rozanov, Vysotsky [1111.6949]
Hochberg, Nir [1112.5268]
Pirtskhalava, Uttayarat [1112.5451]
Cheng, Chiang [1201.0785]
Bhattacharya, Gronau, Rosner [1201.2351]
Chang, Du, Liu, Lu, Yang [1201.2565]
Giudice, Isidori, Paradisi [1201.6204]
Altmannshofer, Primulando, C. Yu, F. Yu [1202.2866]
Chen, Geng, Wang [1202.3300]
Feldmann, Nandi, Soni [1202.3795]
Li, Lu, Yu [1203.3120]
Franco, Mishima, Silvestrini [1203.3131]
Brod, Grossman, Kagan, Zupan [1203.6659]
Hiller, Hochberg, Nir [1204.1046]
Grossman, Kagan, Zupan [1204.3557]
Cheng, Chiang [1205.0580]

Chen, Geng, Wang [1206.5158]
Delaunay, Kamenik, Perez, Randall [1207.0474]
Da Rold, Delaunay, Grojean, Perez [1208.1499]
Lyon, Zwicky [1210.6546]
Atwood, Soni [1211.1026]
Hiller, Jung, Schacht [1211.3734]
Delepine, Faisel, Ramirez [1212.6281]
Muller, Nierste, Schacht [1506.04121]
Nierste, Schacht [1508.00074]
Buccella, Paul, Santorelli [1902.05564]

Attempts for SM interpretation

Golden, Grinstein ('89): hadronic matrix elements enhanced as in $\Delta \mathrm{I}=1 / 2$ rule. However, $D \rightarrow \pi \pi$ data do not show large $\Delta I=1 / 2$ enhancement over $\Delta I=3 / 2$ one.

Moreover, $\left|A_{0} / A_{2}\right|=2.5$ in D decays is dominated by tree amplitudes.
Brod, Kagan, Zupan: PE and PA amplitudes considered
Pirtskhalava, Uttayarat : $\operatorname{SU}(3)$ breaking with hadronic m.e. enhanced
Bhattacharya, Gronau, Rosner : P_{b} enhanced by unforeseen QCD effects
Feldmann, Nandi, Soni : U-spin breaking with hadronic m.e. enhanced
Brod, Grossman, Kagan, Zupan: penguin enhanced
Franco, Mishima, Silvestrini: marginally accommodated

New Physics interpretation

■ Model-independent analysis of NP effects Isidori, Kamenik, Ligeti, Perez
■ Tree level (applied to some of SCS modes)
In SM, $\Delta \mathrm{a}_{\mathrm{CP}}{ }^{\text {dir }}=0$ at tree level

- FCNC Z Giudice, Isidori, Paradisi; Altmannshofer, Primulando, C. Yu, F. Yu
- FCNC Z' (a leptophobic massive gauge boson) Wang, Zhu; Altmannshofer et al.
- 2 Higgs-doublet model: charged Higgs Altmannshofer et al.
- Left-right mixing Chen, Geng, Wang; Delepine, Faisel, Ramirez
- Color-singlet scalar Hochberg, Nir
- Color-sextet scalar (diquark scalar) Altmannshofer et al; Chen, Geng, Wang
- Color-octet scalar Altmannshofer et al.
- $4^{\text {th }}$ generation Rozanov, Vysotsky; Feldmann, Nandi, Soni

NP models are highly constrained from D- $\underline{\mathrm{D}}$ mixing, $\mathrm{K}-\underline{K}$ mixing, $\varepsilon^{\prime} / \varepsilon, \ldots$
Tree-level models are either ruled out or in tension with other experiments.

■ Loop level (applied to all SCS modes)

Large $\Delta \mathrm{C}=1$ chromomagnetic operator with large imaginary coefficient

$$
O_{8_{g}}=-\frac{g_{s}}{8 \pi^{2}} m_{c} \bar{u} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) G^{\mu \nu} c
$$

Giudice, Isidori, Paradisi
is least constrained by low-energy data and can accommodate large $\Delta A_{C P}$. $<P P\left|O_{8 g}\right| D>$ is enhanced by $\mathrm{O}\left(\mathrm{v} / \mathrm{m}_{\mathrm{c}}\right)$. However, $\mathrm{D}^{0}-\underline{D}^{0}$ mixing induced by $\mathrm{O}_{8 \mathrm{~g}}$ is suppressed by $\mathrm{O}\left(\mathrm{m}_{\mathrm{c}}{ }^{2} / \mathrm{v}^{2}\right)$. Need NP to enhance $\mathrm{c}_{8 \mathrm{~g}}$ by $\mathrm{O}\left(\mathrm{v} / \mathrm{m}_{\mathrm{c}}\right)$

It can be realized in SUSY models

- gluino-squark loops Grossman, Kagan, Nir

$$
c_{8_{g}}^{N P}=G(x) \frac{m_{\tilde{g}}}{m_{c}} \delta_{L R}
$$

- new sources of flavor violation from disoriented A terms, split families
- trilinear scalar coupling Hiller, Hochberg, Nir

