

Chao-Qiang Geng

NTHU (Hsinchu, Taiwan) NETS

8th Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (FLASY2019)

July 23—July 27, 2019

Outline

- Introduction
- Effective Hamiltonians for Weak Decays of Charmed Baryons with SU(3) Flavor Symmetry
- Semileptonic decays of charmed baryons
- Two-body nonleptonic decays of charmed baryons
- Three-body nonleptonic decays of charmed baryons
- Summary

• Introduction

OCD		$SU(3)_{C} \times$	$SU(3)_{L} \times$	<i>SU</i> (3) _R ^{>}	× <i>U</i> (1) _B	\longrightarrow SU	7 (3) c ×	<i>SU</i> (3) _{F=L+R}	$\times U(1)_{B}$	
	q	3	3	1	1/3		3	3	1/3	
Three light quarks	$\overline{\mathbf{q}}$	3	1	3	-1/3		3	3	-1/3	
q=u,d,s										



Introduction

OCD		<i>SU</i> (3)c >	× <i>SU</i> (3) _L ×	<i>SU</i> (3) _R	× <i>U</i> (1) _B	$\longrightarrow SU$	7(3) _C >	× $SU(3)_{F=L+R}$ >	< <i>U</i> (1) _B	SU(3) _F
	q	3	3	1	1/3		3	3	1/3	Flavor
Three light quarks	$\overline{\mathbf{q}}$	3	1	3	-1/3		3	3	-1/3	Symmetry
q=u,d,s										by millet y

- $SU(3)_C: 3 \otimes 3 \otimes 3 = 10_S \oplus 8_{Ms} \oplus 8_{MA} \oplus 1_A$
- $SU(3)_F: 3 \otimes 3 \otimes 3 = 10_S \oplus 8_{M_S} \oplus 8_{M_A} \oplus 1_A$
- $SU(2)_{spin}: 2 \otimes 2 \otimes 2 = 4_S \oplus 2_{Ms} \oplus 2_{MA}$

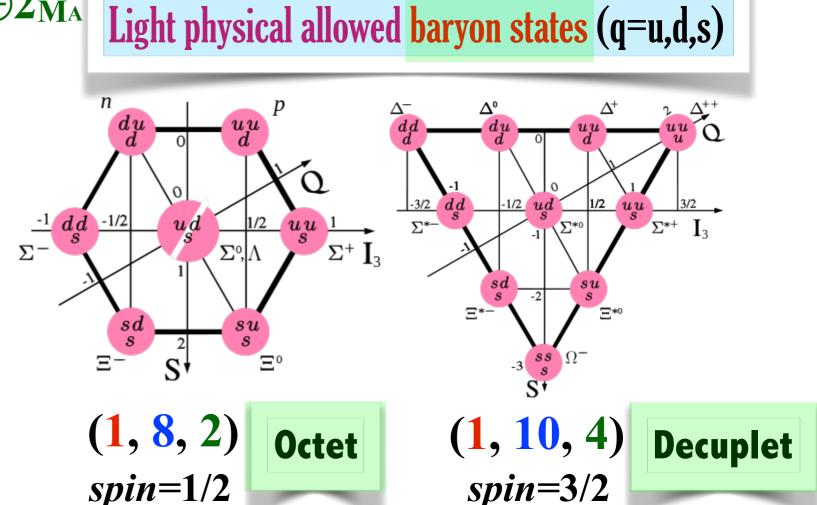
Totally antisymmetric states

Space: L=0 Symmetric

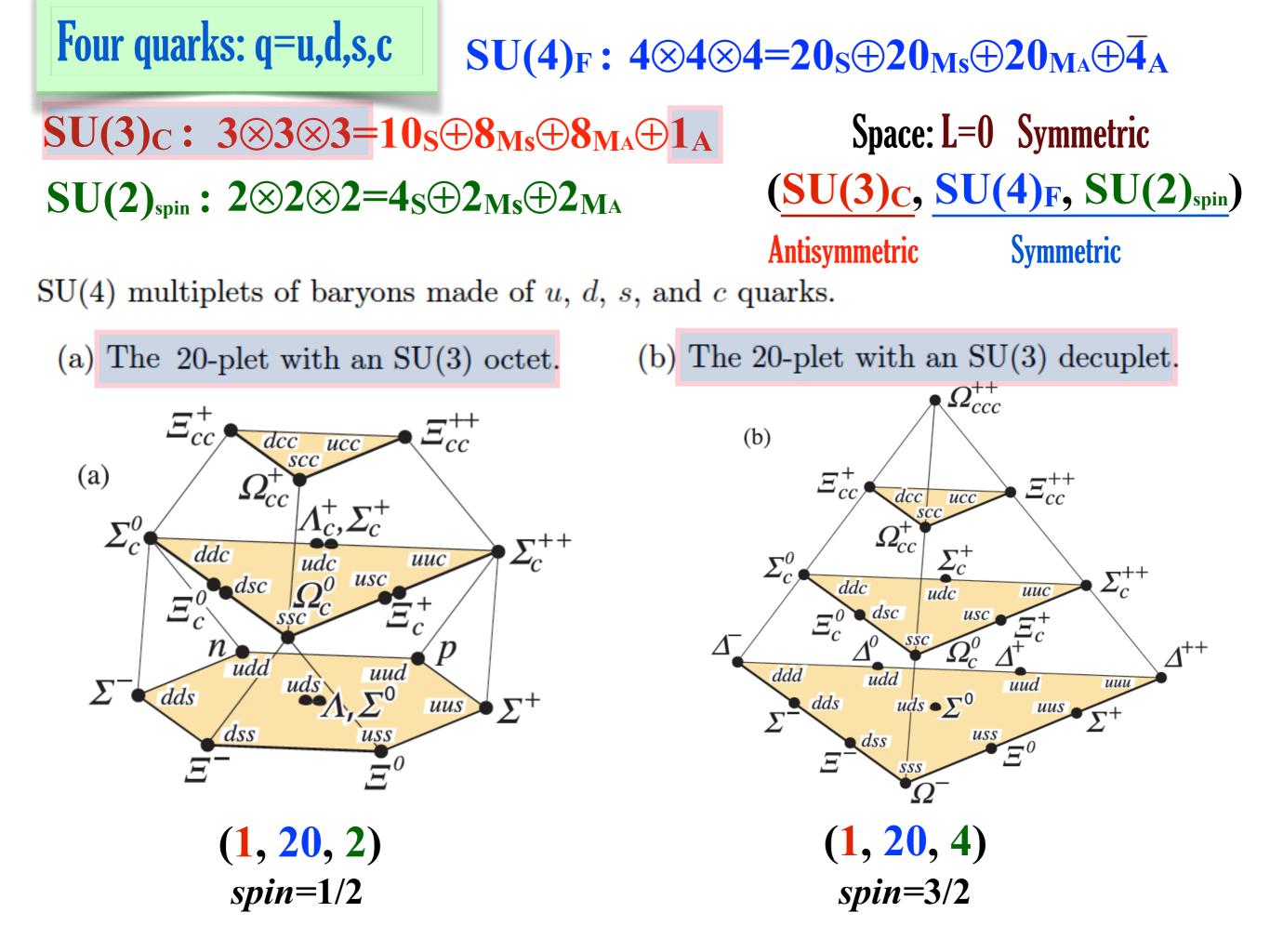
$$(\underline{SU(3)_C}, \underline{SU(3)_F}, \underline{SU(2)_{spin}})$$