Giudice, Isidori, Paradisi

- RS flavor anarchy warped extra dimension models

Delaunay, Kamenik, Perez, Randall

Expt	Year	$\boldsymbol{\Delta} \mathbf{A}_{\mathbf{C P}}(\%)$	Tag
LHCb	2011	-0.82 ± 0.24	π
CDF	2012	-0.62 ± 0.23	π
Belle	2012	-0.87 ± 0.41	π
LHCb	2013	0.49 ± 0.33	μ
LHCb	2014	0.14 ± 0.18	μ
LHCb	2016	-0.10 ± 0.09	π
LHCb	2019	-0.182 ± 0.033	π
LHCb	2019	-0.090 ± 0.079	μ

LHCb $\left(14^{\prime}+16^{\prime}+19^{\prime}\right) \Rightarrow \Delta A_{C P}=(-0.154 \pm 0.029) \% \quad 5.3 \sigma$ effect

$$
\Delta \mathrm{a}_{\mathrm{CP}}{ }^{\text {dir }}=(-0.156 \pm 0.029) \% \quad 1903.08726
$$

Recall that LHCb ('11) $\Rightarrow \Delta \mathrm{a}_{\mathrm{CP}}{ }^{\text {dir }}=(-0.82 \pm 0.24) \%$

Is this consistent with the SM prediction?

A brief history of estimating $\Delta \mathrm{a}_{\mathrm{CP}}$ in SM:

■ We (Cheng-Wei Chiang and HYC) obtained $\Delta \mathrm{a}_{\mathrm{CP}} \sim-0.13 \%$ in 2012
■ A few months later, Hsiang-nan Li, Cai-Dian Lu, Fu-Sheng Yu found $\Delta \mathrm{a}_{\mathrm{CP}} \sim-0.10 \%$ or $(-0.57 \sim-1.87) \times 10^{-3}$

■ We improved the estimate and obtained two solutions in May, 2012

$$
\begin{aligned}
\Delta a_{C P}{ }^{\text {dir }}= & -0.139 \pm 0.004 \%(\mathrm{I}) \\
& -0.151 \pm 0.004 \% \text { (II) }
\end{aligned}
$$

The $2^{\text {nd }}$ solution agrees almost exactly with LHCb, - $0.156 \pm 0.029 \%$.

■ In 2017, Khodjamirian \& Petrov estimated $\Delta \mathrm{a}_{\mathrm{CP}}$ using LCSR and obtained an upper bound $\Delta \mathrm{a}_{\mathrm{CP}}{ }^{\text {dir }} \leq(2.0 \pm 0.3) \times 10^{-4}$

Chala et al. reinforced the notation that this implies new physics!

Why singly Cabibbo-suppressed decays?

DCPV requires nontrival strong and weak phase difference In SM, DCPV occurs only in singly Cabibbo-suppressed decays It is expected to be very small in charm sector within SM

$$
\text { Amp } \left.=\mathrm{V}^{*}{ }_{\mathrm{cd}} \mathrm{~V}_{\mathrm{ud}}(\text { tree }+ \text { penguin })+\mathrm{V}^{*}{ }_{\mathrm{cs}} \mathrm{~V}_{\mathrm{us}} \text { (tree' }+ \text { penguin }\right)
$$

Tree-induced CP violation depends on strong phases in tree diagrams DCPV induced by the interference of penguin \& tree amplitudes $\left.a_{c P}^{d i r}=\frac{2 \operatorname{Im}\left(V_{c d}^{*} V_{u d} V_{c V_{u s}} V_{*}^{*}\right)}{\left|V_{c d}^{*} V_{u d}\right|^{2}}\left|\frac{P}{T}\right| \sin \delta=2\left|\frac{V_{c c}^{*} V_{u b} \mid}{V_{c d}^{*} V_{u d} \mid} \sin \gamma\right| \frac{P}{T}\left|\sin \delta=1.3 \times 10^{-3}\right| \frac{P}{T} \right\rvert\, \sin \delta \quad \delta$ strong phase DCPV is expected to be the order of $10^{-3} \sim 10^{-5}$

Theoretical framework

- Effective Hamiltonian approach
pQCD: Li, Tseng ('97); Du, Y. Li, C.D. Lu ('05)
QCDF: Du, H. Gong, J.F. Sun ('01)
X.Y. Wu, X.G. Yin, D.B. Chen, Y.Q. Guo, Y. Zeng ('04)
J.H. Lai, K.C. Yang ('05); D.N. Gao ('06)

Grossman, Kagan, Nir ('07)
X.Y. Wu, B.Z. Zhang, H.B. Li, X.J. Liu, B. Liu, J.W. Li, Y.Q. Gao ('09)

However, it doesn't make much sense to apply pQCD \& QCDF to charm decays due to huge $1 / \mathrm{m}_{\mathrm{c}}$ power corrections

QCD sum rules: Blok, Shifman ('87); Khodjamirian, Ruckl; Halperin ('95) Khodjamirian, Petrov ('17)

- Lattice QCD: ultimate tool but a formidable task now
- Model-independent diagrammatical approach

Diagrammatic Approach

All two-body hadronic decays of heavy mesons can be expressed in terms of several distinct topological diagrams [Chau ('80); Chau, HYC('86)]

$\mathbf{P}, \mathbf{P c}_{\text {Ew }}$

PE, $P E_{E w}$

All quark graphs are topological and meant to have all strong interactions encoded and hence they are not Feynman graphs. And SU(3) flavor symmetry is assumed.

Cabibbo-allowed decays

For Cabibbo-allowed $\mathrm{D} \rightarrow \mathrm{PP}$ decays (in units of $10^{-6} \mathrm{GeV}$)
$\mathrm{T}=3.14 \pm 0.01$ (taken to be real)
$\mathbf{C}=(2.66 \pm 0.03) \exp \left[i(-152 \pm 0.3)^{\circ}\right]$
$E=(1.53 \pm 0.04) \exp \left[i(122 \pm 0.4)^{\circ}\right]$
$\mathbf{A}=(0.44 \pm 0.03) \exp \left[\left(29^{+7}-10\right)^{\circ}\right]$
\Rightarrow Phase between C \& T ~ 150°
$>$ W-exchange \mathbf{E} is sizable with a large phase \Rightarrow importance of $1 / \mathrm{m}_{\mathrm{c}}$ power corrections
$>$ W-annihilation \mathbf{A} is smaller than \mathbf{E} and almost perpendicular to \mathbf{E}

Rosner ('99)
Wu, Zhong, Zhou ('04)
Bhattacharya, Rosner ('08,'10)
HYC, Chiang ('10, '19)

 strong qinfasecoizeddda topgldigiticand deeerfara||Situde are determined

Meson	Mode	Representation	$\mathcal{B}_{\exp }\left(\times 10^{-3}\right)$	$\mathcal{B}_{\text {theory }}\left(\times 10^{-3}\right)$
D^{0}	$\pi^{+} \pi^{-}$	$V_{c d}^{*} V_{u d}\left(T^{\prime}+E^{\prime}\right)$	1.45 ± 0.05	2.24 ± 0.10
	$\pi^{0} \pi^{0}$	$\frac{1}{\sqrt{2}} V_{c d}^{*} V_{u d}\left(C^{\prime}-E^{\prime}\right)$	0.81 ± 0.05	1.35 ± 0.05
	$\pi^{0} \eta$	$-V_{c d}^{*} V_{u d} E^{\prime} \cos \phi-\frac{1}{\sqrt{2}} V_{c s}^{*} V_{u s} C^{\prime} \sin \phi$	0.68 ± 0.07	0.75 ± 0.02
	$\pi^{0} \eta^{\prime}$	$-V_{c d}^{*} V_{u d} E^{\prime} \sin \phi+\frac{\frac{Y}{\sqrt{2}}}{} V_{c s}^{*} V_{u s} C^{\prime} \cos \phi$	0.91 ± 0.13	0.74 ± 0.02
SCS	$\eta \eta$	$-\frac{1}{\sqrt{2}} V_{c d}^{*} V_{u d}\left(C^{\prime}+E^{\prime}\right) \cos ^{2} \phi+V_{c s}^{*} V_{u s}\left(2 E^{\prime} \sin ^{2} \phi-\frac{1}{\sqrt{2}} C^{\prime} \sin 2 \phi\right)$	1.67 ± 0.18	1.44 ± 0.08
	$\eta \eta^{\prime}$	$-\frac{1}{2} V_{c d}^{*} V_{u d}\left(C^{\prime}+E^{\prime}\right) \sin 2 \phi+V_{c s}^{*} V_{u s}\left(E^{\prime} \sin 2 \phi-\frac{1}{\sqrt{2}} C^{\prime} \cos 2 \phi\right)$	1.05 ± 0.26	1.19 ± 0.07
	$K^{+} K^{-}$	$V_{c s}^{*} V_{u s}\left(T^{\prime}+E^{\prime}\right) \quad \sqrt{2}$	4.07 ± 0.10	1.92 ± 0.08
	$K^{0} \bar{K}^{0}$	$V_{c d}^{*} V_{u d} E_{s}^{\prime}+V_{c s}^{*} V_{u s} E_{d}^{\prime}{ }^{\text {a }}$	0.64 ± 0.08	0
D^{+}	$\pi^{+} \pi^{0}$	$\frac{1}{\sqrt{2}} V_{c d}^{*} V_{u d}\left(T^{\prime}+C^{\prime}\right)$	1.18 ± 0.07	0.88 ± 0.10
	$\pi^{+} \eta$	$\frac{1}{\sqrt{2}} V_{c d}^{*} V_{u d}\left(T^{\prime}+{ }^{\text {d }} C^{\prime}+2 A^{\prime}\right) \cos \phi-V_{c s}^{*} V_{u s} C^{\prime} \sin \phi$	3.54 ± 0.21	1.48 ± 0.26
	$\pi^{+} \eta^{\prime}$	$\frac{\sqrt{1}^{2}}{\sqrt{2}} V_{c d}^{*} V_{u d}\left(T^{\prime}+C^{\prime}+2 A^{\prime}\right) \sin \phi+V_{c s}^{*} V_{u s} C^{\prime} \cos \phi$	4.68 ± 0.30	3.70 ± 0.37
	$K^{+} \bar{K}^{0}$	$V_{c d}^{*} V_{u d} A^{\prime}+V_{c s}^{*} V_{u s} T^{\prime}$	$6.12 \pm 0.22^{\text {b }}$	5.46 ± 0.53
D_{s}^{+}	$\pi^{+} K^{0}$	$V_{c d}^{*} V_{u d} T^{\prime}+V_{c s}^{*} V_{u s} A^{\prime}$	$2.52 \pm 0.27^{\text {c }}$	2.73 ± 0.26
	$\pi^{0} K^{+}$	$\frac{1}{\sqrt{2}}\left(V_{c d}^{*} V_{u d} C^{\prime}-V_{c s}^{*} V_{u s} A^{\prime}\right)$	0.62 ± 0.23	0.86 ± 0.09
	$K^{+} \eta$	$\frac{1}{\sqrt{2}}\left(V_{c d}^{*} V_{u d} C^{\prime}+V_{c s}^{*} V_{u s} A^{\prime}\right) \cos \phi-V_{c s}^{*} V_{u s}\left(T^{\prime}+C^{\prime}+A^{\prime}\right) \sin \phi$	1.76 ± 0.36	0.78 ± 0.09
	$K^{+} \eta^{\prime}$	$\frac{{ }^{1}}{\sqrt{2}}\left(V_{c d}^{*} V_{u d} C^{\prime}+V_{c s}^{*} V_{u s} A^{\prime}\right) \sin \phi+V_{c s}^{*} V_{u s}\left(T^{\prime}+C^{\prime}+A^{\prime}\right) \cos \phi$	1.80 ± 0.52	1.07 ± 0.17