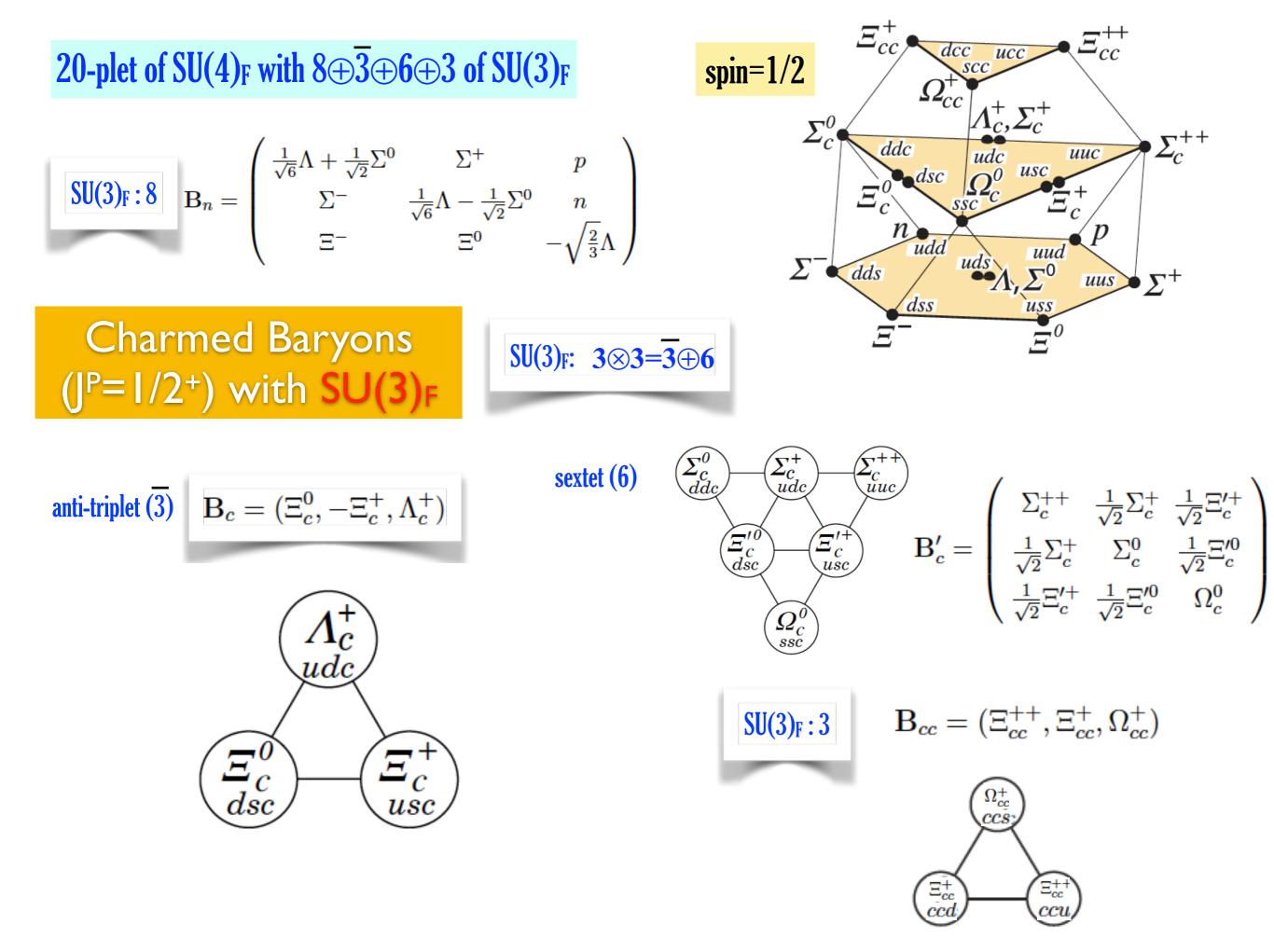
Antisymmetric

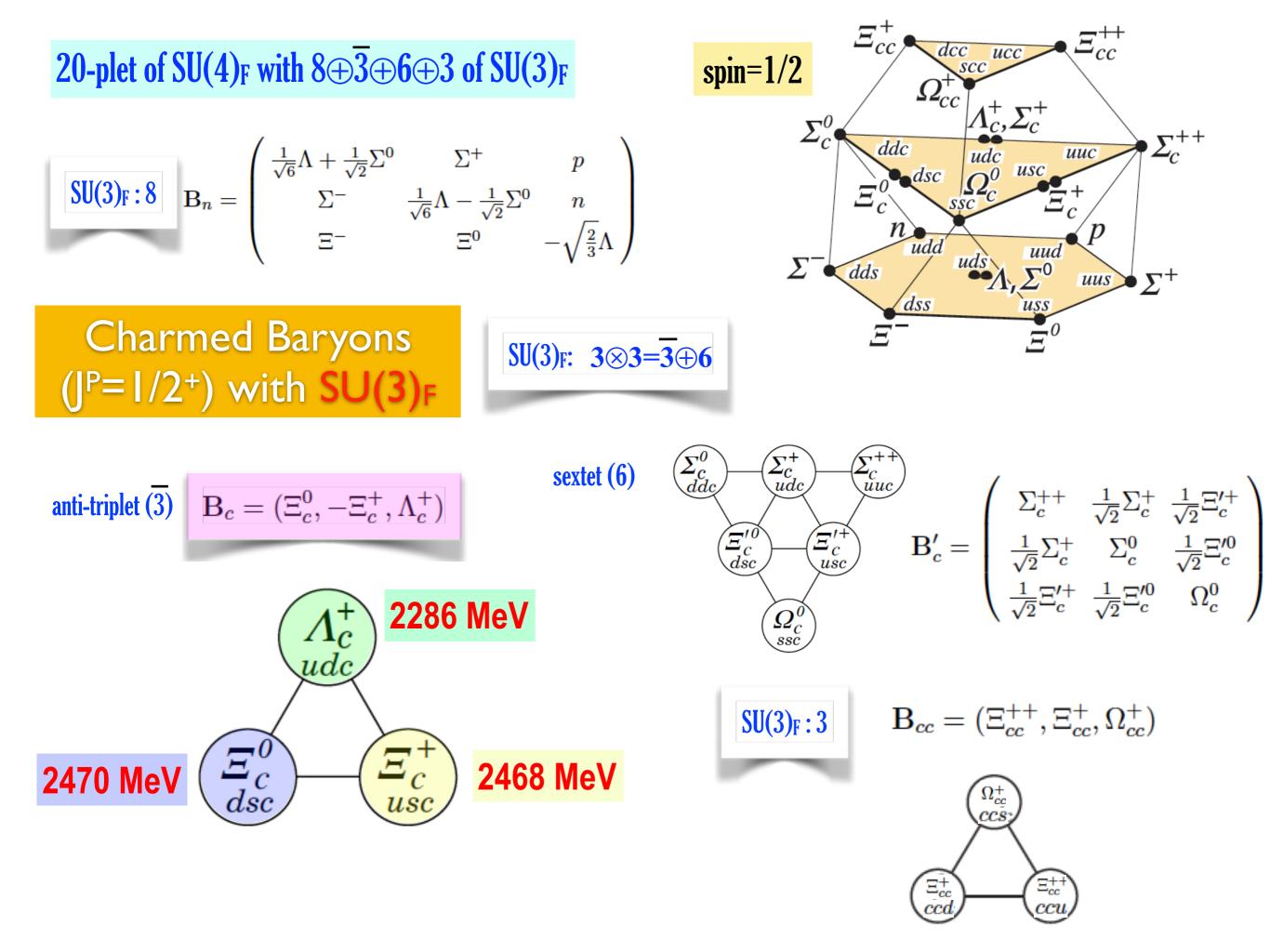
Symmetric



Four quarks: q=u,d,s,c $SU(4)_F: 4 \otimes 4 \otimes 4 = 20_S \oplus 20_{MS} \oplus 20_{MA} \oplus \bar{4}_A$ $SU(3)_C: 3 \otimes 3 \otimes 3 = 10_S \oplus 8_{MS} \oplus 8_{MA} \oplus 1_A$ Space: L=0 Symmetric $SU(2)_{spin}: 2 \otimes 2 \otimes 2 = 4_S \oplus 2_{MS} \oplus 2_{MA}$ $(SU(3)_C, SU(4)_F, SU(2)_{spin})$ AntisymmetricSymmetric



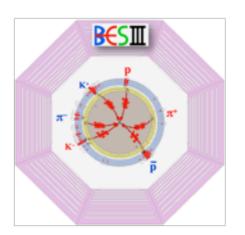




Recent experimental developments in charmed baryons:

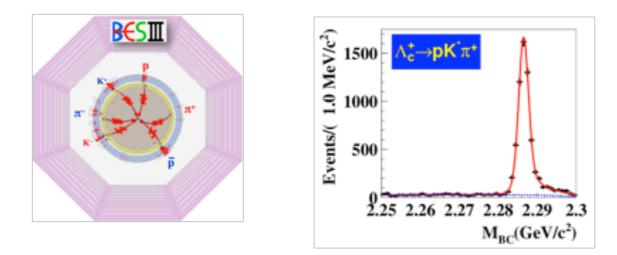
BESIII at the **Beijing** Electron Positron Collider (BEPCII)

BEPCII: a τ-c Factory

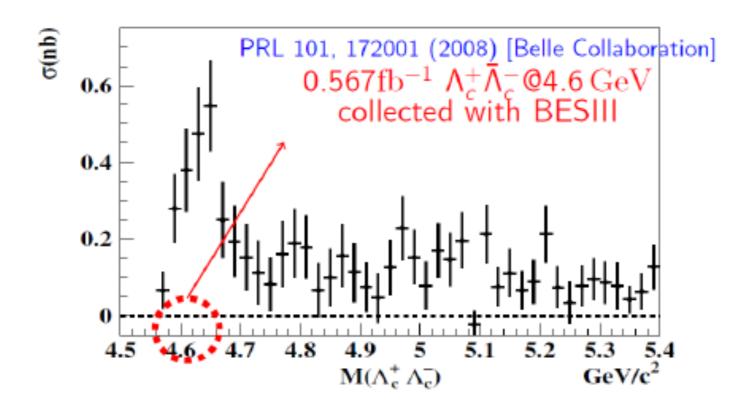


Recent experimental developments in charmed baryons:

BESIII at the Beijing Electron Positron Collider (BEPCII)



$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)_{\text{BESIII}} = (5.84 \pm 0.27 \pm 0.23)\%$$

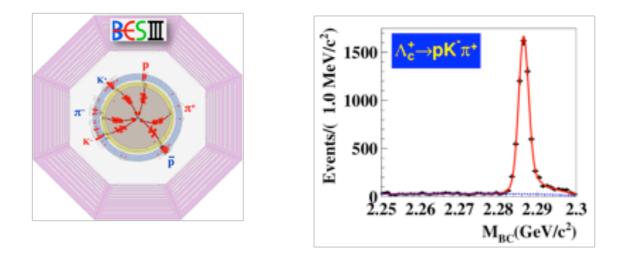


BEPCII: a τ -c Factory Around E_{cms} ~ 4.6 GeV

A uniquely clean background to study Charm Baryons

Recent experimental developments in charmed baryons:

BESIII at the Beijing Electron Positron Collider (BEPCII)



$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)_{\text{BESIII}} = (5.84 \pm 0.27 \pm 0.23)\%$$

g(nb) A uniquely clean background PRL 101, 172001 (2008) [Belle Collaboration] 0.567 fb⁻¹ $\Lambda_c^+ \bar{\Lambda}_c^-$ @4.6 GeV collected with BESIII 0.6 to study Charm Baryons 0.40.24.8 4.9 5.15.2 5 GeV/c² $M(\Lambda_c^+ \Lambda_c^-)$ Ξ_{c} : absolute rates At BEPCII: If ECM >4.95 GeV

BEPCII: a τ-c Factory

Around $E_{cms} \sim 4.6 \text{ GeV}$

 Λ_{c}^{+}

 $\overline{\Lambda}_{c}^{-}$

p

р

 π^+

K_S⁰

TABLE I. Experimental data for charmed baryons given by the BES-III collaboration, where the first and second uncertainties are statistic and systematic errors, respectively, while the relative branching ratios are measured $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$ and X refers to any possible final state particles.

		I
Decay channels	Absolute (*Relative) branching ratio	Up-down asymmetry
$\Lambda_c^+ \to \Lambda e^+ \nu_e$	$(3.63 \pm 0.38 \pm 0.20) \times 10^{-2}$ [1]	
$\Lambda_c^+ \to p K_S^0$	$(1.52 \pm 0.08 \pm 0.03) \times 10^{-2}$ [2]	$0.18 \pm 0.43 \pm 0.14$ [11]
$\Lambda_c^+ \to p K^- \pi^+$	$(5.84 \pm 0.27 \pm 0.23) \times 10^{-2} [2]$	
$\Lambda_c^+ \to p K_S^0 \pi^0$	$(1.87 \pm 0.13 \pm 0.05) \times 10^{-2}$ [2]	
$\Lambda_c^+ \to p K^0_S \pi^+ \pi^-$	$(1.53 \pm 0.11 \pm 0.09) \times 10^{-2}$ [2]	
$\Lambda_c^+ \to p K^- \pi^+ \pi^0$	$(4.53 \pm 0.23 \pm 0.30) \times 10^{-2}$ [2]	
$\Lambda_c^+\to\Lambda\pi^+$	$(1.24 \pm 0.07 \pm 0.03) \times 10^{-2}$ [2]	$-0.80 \pm 0.11 \pm 0.02$ [11]
$\Lambda_c^+\to\Lambda\pi^+\pi^0$	$(7.01 \pm 0.37 \pm 0.19) \times 10^{-2}$ [2]	
$\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$	$(3.81 \pm 0.24 \pm 0.18) \times 10^{-2}$ [2]	
$\Lambda_c^+\to \Sigma^0\pi^+$	$(1.27 \pm 0.08 \pm 0.03) \times 10^{-2}$ [2]	$-0.73 \pm 0.17 \pm 0.07$ [11]
$\Lambda_c^+\to \Sigma^+\pi^0$	$(1.18 \pm 0.10 \pm 0.03) \times 10^{-2}$ [2]	$-0.57 \pm 0.10 \pm 0.07$ [11]
$\Lambda_c^+\to \Sigma^+\pi^+\pi^-$	$(4.25 \pm 0.24 \pm 0.20) \times 10^{-2}$ [2]	
$\Lambda_c^+\to \Sigma^+\omega$	$(1.56 \pm 0.20 \pm 0.07) \times 10^{-2}$ [2]	
$\Lambda_c^+ \to p \pi^+ \pi^-$	$*(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$ [3]	
$\Lambda_c^+ \to p K^+ K^-$	$*(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$ [3]	
$\Lambda_c^+ \to p \phi$	$*(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$ [3]	
$\Lambda_c^+ \to \Lambda \mu^+ v_\mu$	$(3.49 \pm 0.46 \pm 0.27) \times 10^{-2}$ [4]	
$\Lambda_c^+ \to p \pi^0$	$< 2.7 \times 10^{-4} [5]$	
$\Lambda_c^+ \to p\eta$	$(1.24 \pm 0.28 \pm 0.10) \times 10^{-2} [5]$	
$\Lambda_c^+\to \Xi^0 K^+$	$(5.90 \pm 0.86 \pm 0.39) \times 10^{-2}$ [6]	0.77 ± 0.78 [6]
$\Lambda_c^+ \to \Xi(1530)^0 K^+$	$(5.02 \pm 0.99 \pm 0.31) \times 10^{-2}$ [6]	-1.00 ± 0.34 [6]
$\Lambda_c^+\to \Sigma^+\eta'$	$1.34 \pm 0.53 \pm 0.21) \times 10^{-2} [7]$	
$\Lambda_c^+\to\Lambda X$	$38.2^{+2.8}_{-2.2} \pm 0.8) \times 10^{-2} [8]$	
$\Lambda_c^+ \to X e^+ \nu_e$	$3.95 \pm 0.34 \pm 0.09) \times 10^{-2}$ [9]	
$\Lambda_c^+ \to \Lambda \eta \pi^+$	$1.84 \pm 0.21 \pm 0.15) \times 10^{-2}$ [10]	
$\Lambda_c^+ \to \Sigma(1385)^+ \eta$	$(9.1 \pm 1.8 \pm 0.9) \times 10^{-3} \ [10]$	

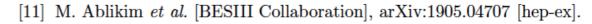
Many newly measured charmed baryon decays.