Sizable SU(3) breaking in some SCS modes

SU(3) flavor symmetry breaking

A long standing puzzle: $\mathrm{R}=\Gamma\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}-\right) / \Gamma\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 2.8$ expected to be unity in $\operatorname{SU}(3)$ limit

$$
\begin{aligned}
A\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) & =\lambda_{d}\left(T+E+P_{d}+P E_{d}+P A_{d}\right)_{\pi \pi}+\lambda_{s}\left(P_{s}+P E_{s}+P A_{s}\right)_{\pi \pi} \quad \lambda_{\mathrm{p}}=\mathrm{V}_{\mathrm{cp}}^{*} \mathrm{~V}_{\mathrm{up}} \\
& =\frac{1}{2}\left(\lambda_{d}-\lambda_{s}\right)(T+E \oplus \Delta P)_{\pi \pi}-\frac{1}{2} \lambda_{b}(T+E+\Sigma P)_{\pi \pi} \\
A\left(D^{0} \rightarrow K^{+} K^{-}\right) & =\lambda_{d}\left(P_{d}+P E_{d}+P A_{d}\right)_{K K}+\lambda_{s}\left(T+E+P_{s}+P E_{s}+P A_{s}\right)_{K K} \\
& =\frac{1}{2}\left(\lambda_{d}-\lambda_{s}\right)(T+E \Theta \Delta P)_{K K}-\frac{1}{2} \lambda_{b}(T+E+\Sigma P)_{K K}
\end{aligned}
$$

with $\quad \Delta P \equiv\left(P_{d}+P E_{d}+P A_{d}\right)-\left(P_{s}+P E_{s}+P A_{s}\right), \quad \Sigma P \equiv\left(P_{d}+P E_{d}+P A_{d}\right)+\left(P_{s}+P E_{s}+P A_{s}\right)$

Possible scenarios for seemingly large SU(3) violation:

■ Large $\Delta \mathbf{P}$
A fit to data yields $\Delta \mathrm{P}=1.54 \exp \left(-\mathrm{i} 202^{\circ}\right) \quad \Rightarrow|\Delta \mathrm{P} / \mathrm{T}| \sim 0.5$

Need a large $\Delta \mathrm{P}$ contributing constructively to $\mathrm{K}^{+} \mathrm{K}^{-}$\& destructively to $\pi^{+} \pi^{-}$

■ Nominal SU(3) breaking in both T \& E, while $\Delta \mathrm{P}$ negligible
SU(3) symmetry must be broken in amplitudes E \& PA
$A\left(D^{0} \rightarrow K^{0} \underline{K}^{0}\right)=\lambda_{d}\left(E_{d}+2 P A_{d}\right)+\lambda_{s}\left(E_{s}+2 P A_{s}\right)$ almost vanishes in $\mathrm{SU}(3)$ limit
Neglecting $\Delta \mathrm{P}, \mathrm{E}_{\mathrm{d}} \& \mathrm{E}_{\mathrm{s}}$ fixed from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \mathrm{~K}^{0} \underline{K}^{0}$ to be
(I) $\quad E_{d}=1.15 e^{i 441^{10}} E, \quad E_{s}=0.72 e^{-i 18.3^{\circ}} E$
(II) $\quad E_{d}=1.15 e^{i 141^{\circ}} E, \quad E_{s}=1.45 e^{-i 127^{\circ}} E$

Accumulation of several small $\operatorname{SU}(3)$ breaking effects leads to apparently large $\mathrm{SU}(3)$ violation seen in $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$modes