[1] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 115, 221805 (2015).

- [2] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 116, 052001 (2016).
- [3] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 117, 232002 (2016).
- [4] M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 767, 42 (2017).
- [5] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 95, 111102 (2017).

[6] M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 783, 200 (2018).

- [7] M. Ablikim et al. [BESIII Collaboration], arXiv:1811.08028 [hep-ex].
- [8] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121, 062003 (2018).
- [9] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121, 251801 (2018).
- [10] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 99, 032010 (2019).



BELLE at the KEK-B factory

TABLE II. Experimental data for charmed baryons given by the Belle Collaboration, where the first and second uncertainties are statistic and systematic errors, respectively, while he relative branching ratios are measured $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$.

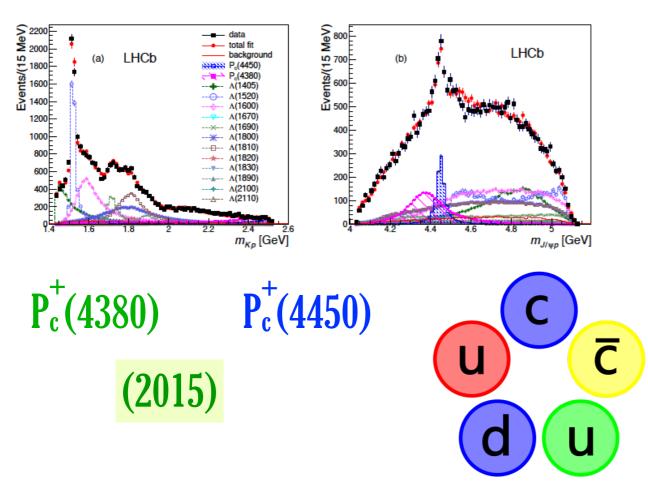
	1	
Decay channel	Absolute (*Relative) branching rat	tio
$\Lambda_c^+ \to p K^- \pi^+$	$(6.84 \pm 0.24^{+0.21}_{-0.27}) \times 10^{-2}$ [1]	
$\Lambda_c^+ \to p K^+ \pi^-$	$*(2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$ [2]	
$\Lambda_c^+ \to \phi p \pi^0$	$< 1.53 imes 10^{-4}$ [3]	[1] A. Zupanc <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 113 , 042002 (2004)
$\Lambda_c^+ \to K^+ K^- p \pi^0$	$< 6.3 imes 10^{-5}$ [3]	 [2] S. B. Yang <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 117, 011801 (2) [2] B. Del <i>et al.</i> [Belle Collaboration], Phys. Rev. D 66, 051102 (2017).
$\Lambda_c^+ \to K^- \pi^+ p \pi^0$	$*(0.685 \pm 0.007 \pm 0.018)$ [3]	 [3] B. Pal <i>et al.</i> [Belle Collaboration], Phys. Rev. D 96, 051102 (2017) [4] M. Berger <i>et al.</i> [Belle Collaboration], Phys. Rev. D 98, 112006 (2018)
$\Lambda_c^+\to \Sigma^+\pi^-\pi^+$	$*(0.719 \pm 0.003 \pm 0.024)$ [4]	[5] Y. B. Li <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 122 , 082001 (201
$\Lambda_c^+\to \Sigma^0\pi^+\pi^0$	$*(0.575 \pm 0.005 \pm 0.036)$ [4]	[6] Y. B. Li <i>et al.</i> [Belle Collaboration], arXiv:1904.12093 [hep-ex].
$\Lambda_c^+\to \Sigma^+\pi^0\pi^0$	$*(0.247 \pm 0.006 \pm 0.019)$ [4]	
$\Xi_c^0\to \Xi^-\pi^+$	$(1.80 \pm 0.50 \pm 0.14) \times 10^{-2}$ [5]	
$\Xi_c^0\to\Lambda K^-\pi^+$	$(1.17 \pm 0.37 \pm 0.09) \times 10^{-2}$ [5]	
$\Xi_c^0 \to p K^- K^- \pi^+$	$(5.8 \pm 2.3 \pm 0.5) \times 10^{-3}$ [5]	
$\Xi_c^+\to \Xi^-\pi^+\pi^+$	$(28.6 \pm 12.1 \pm 3.8) \times 10^{-3}$ [6]	
$\Xi_c^+ \to p K^- \pi^+$	$(4.5 \pm 2.1 \pm 0.7) \times 10^{-3}$ [6]	
$\Xi_c^+ \to p\overline{K}^*(892)^0$	$(2.5 \pm 1.6 \pm 0.4) \times 10^{-3}$ [6]	

BELLE at the KEK-B factory

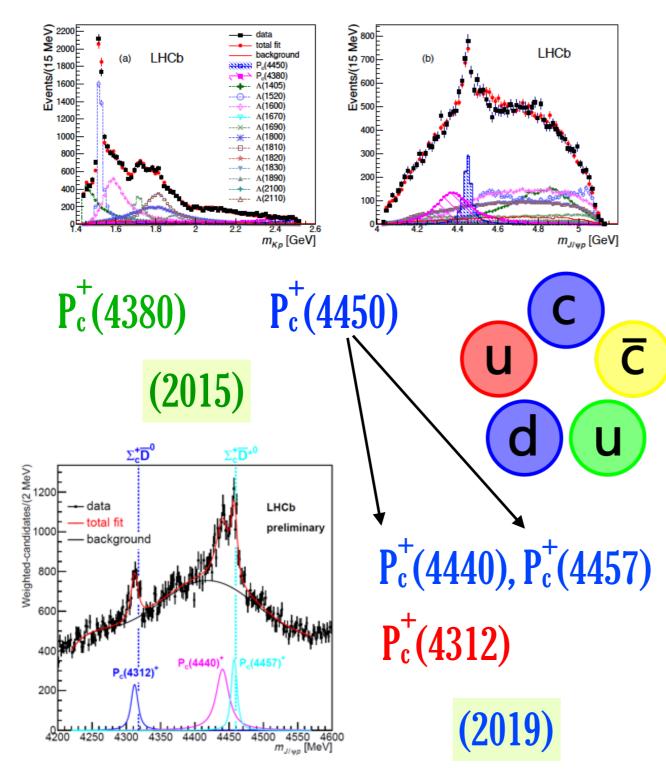
TABLE II. Experimental data for charmed baryons given by the Belle Collaboration, where the first and second uncertainties are statistic and systematic errors, respectively, while he relative branching ratios are measured $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$.

Decay channel	Absolute (*Relative) branching ra	tio
$\Lambda_c^+ \to p K^- \pi^+$	$(6.84 \pm 0.24^{+0.21}_{-0.27}) \times 10^{-2}$ [1]	
$\Lambda_c^+ \to p K^+ \pi^-$	$*(2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$ [2]	
$\Lambda_c^+ \to \phi p \pi^0$	$< 1.53 imes 10^{-4}$ [3]	[1] A. Zupanc <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 113 , 042002 (2014)
$\Lambda_c^+ \to K^+ K^- p \pi^0$	$< 6.3 imes 10^{-5}$ [3]	 [2] S. B. Yang <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 117, 011801 (2016) [2] B. Bal <i>et al.</i> [Belle Collaboration], Phys. Rev. D 96, 051102 (2017)
$\Lambda_c^+ \to K^- \pi^+ p \pi^0$	$*(0.685 \pm 0.007 \pm 0.018)$ [3]	 [3] B. Pal <i>et al.</i> [Belle Collaboration], Phys. Rev. D 96, 051102 (2017) [4] M. Berger <i>et al.</i> [Belle Collaboration], Phys. Rev. D 98, 112006 (2018)
$\Lambda_c^+\to \Sigma^+\pi^-\pi^+$	$*(0.719 \pm 0.003 \pm 0.024)$ [4]	[5] Y. B. Li <i>et al.</i> [Belle Collaboration], Phys. Rev. Lett. 122 , 082001 (2019)
$\Lambda_c^+\to \Sigma^0\pi^+\pi^0$	$*(0.575 \pm 0.005 \pm 0.036)$ [4]	[6] Y. B. Li <i>et al.</i> [Belle Collaboration], arXiv:1904.12093 [hep-ex].
$\Lambda_c^+\to \Sigma^+\pi^0\pi^0$	$*(0.247 \pm 0.006 \pm 0.019)$ [4]	
$\Xi_c^0\to \Xi^-\pi^+$	$(1.80 \pm 0.50 \pm 0.14) \times 10^{-2}$ [5]	
$\Xi_c^0\to\Lambda K^-\pi^+$	$(1.17 \pm 0.37 \pm 0.09) \times 10^{-2}$ [5]	
$\Xi_c^0 \to p K^- K^- \pi^+$	$(5.8 \pm 2.3 \pm 0.5) \times 10^{-3}$ [5]	
$\Xi_c^+\to\Xi^-\pi^+\pi^+$	$(28.6 \pm 12.1 \pm 3.8) \times 10^{-3}$ [6]	
$\Xi_c^+ \to p K^- \pi^+$	$(4.5 \pm 2.1 \pm 0.7) \times 10^{-3}$ [6]	Belle II
$\Xi_c^+ \to p \overline{K}^* (892)^0$	$(2.5 \pm 1.6 \pm 0.4) \times 10^{-3}$ [6]	

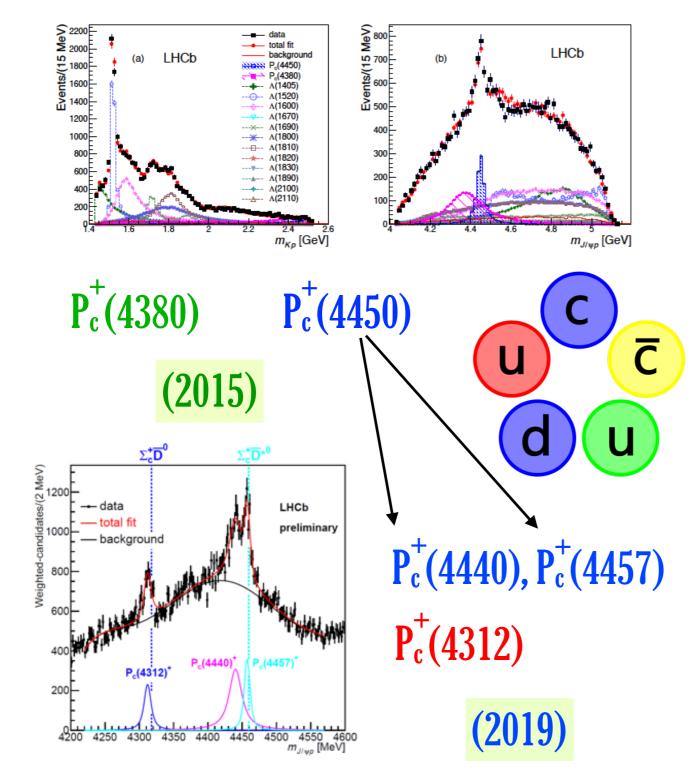
LHCb discoveries pentaquark-like charm baryons P_c^+ (uudcc) by the Chinese group (中 函 团 队)

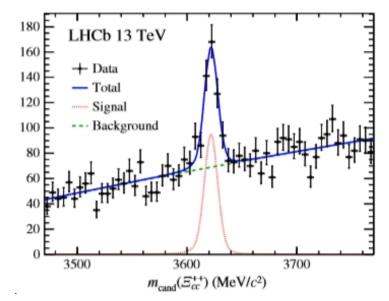


LHCb discoveries pentaquark-like charm baryons P_c^+ (uudcc) by the Chinese group (中 函 团 队)

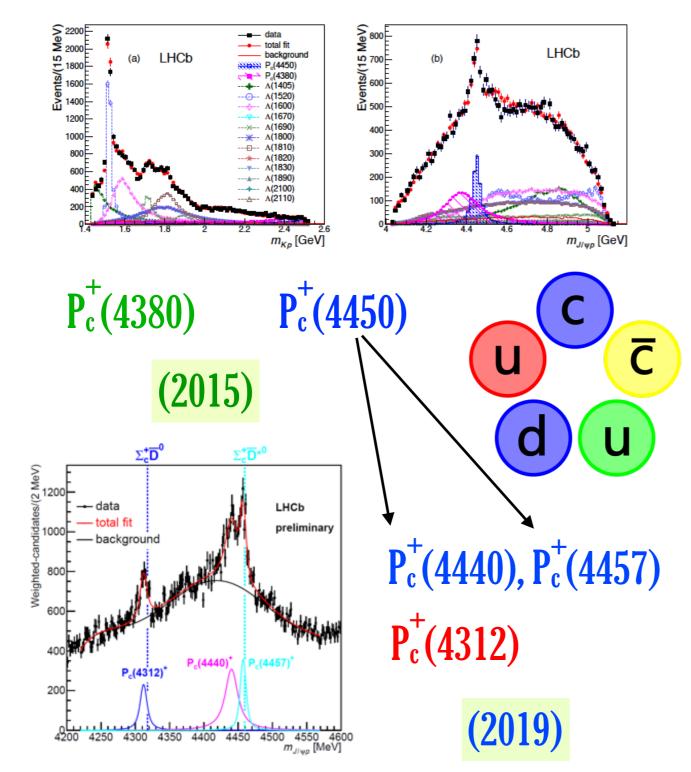


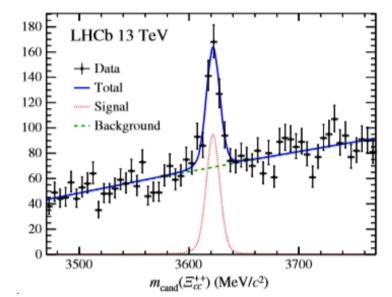
LHCb discoveries pentaquark-like charm baryons P_c^+ (uudcc) and the doubly-charmed baryon Ξ_{cc}^{++} by the Chinese group ($\clubsuit \otimes \oplus \oplus \otimes \otimes$





LHCb discoveries pentaquark-like charm baryons P_c^+ (uudcc) and the doubly-charmed baryon Ξ_{cc}^{++} by the Chinese group ($\clubsuit \otimes \oplus \oplus \otimes \otimes$