Singly Cabibbo-suppressed $D \rightarrow$ PP decays

Decay Mode	$\mathcal{B}_{\mathrm{SU}(3)}$	$\mathcal{B}_{\mathrm{SU}(3) \text {-breaking }}$	$\mathcal{B}_{\mathrm{PDG}}$
$D^{0} \rightarrow \pi^{+} \pi^{-} \longrightarrow 2.28 \pm 0.02$	1.47 ± 0.02	1.455 ± 0.024	
$D^{0} \rightarrow \pi^{0} \pi^{0} \longrightarrow 1.41 \pm 0.03$	0.82 ± 0.02	0.826 ± 0.025	
$D^{0} \rightarrow \pi^{0} \eta$	0.78 ± 0.02	0.91 ± 0.02	0.63 ± 0.06
$D^{0} \rightarrow \pi^{0} \eta^{\prime}$	0.75 ± 0.02	1.25 ± 0.03	0.92 ± 0.10
$D^{0} \rightarrow \eta \eta$	1.49 ± 0.03	1.90 ± 0.04	2.11 ± 0.19
	1.49 ± 0.03	2.05 ± 0.04	
$D^{0} \rightarrow \eta \eta^{\prime}$	1.19 ± 0.05	0.74 ± 0.03	1.01 ± 0.19
	1.19 ± 0.05	1.73 ± 0.08	
$D^{0} \rightarrow K^{+} K^{-} \longrightarrow 1.91 \pm 0.02$	4.02 ± 0.03	4.08 ± 0.06	
	1.91 ± 0.02	4.04 ± 0.05	
$D^{0} \rightarrow K_{S} K_{S}$	0	0.139 ± 0.007	0.141 ± 0.005
$D^{+} \rightarrow \pi^{+} \pi^{0}$	0.89 ± 0.02	0.97 ± 0.02	1.247 ± 0.033
$D^{+} \rightarrow \pi^{+} \eta$	1.54 ± 0.12	3.34 ± 0.14	3.77 ± 0.09
$D^{+} \rightarrow \pi^{+} \eta^{\prime}$	3.92 ± 0.11	4.64 ± 0.08	4.97 ± 0.19
$D^{+} \rightarrow K^{+} K_{S}$	2.55 ± 0.18	4.57 ± 0.20	3.04 ± 0.09
$D_{s}^{+} \rightarrow \pi^{+} K_{S}$	1.34 ± 0.05	1.39 ± 0.04	1.22 ± 0.06
$D_{s}^{+} \rightarrow \pi^{0} K^{+}$	0.86 ± 0.03	0.56 ± 0.02	0.63 ± 0.21
$D_{s}^{+} \rightarrow K^{+} \eta$	0.84 ± 0.03	0.76 ± 0.03	1.77 ± 0.35
$D_{s}^{+} \rightarrow K^{+} \eta^{\prime}$	1.09 ± 0.06	1.37 ± 0.08	1.8 ± 0.6

Tree-level direct CP violation

■ $\mathrm{A}\left(\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \mathrm{K}^{0} \pi^{+}\right)=\lambda_{\mathrm{d}}\left(\mathrm{T}+\mathrm{P}_{\mathrm{d}}+\mathrm{PE}_{\mathrm{d}}\right)+\lambda_{\mathrm{s}}\left(\mathrm{A}+\mathrm{P}_{\mathrm{s}}+\mathrm{PE}_{\mathrm{s}}\right), \quad \lambda_{\mathrm{p}}=\mathrm{V}^{*}{ }_{\mathrm{cp}} \mathrm{V}_{\mathrm{up}}$ DCPV in $D_{s}{ }^{+} \rightarrow \mathrm{K}^{0} \pi^{+}$arises from interference between $T \& A$

$$
a_{\text {dir }}^{(\text {tree })}\left(D_{s}^{+} \rightarrow K^{0} \pi^{+}\right)=\frac{2 \operatorname{Im}\left(\lambda_{d} \lambda_{s}^{*}\right)}{\left|\lambda_{d}\right|^{2}} \frac{\operatorname{Im}\left(T^{*} A\right)}{|T-A|^{2}} \approx 1.2 \times 10^{-3}\left|\frac{A}{T}\right| \sin \delta_{A T} \approx 10^{-4}
$$

- Larger DCPV at tree level occurs in interference between T \& C (e.g. $\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \mathrm{K}^{+} \eta,-0.80 \times 10^{-3}$) or C \& $\mathrm{E}\left(\mathrm{e} . \mathrm{g} . \mathrm{D}^{0} \rightarrow \pi^{0} \eta,-0.85 \times 10^{-3}\right.$)
- $\mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{0} \underline{K}^{0}\right)=\lambda_{\mathrm{d}}\left(\mathrm{E}_{\mathrm{d}}+2 \mathrm{PA}_{\mathrm{d}}\right)+\lambda_{\mathrm{s}}\left(\mathrm{E}_{\mathrm{s}}+2 \mathrm{PA}_{\mathrm{s}}\right)$

$$
\begin{aligned}
& a_{\text {dir }}^{(\text {tree })}\left(D^{0} \rightarrow\right.\left.K_{S} K_{S}\right)=\frac{2 \operatorname{Im}\left(\lambda_{d} \lambda_{s}^{*}\right)}{\left|\lambda_{d}\right|^{2}} \frac{\operatorname{Im}\left(E_{d}^{*} E_{S}\right)}{\left|E_{d}-E_{s}\right|^{2}}=1.3 \times 10^{-3} \frac{\left|E_{d} E_{s}\right|}{\left|E_{d}-E_{s}\right|^{2}} \sin \delta_{d s} \\
& a_{\text {dir }}^{\text {(tre) }}\left(D^{0} \rightarrow K_{S} K_{S}\right)= \begin{cases}-1.25 \times 10^{-3} & \text { Solution I }, \\
-2.14 \times 10^{-3} & \text { Solution II }\end{cases}
\end{aligned}
$$