LHCb is a charm factory and has the world's largest sample of charm decays

Precision measurement of the Λ_c^+ Ξ_c^+ and Ξ_c^0 baryon lifetimes

LHCb collaboration[†]

arXiv:1906.08350 June 19, 2019

Abstract

We report measurements of the lifetimes of the Λ_c^+ , Ξ_c^+ and Ξ_c^0 charm baryons using proton-proton collision data at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of $3.0 \,\mathrm{fb}^{-1}$, collected by the LHCb experiment. The charm baryons are reconstructed through the decays $\Lambda_c^+ \to pK^-\pi^+$, $\Xi_c^+ \to pK^-\pi^+$ and $\Xi_c^0 \to pK^-K^-\pi^+$, and originate from semimuonic decays of beauty baryons. The lifetimes are measured relative to that of the D^+ meson, and are determined to be

$$\begin{split} \tau_{A_c^+} &= 203.5 \pm 1.0 \pm 1.3 \pm 1.4 \text{ fs}, \\ \tau_{\Xi_c^+} &= 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \text{ fs}, \\ \tau_{\Xi_c^0} &= 154.5 \pm 1.7 \pm 1.6 \pm 1.0 \text{ fs}, \end{split}$$

Recent results on charmed baryons with SU(3)_F flavor symmetry

- C.Q. Geng, C.W. Liu and T.H. Tsai, "Singly Cabibbo suppressed decays of Λ_c with SU(3) Flavor Symmetry," Phys. Lett. B790, 225 (2019).
- C.Q. Geng, C.W. Liu and T.H. Tsai, "Asymmetries of anti-triplet charmed baryon decays," Phys. Lett. B794, 19 (2019).
- J.Y. Cen, C.Q. Geng, C.W. Liu and T.H. Tsai, "Up-down asymmetries in charmed baryon three-body decays," arXiv:1906.01848 [hep-ph].

Recent results on charmed baryons with SU(3)_F flavor symmetry

This Talk

- C.Q. Geng, C.W. Liu and T.H. Tsai, "Singly Cabibbo suppressed decays of Λ_c with SU(3) Flavor Symmetry," Phys. Lett. B790, 225 (2019).
- C.Q. Geng, C.W. Liu and T.H. Tsai, "Asymmetries of anti-triplet charmed baryon decays," Phys. Lett. B794, 19 (2019).
- J.Y. Cen, C.Q. Geng, C.W. Liu and T.H. Tsai, "Up-down asymmetries in charmed baryon three-body decays," arXiv:1906.01848 [hep-ph].

$$\mathbf{B}_{c} \rightarrow \mathbf{B}_{n} \ell^{+} \nu_{\ell} \qquad \mathbf{B}_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}) \qquad \mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}$$

C.Q. Geng, C.W. Liu and T.H. Tsai, "Semileptonic Decays of Anti-triplet Charmed Baryons," Phys. Lett. B792, 214 (2019).

T.H.Tsai (蔡典学):Talk on July 24

Recent results on charmed baryons with SU(3)_F flavor symmetry

This Talk

- C.Q. Geng, C.W. Liu and T.H. Tsai, "Singly Cabibbo suppressed decays of Λ_c with SU(3) Flavor Symmetry," Phys. Lett. B790, 225 (2019).
- C.Q. Geng, C.W. Liu and T.H. Tsai, "Asymmetries of anti-triplet charmed baryon decays," Phys. Lett. B794, 19 (2019).
- J.Y. Cen, C.Q. Geng, C.W. Liu and T.H. Tsai, "Up-down asymmetries in charmed baryon three-body decays," arXiv:1906.01848 [hep-ph].

$$\mathbf{B}_{c} \rightarrow \mathbf{B}_{n} \ell^{+} \nu_{\ell} \qquad \mathbf{B}_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}) \qquad \mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}$$

C.Q. Geng, C.W. Liu and T.H. Tsai, "Semileptonic Decays of Anti-triplet Charmed Baryons," Phys. Lett. B792, 214 (2019).

T.H.Tsai (蔡典学):Talk on July 24

$$\mathbf{B}_{c} \rightarrow \mathbf{B}_{D}M \qquad \mathbf{B}_{D} = \frac{1}{\sqrt{3}} \left(\begin{pmatrix} \sqrt{3}\Delta^{++} \ \Delta^{+} \ \Sigma'^{+} \\ \Delta^{+} \ \Delta^{0} \ \frac{\Sigma'^{0}}{\sqrt{2}} \\ \Sigma'^{+} \ \frac{\Sigma'^{0}}{\sqrt{2}} \ \Xi'^{0} \end{pmatrix}, \begin{pmatrix} \Delta^{+} \ \Delta^{0} \ \frac{\Sigma'^{0}}{\sqrt{2}} \\ \Delta^{0} \ \sqrt{3}\Delta^{-} \ \Sigma'^{-} \\ \frac{\Sigma'^{0}}{\sqrt{2}} \ \Sigma'^{-} \ \Xi'^{-} \\ \Xi'^{0} \ \Xi'^{-} \ \sqrt{3}\Omega^{-} \end{pmatrix} \right)$$

C.Q. Geng, C.W. Liu, T.H. Tsai and Y. Yu, "Charmed baryon weak decays with decuplet baryon and SU(3) flavor symmetry," Phys. Rev. D99, 114022 (2019).

C.W. Liu (刘佳韦):Talk on July 24

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq} (\bar{q}c)_{V-A} (\bar{u}_{\nu} v_{\ell})_{V-A}$$

 $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$ $(\bar{u}_\nu v_\ell)_{V-A} = \bar{u}_\nu \gamma^\mu (1 - \gamma_5) v_\ell$

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq} (\bar{q}c)_{V-A} (\bar{u}_{\nu} v_{\ell})_{V-A} \tag{(\bar{q}_1)}{(\bar{u}_{\nu} v_{\ell})_{V-A}}$$

 $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$ $(\bar{u}_\nu v_\ell)_{V-A} = \bar{u}_\nu \gamma^\mu (1 - \gamma_5) v_\ell$

For the non-leptonic $c \rightarrow s \ u \ \overline{d}$, $c \rightarrow u \ q \ \overline{q}$ and $c \rightarrow u \ d \ \overline{s}$ transitions,

 $\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ V_{cs} V_{ud} (c_+ O_+ + c_- O_-) + V_{cd} V_{ud} (c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us} (c_+ O'_+ + c_- O'_-) \right\}$

$$(V_{cs}V_{ud}, V_{cd}V_{ud}, V_{cd}V_{us}) \simeq (1, -s_c, -s_c^2) \qquad s_c \equiv \sin \theta_c = 0.2248$$
$$O_{\pm} = \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}]$$
$$O_{\pm}^q = \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}]$$
$$\hat{O}_{\pm} \equiv O_{\pm}^d - O_{\pm}^s$$
$$O_{\pm}^\prime = \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}]$$

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq} (\bar{q}c)_{V-A} (\bar{u}_{\nu} v_{\ell})_{V-A}$$

 $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$ $(\bar{u}_\nu v_\ell)_{V-A} = \bar{u}_\nu \gamma^\mu (1 - \gamma_5) v_\ell$

For the non-leptonic $c \rightarrow s \ u \ \overline{d}$, $c \rightarrow u \ q \ \overline{q}$ and $c \rightarrow u \ d \ \overline{s}$ transitions,

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ V_{cs} V_{ud} (c_+ O_+ + c_- O_-) + V_{cd} V_{ud} (c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us} (c_+ O'_+ + c_- O'_-) \right\}$$

Cabibbo-allowed

$$V_{cs}V_{ud}, V_{cd}V_{ud}, V_{cd}V_{us}) \simeq (1, -s_c, -s_c^2)$$
 s_c

$$s_c \equiv \sin \theta_c = 0.2248$$

$$O_{\pm} = \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}]$$
$$O_{\pm}^{q} = \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}]$$
$$O_{\pm}' = \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}]$$

$$\hat{O}_{\pm} \equiv O^d_{\pm} - O^s_{\pm}$$

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq}(\bar{q}c)_{V-A} (\bar{u}_{\nu}v_{\ell})_{V-A} \qquad \begin{aligned} &(\bar{q}_1q_2)_{V-A} = \bar{q}_1\gamma_{\mu}(1-\gamma_5)q_2\\ &(\bar{u}_{\nu}v_{\ell})_{V-A} = \bar{u}_{\nu}\gamma^{\mu}(1-\gamma_5)v_{\ell} \end{aligned}$$

For the non-leptonic $c \rightarrow s \ u \ \overline{d}$, $c \rightarrow u \ q \ \overline{q}$ and $c \rightarrow u \ d \ \overline{s}$ transitions,

$$\begin{aligned} \mathcal{H}_{eff}^{n\ell} &= \frac{G_F}{\sqrt{2}} \left\{ \begin{matrix} V_{cs} V_{ud}(c_+ O_+ + c_- O_-) + V_{cd} V_{ud}(c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us}(c_+ O'_+ + c_- O'_-) \end{matrix} \right\} \\ \hline \mathbf{Cabibbo-allowed} & \mathbf{Cabibbo-suppressed} \\ (V_{cs} V_{ud}, V_{cd} V_{ud}, V_{cd} V_{us}) &\simeq (\mathbf{1}, -s_c, -s_c^2) & s_c \equiv \sin \theta_c = 0.2248 \\ O_{\pm} &= \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}] \\ O_{\pm}^q &= \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}] \\ O_{\pm}^q &= \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}] \\ O_{\pm}^{\prime} &= \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}] \end{aligned}$$

The effective Hamiltonian for the semileptonic $c \rightarrow q l^+ v_l$ transition with q=(d or s):

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} V_{cq} (\bar{q}c)_{V-A} (\bar{u}_{\nu} v_{\ell})_{V-A}$$

 $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$ $(\bar{u}_\nu v_\ell)_{V-A} = \bar{u}_\nu \gamma^\mu (1 - \gamma_5) v_\ell$

For the non-leptonic $c \rightarrow s \ u \ \overline{d}$, $c \rightarrow u \ q \ \overline{q}$ and $c \rightarrow u \ d \ \overline{s}$ transitions,

$$\begin{aligned} \mathcal{H}_{eff}^{n\ell} &= \frac{G_F}{\sqrt{2}} \left\{ \begin{matrix} V_{cs} V_{ud}(c_+ O_+ + c_- O_-) + V_{cd} V_{ud}(c_+ \hat{O}_+ + c_- \hat{O}_-) + V_{cd} V_{us}(c_+ O'_+ + c_- O'_-) \end{matrix} \right\} \\ \hline \text{Cabibbo-allowed} & \text{Cabibbo-suppressed} & \text{doubly Cabibbo-suppressed} \\ (V_{cs} V_{ud}, V_{cd} V_{ud}, V_{cd} V_{us}) &\simeq (1, -s_c, -s_c^2) & s_c \equiv \sin \theta_c = 0.2248 \\ O_{\pm} &= \frac{1}{2} [(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A}] \\ O_{\pm}^q &= \frac{1}{2} [(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A}] \\ O'_{\pm} &= \frac{1}{2} [(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A}] \\ \hline \end{aligned}$$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$ $\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$$

 $(\bar{q}_{i}q^{k})(\bar{q}_{j}c) \text{ with } \bar{q}_{i}q^{k}\bar{q}_{j} \text{ being decomposed as } \bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + \overline{15}$ $\mathcal{O}_{6} = \frac{1}{2}(\bar{u}d\bar{s} - \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2}(\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{6} = \frac{1}{2}(\bar{u}s\bar{d} - \bar{d}s\bar{u})c,$ $\mathcal{O}_{15} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{15} = \frac{1}{2}(\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{15} = \frac{1}{2}(\bar{u}s\bar{d} + \bar{d}s\bar{u})c,$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\begin{aligned} H_{22}(6) &= 2 , H_{23}(6) = H_{32}(6) = -2s_c , H_{33}(6) = 2s_c^2 \\ H_2^{13}(\overline{15}) &= H_2^{31}(\overline{15}) = 1 , \\ H_2^{12}(\overline{15}) &= H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c , \\ H_3^{12}(\overline{15}) &= H_3^{21}(\overline{15}) = -s_c^2 , \end{aligned}$$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$$

 $\begin{aligned} (\bar{q}_{i}q^{k})(\bar{q}_{j}c) & \text{with } \bar{q}_{i}q^{k}\bar{q}_{j} \text{ being decomposed as } \bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + \overline{15} \\ \mathcal{O}_{6} &= \frac{1}{2}(\bar{u}d\bar{s} - \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2}(\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{6} = \frac{1}{2}(\bar{u}s\bar{d} - \bar{d}s\bar{u})c \,, \\ \mathcal{O}_{15} &= \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{15} = \frac{1}{2}(\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{15} = \frac{1}{2}(\bar{u}s\bar{d} + \bar{d}s\bar{u})c \,, \end{aligned}$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\begin{aligned} H_{22}(6) &= 2 , H_{23}(6) = H_{32}(6) = -2s_c , H_{33}(6) = 2s_c^2 \\ H_2^{13}(\overline{15}) &= H_2^{31}(\overline{15}) = 1 , \\ H_2^{12}(\overline{15}) &= H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c , \\ H_3^{12}(\overline{15}) &= H_3^{21}(\overline{15}) = -s_c^2 , \end{aligned}$$

The Hamiltonian without QCD corrections: $c_{-}^{0} = c_{+}^{0} = 1$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$$

 $\begin{aligned} &(\bar{q}_{i}q^{k})(\bar{q}_{j}c) \text{ with } \bar{q}_{i}q^{k}\bar{q}_{j} \text{ being decomposed as } \bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + \overline{15} \\ &\mathcal{O}_{6} = \frac{1}{2}(\bar{u}d\bar{s} - \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2}(\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{6} = \frac{1}{2}(\bar{u}s\bar{d} - \bar{d}s\bar{u})c \,, \\ &\mathcal{O}_{15} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{15} = \frac{1}{2}(\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{15} = \frac{1}{2}(\bar{u}s\bar{d} + \bar{d}s\bar{u})c \,, \end{aligned}$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\begin{aligned} H_{22}(6) &= 2 , H_{23}(6) = H_{32}(6) = -2s_c , H_{33}(6) = 2s_c^2 \\ H_2^{13}(\overline{15}) &= H_2^{31}(\overline{15}) = 1 , \\ H_2^{12}(\overline{15}) &= H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c , \\ H_3^{12}(\overline{15}) &= H_3^{21}(\overline{15}) = -s_c^2 , \end{aligned}$$

The Hamiltonian without QCD corrections: $c_{-}^{0}=c_{+}^{0}=1$

The first order QCD corrections:

$$c_{-}^{1} = 1 + \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}} \qquad \qquad c_{+}^{1} = 1 - \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}}$$

SU(3)_F: $(\bar{q}c)$ forms an anti-triplet $(\bar{3})$

$$\mathcal{H}_{eff}^{\ell} = \frac{G_F}{\sqrt{2}} H(\bar{3})(\bar{u}_{\nu}v_{\ell})_{V-A}$$