DCPV at tree level can be reliably estimated in diagrammatic approach as magnitude \& phase of tree amplitudes can be extracted from data

Decay	$\mathrm{a}_{\mathrm{CP}}{ }^{\text {tree }}$	Tree-level DCPV $\mathrm{a}_{\text {CP }}{ }^{(t r e e)}$ in units of per mille
$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$	0	
$\mathrm{D}^{0} \rightarrow \pi^{0} \pi^{0}$	0	$10^{-3}>\mathrm{a}_{\text {dir }}{ }^{\text {(tree) }}>10^{-4}$
$\mathrm{D}^{0} \rightarrow \pi^{0} \eta$	0.85 ± 0.23	Largest tree-level DCPV in D \rightarrow PP:
$\mathrm{D}^{0} \rightarrow \pi^{0} \eta^{\prime}$	-0.43 ± 0.01	$\mathrm{D}^{0} \rightarrow K_{S} K_{S}$
$D^{0} \rightarrow \eta \eta$	$\begin{aligned} & -0.32 \pm 0.01 \\ & -0.42 \pm 0.01 \end{aligned}$	$\mathrm{a}_{\text {dir }}{ }^{\text {(tree) }}=(-1.25 \sim-2.14) \times 10^{-3}$
$D^{0} \rightarrow \eta \eta^{\prime}$	$\begin{aligned} & 0.59 \pm 0.01 \\ & 0.46 \pm 0.01 \end{aligned}$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$	0	$A_{C P}\left(K_{S} K_{S}\right)= \begin{cases}(-2.9 \pm 5.2 \pm 2.2) \%, & \text { LHCb } \\ (4.3 \pm 3.4 \pm 1.0) \%, & \text { LHCb }\end{cases}$
$\mathrm{D}^{0} \rightarrow K_{S} K_{S}$	$\begin{aligned} & -1.25 \\ & -2.14 \end{aligned}$	($-0.02 \pm 1.53 \pm 0.17) \%, \quad$ Belle
$\mathrm{D}^{+} \rightarrow \pi^{+} \eta$	0.40 ± 0.03	
$\mathrm{D}^{+} \rightarrow \pi^{+} \eta^{\prime}$	-0.24 ± 0.01	
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0}$	-0.04 ± 0.02	
$\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \pi^{+} \mathrm{K}^{0}$	0.09 ± 0.02	
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow} \pi^{0} \mathrm{~K}^{+}$	0.01 ± 0.05	
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow} \mathrm{K}^{+} \eta$	-0.80 ± 0.02	20
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow \mathrm{K}^{+} \eta^{\prime}}$	0.33 ± 0.01	

Penguin-induced CP violation

DCPV in $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$arises from interference between tree and penguin

$$
\Delta a_{\mathrm{CP}}^{\mathrm{dir}}=-1.30 \times 10^{-3}\left(\left|\frac{P_{d}+P E_{d}+P A_{d}}{T+E-\Delta P}\right|_{K K} \sin \delta_{K K}+\left|\frac{P_{s}+P E_{s}+P A_{s}}{T+E+\Delta P}\right|_{\pi \pi} \sin \delta_{\pi \pi}\right)
$$

While QCD-penguin amplitudes are estimated to NLO in QCD factorization, $P E_{d, s} \& P A_{d, s}$ are subject to end-point divergences beyond control

$$
\left(\frac{P_{s}}{T+E_{s}+\Delta P}\right)_{\pi \pi}=0.32 e^{\mathrm{ii173}^{0}}, \quad\left(\frac{P_{d}}{T+E_{d}+\Delta P}\right)_{K K}=\left\{\begin{array}{l}
0.23 e^{-i 167^{0}} \\
0.23 e^{i 177^{0}}
\end{array}\right.
$$

DCPV from QCD penguin is small for $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \& \pi^{+} \pi^{-}$due to almost trivial strong phase $\sim 175^{\circ}$

$$
\Delta a_{C P}^{\mathrm{dir}}=\left\{\begin{aligned}
0.02 \times 10^{-3} & \text { Solution I, } \\
-0.07 \times 10^{-3} & \text { Solution II }
\end{aligned}\right.
$$

How about power corrections to QCD penguin ?

Large LD contribution to PE can arise from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$followed by a resonantlike finalstate rescattering
HYC, Chiang ('12)

It is reasonable to assume PE ~ E. It should be stressed that PE cannot be larger than T

$$
\begin{gathered}
(P E)_{L D}=(1.60 \pm 0.32) \times 10^{-6} e^{i(115 \pm 30)^{0}} \mathrm{GeV} \\
\left(\frac{P_{s}+P E}{T+E_{s}+\Delta P}\right)_{\pi \pi}=0.80 e^{i 111^{0}}, \quad\left(\frac{P_{d}+P E}{T+E_{d}+\Delta P}\right)_{K K}=\left\{\begin{array}{l}
0.46 e^{i 135^{0}} \\
0.46 e^{i 118^{0}}
\end{array}\right. \\
\Delta a_{C P}^{\operatorname{dir}}= \begin{cases}(-1.22 \pm 0.27) \times 10^{-3} & \text { Solution I, } \\
(-1.32 \pm 0.26) \times 10^{-3} & \text { Solution II }\end{cases}
\end{gathered}
$$

$\Delta \mathrm{a}_{\mathrm{CP}}$ arises mainly from long-distance PE!

Li, Lu, Yu obtained

$$
\begin{aligned}
\left(\frac{P_{s}}{T+E_{s}}\right)_{\pi \pi} & =0.41 e^{i 118^{0}}, \quad\left(\frac{P_{d}}{T+E_{d}}\right)_{K K}=0.31 e^{i 153^{0}}, \\
\left(\frac{P_{s}+P E_{s}+P A_{s}}{T+E_{s}}\right)_{\pi \pi} & =0.66 e^{i 134^{0}}, \quad\left(\frac{P_{d}+P E_{d}+P A_{d}}{T+E_{d}}\right)_{K K}=0.45 e^{i 131^{0}}, \\
& \Rightarrow \Delta \mathbf{a}_{\mathbf{C P}} \sim-\mathbf{0 . 1 0 \%}
\end{aligned}
$$

Consider penguin contribution first

$$
\begin{gathered}
P_{P_{1} P_{2}}=\frac{G_{F}}{\sqrt{2}}\left[a_{4}\left(P_{1} P_{2}\right)+r_{\chi}^{P_{2}} a_{6}\left(P_{1} P_{2}\right)\right] f_{P_{2}}\left(m_{D}^{2}-m_{P_{1}}^{2}\right) F_{0}^{D P_{1}}\left(m_{P_{2}}^{2}\right) \\
a_{6}\left(P_{1} P_{2}\right)=\left(c_{6}+\frac{c_{5}}{N_{c}}\right)+\frac{c_{5}}{N_{c}} \frac{C_{F} \alpha_{s}}{4 \pi}\left[V_{6}\left(P_{2}\right)+\frac{4 \pi^{2}}{N_{c}} H_{6}\left(P_{1} P_{2}\right)\right]+\mathcal{P}_{6}\left(P_{2}\right) \\
\text { vertex }
\end{gathered} \begin{gathered}
\text { hard spectator }
\end{gathered}
$$

Instead of evaluating vertex, hard spectator and penguin corrections, Li, Lu and Yu parametrized them as $\chi_{n f} \mathrm{e}^{i \phi}$

$$
\begin{array}{r}
a_{6}=c_{6}+c_{5}\left[\frac{1}{N_{c}}+\chi_{n f} e^{i \phi}\right], \quad a_{2}=c_{2}+c_{1}\left[\frac{1}{N_{c}}+\chi_{n f} e^{i \phi}\right] \\
\chi_{n f}=-\mathbf{0 . 5 9}, \quad \boldsymbol{\phi}=-\mathbf{0 . 6 2}
\end{array}
$$

Penguin-exchange and penguin annihilation

$$
\begin{aligned}
P E_{P_{1} P_{2}} & =c_{3} \chi_{q, s}^{E} e^{i \phi_{q, s}^{E}} f_{D} m_{D}^{2}\left(\frac{f_{P_{1}} f_{P_{2}}}{f_{\pi}^{2}}\right)+2\left[c_{6}(\mu)+\frac{c_{5}(\mu)}{N_{c}}\right] g_{S} B_{S}\left(m_{D}^{2}\right) m_{S} \bar{f}_{S} f_{D} \frac{m_{D}^{2}}{m_{c}} \\
P A_{P_{1} P_{2}} & =\left[c_{4}(\mu)+c_{6}(\mu)\right] \chi_{q, s}^{A} e^{i i_{q, s}^{A}} f_{D} m_{D}^{2}\left(\frac{f_{P_{1}} f_{P_{2}}}{f_{\pi}^{2}}\right) .
\end{aligned}
$$

Decay	$a_{C P}{ }^{\text {tree }}$	$\mathrm{a}_{\text {CP }}{ }^{\text {total }}$	$a_{C P}{ }^{\text {dir }}\left(10^{-3}\right)$
$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$	0	0.86 ± 0.23	
$\mathrm{D}^{0} \rightarrow \pi^{0} \pi^{0}$	0	0.91 ± 0.32	$\Delta \mathrm{a}_{C P}{ }^{\text {dir }}=-0.122 \pm 0.027 \%$ (l)
$\mathrm{D}^{0} \rightarrow \pi^{0} \eta$	0.85 ± 0.23	0.03 ± 0.30	-0.132 $\pm 0.026 \%$ (II)
$\mathrm{D}^{0} \rightarrow \pi^{0} \eta^{\prime}$	-0.43 ± 0.01	-0.11 ± 0.18	
$\mathrm{D}^{0} \rightarrow \eta \eta$	$\begin{aligned} & -0.32 \pm 0.01 \\ & -0.42 \pm 0.01 \end{aligned}$	$\begin{aligned} & -0.57 \pm 0.08 \\ & -0.69 \pm 0.07 \end{aligned}$	consistent with LHCb result
$D^{0} \rightarrow \eta \eta^{\prime}$	$\begin{aligned} & 0.59 \pm 0.01 \\ & 0.46 \pm 0.01 \end{aligned}$	$\begin{aligned} & 0.51 \pm 0.22 \\ & 0.36 \pm 0.15 \end{aligned}$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$	0	$\begin{array}{\|l\|} \hline-0.35 \pm 0.14 \\ -0.47 \pm 0.13 \\ \hline \end{array}$	
$\mathrm{D}^{0} \rightarrow K_{S} K_{S}$	$\begin{aligned} & -1.25 \\ & -2.14 \end{aligned}$	$\begin{aligned} & -1.15 \\ & -2.21 \end{aligned}$	
$\mathrm{D}^{+} \rightarrow \pi^{+} \eta$	0.40 ± 0.03	-0.68 ± 0.27	
$\mathrm{D}^{+} \rightarrow \pi^{+} \eta^{\prime}$	-0.24 ± 0.01	0.21 ± 0.18	
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \underline{\mathrm{K}}^{0}$	-0.04 ± 0.02	-0.27 ± 0.18	
$\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \pi^{+} \mathrm{K}^{0}$	0.09 ± 0.02	0.41 ± 0.24	
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow \pi^{0} \mathrm{~K}^{+}}$	0.01 ± 0.05	0.97 ± 0.28	
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow \mathrm{K}^{+} \eta}$	-0.80 ± 0.02	-0.67 ± 0.06	
$\mathrm{D}_{\mathrm{s}^{+} \rightarrow \mathrm{K}^{+} \eta^{\prime}}$	0.33 ± 0.01	-0.06 ± 0.28	

The analysis of $\mathrm{D} \rightarrow \mathrm{VP}$ modes in the diagrammatic approach is much more involved. The study is near completion.

HYC, Chiang ('19)

Light-cone sum rules by Khodjamirian, Petrov ('17) lead to

$$
\begin{gathered}
\left|\frac{P}{T+E}\right|_{\pi \pi}=0.093 \pm 0.011, \quad\left|\frac{P}{T+E}\right|_{K K}=0.075 \pm 0.015 \\
\left|\Delta A_{C P}^{S M}\right| \leq(2.0 \pm 0.3) \times 10^{-4}
\end{gathered}
$$

Chala, Lenz, Rusov, Scholtz ('19) considered higher twist corrections

$$
\left|\Delta A_{C P}^{S M}\right| \leq(2.0 \pm 1.0) \times 10^{-4} \quad \Rightarrow \text { New Physics }
$$

■ Khodjamirian \& Petrov kept only c_{1} and c_{2} and neglected all other Wilson coefficients

$$
\begin{aligned}
& a_{6}^{p}\left(P_{1} P_{2}\right)=\left(c_{6}+\frac{c_{5}}{N_{c}}\right)+\frac{c_{5}}{N_{c}} \frac{C_{F} \alpha_{s}}{4 \pi}\left[V_{6}\left(P_{2}\right)+\frac{4 \pi^{2}}{N_{c}} H_{6}\left(P_{1} P_{2}\right)\right]+\mathcal{P}_{6}^{p}\left(P_{2}\right) \\
& a_{4}^{p}=a_{6}^{p} \approx \frac{C_{F} \alpha_{s}}{4 \pi N_{c}} c_{1}\left[\frac{4}{3} \ln \frac{m_{c}}{\mu}+\frac{2}{3}-G_{M_{2}}\left(s_{p}\right)\right]
\end{aligned}
$$

■ Penguin annihilation (PE \& PA) and especially LD effects haven't been considered in LCSR calculations

Conclusions

- DCPV measured by LHCb \Rightarrow importance of penguin effects in the charm sector
- The diagrammatical approach is very useful for analyzing hadronic D decays
- DCPV in charm decays is studied in the diagrammatic approach. It can be reliably estimated at tree level. Our estimate of $\Delta \mathrm{a}_{\mathrm{CP}}=(-0.122 \pm 0.027) \%$ or $(-0.132 \pm 0.026) \%$ is consistent with LHCb
- DCPV in $D^{0} \rightarrow K_{S} K_{S}$ is predicted to be large and negative

CP asymmetries with $D^{0} \rightarrow h^{+} h^{-}$decays

- Observed (raw) asymmetries suffer from instrumental and production effects

$$
A\left(h^{+} h^{-}\right)=A_{C P}\left(h^{+} h^{-}\right)+A_{D}+A_{P}
$$

The CP asymmetry you want to measure

Detection asymmetry of tagging track (π^{+}or μ^{-})

Production asymmetry of parent hadron (D^{*} or B)

- Difference of raw asymmetries to cancel unwanted effects

$$
\Delta A_{C P}=A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)=A\left(K^{+} K^{-}\right)-A\left(\pi^{+} \pi^{-}\right)
$$

- Similar strategy for most of other CP asymmetry measurements - one or more suitable additional modes are needed to remove detection/production asymmetries

Taken from Angelo Di Canto, talk presented at "Towards the Ultimate

After LHCb's new announcement on charm CP violation:

Z. Z. Xing [1903.09566]

Chala, Lenz, Rusov, Scholtz [1903.10490]
H. N. Li, C. D. Lu, F. S. Yu [1903.10638]

Grossman, Schacht [1903.10952]
Soni [1905.00907]