 $(\bar{q}_i q^k)(\bar{q}_j c)$ with $\bar{q}_i q^k \bar{q}_j$ being decomposed as $\bar{3} \times 3 \times \bar{3} = \bar{3} + \bar{3}' + 6 + 15$ $\mathcal{O}_{6} = \frac{1}{2} (\bar{u}d\bar{s} - \bar{s}d\bar{u})c, \quad \hat{\mathcal{O}}_{6} = \frac{1}{2} (\bar{u}d\bar{d} - \bar{d}d\bar{u} + \bar{s}s\bar{u} - \bar{u}s\bar{s})c, \quad \mathcal{O}'_{6} = \frac{1}{2} (\bar{u}s\bar{d} - \bar{d}s\bar{u})c,$ $\mathcal{O}_{\overline{15}} = \frac{1}{2} (\bar{u}d\bar{s} + \bar{s}d\bar{u})c \,, \quad \hat{\mathcal{O}}_{\overline{15}} = \frac{1}{2} (\bar{u}d\bar{d} + \bar{d}d\bar{u} - \bar{s}s\bar{u} - \bar{u}s\bar{s})c \,, \quad \mathcal{O}'_{\overline{15}} = \frac{1}{2} (\bar{u}s\bar{d} + \bar{d}s\bar{u})c \,,$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$

$$\begin{aligned} H_{22}(6) &= 2 , H_{23}(6) = H_{32}(6) = -2s_c , H_{33}(6) = 2s_c^2 \\ H_2^{13}(\overline{15}) &= H_2^{31}(\overline{15}) = 1 , \\ H_2^{12}(\overline{15}) &= H_2^{21}(\overline{15}) = -H_3^{13}(\overline{15}) = -H_3^{31}(\overline{15}) = s_c , \\ H_3^{12}(\overline{15}) &= H_3^{21}(\overline{15}) = -s_c^2 , \end{aligned}$$

0 The Hamiltonian without QCD correction

The first order QCD corrections:

Summing up all orders:

ctions:
$$c_{-}^{0} = c_{+}^{0} = 1$$

 $c_{-}^{1} = 1 + \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}}$
 $c_{+}^{1} = 1 - \frac{\alpha_{s}}{2\pi} \ln \frac{M_{W}^{2}}{\mu^{2}}$
 $c_{-} = \left(\frac{\alpha(M_{W}^{2})}{\alpha(\mu^{2})}\right)^{\frac{-12}{33-2N_{f}}}$
 $c_{+} = \left(\frac{\alpha(M_{W}^{2})}{\alpha(\mu^{2})}\right)^{\frac{6}{33-2N_{f}}}$

$$\frac{c_{-}}{c_{+}} = \frac{1}{c_{+}^{3}} = \left(\frac{\alpha(m_{b}^{2})}{\alpha(M_{W}^{2})}\right)^{\frac{18}{23}} \left(\frac{\alpha(m_{c}^{2})}{\alpha(m_{b}^{2})}\right)^{\frac{18}{25}} \sim 2.4$$

 c_{-}

$$\begin{split} \mathbf{B}_{c} &\to \mathbf{B}_{n} \ell^{+} \nu_{\ell} \\ & \mathcal{M}(\mathbf{B}_{c} \to \mathbf{B}_{n} \ell^{+} \nu_{\ell}) = \langle \mathbf{B}_{n} \ell^{+} \nu_{\ell} | H_{eff}^{\ell} | \mathbf{B}_{c} \rangle = \frac{G_{F}}{\sqrt{2}} V_{cq} T(\mathbf{B}_{c} \to \mathbf{B}_{n}) (\bar{u}_{\nu} \nu_{\ell})_{V-A} \\ & \textbf{Under SU(3)}_{F} \text{ flavor symmetry:} \qquad T(\mathbf{B}_{c} \to \mathbf{B}_{n}) = \alpha_{1}(\mathbf{B}_{n})_{j}^{i} H^{j}(\bar{3})(\mathbf{B}_{c})_{i} \end{split}$$

$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}})(\mathbf{B}_c)_i$$

$\mathbf{B}_c \to \mathbf{B}_n$	T-amp
$\Xi_c^0\to \Xi^-$	α_1
$\Xi_c^+ \to \Xi^0$	α_1
$\Lambda_c^+ \to \Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$
$\Xi_c^0\to \Sigma^-$	$-\alpha_1 s_c$
$\Xi_c^+\to \Sigma^0$	$\sqrt{\frac{1}{2}}\alpha_1 s_c$
$\Xi_c^+ \to \Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$

$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1 (\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}}) (\mathbf{B}_c)_i$$

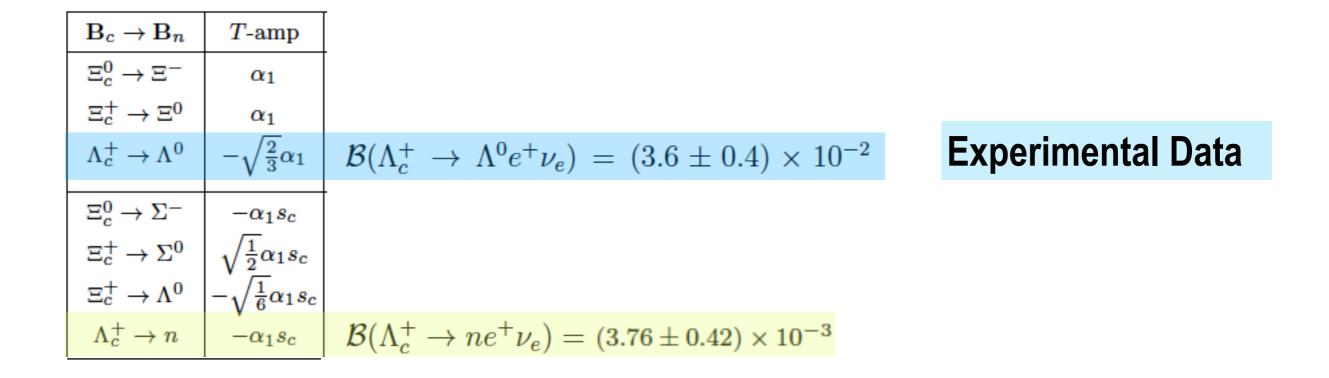
$\mathbf{B}_c o \mathbf{B}_n$	T-amp	
$\Xi_c^0\to\Xi^-$	α_1	
$\Xi_c^+\to \Xi^0$	α_1	
$\Lambda_c^+\to\Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ Experimental Data
$\Xi 0 \rightarrow \Sigma =$		
$\Xi_c^0\to \Sigma^-$	$-\alpha_1 s_c$	
$\Xi_c^+\to \Sigma^0$	$\sqrt{\frac{1}{2}\alpha_1 s_c}$	
$\Xi_c^+ o \Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$	
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$	

$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}})(\mathbf{B}_c)_i$$

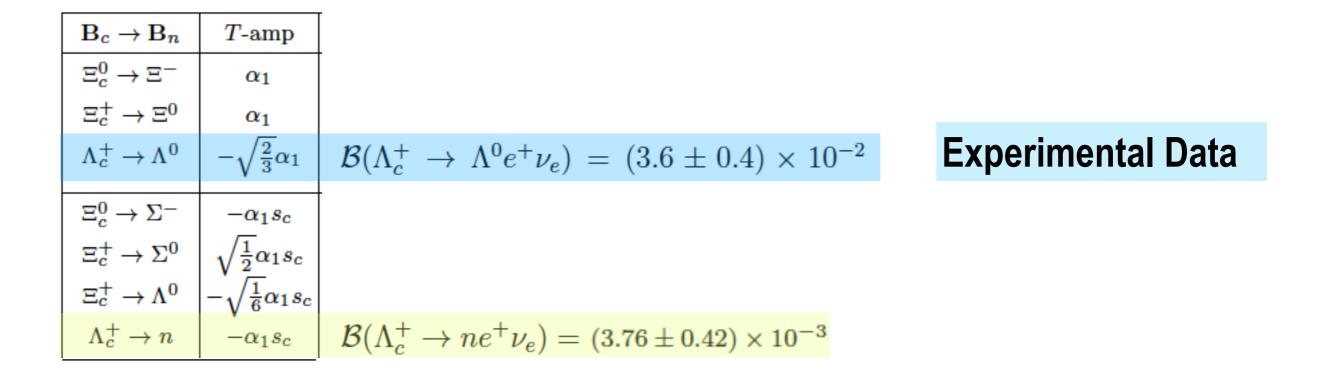


$\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}})(\mathbf{B}_c)_i$$



C.D. Lü, W. Wang and F.S. Yu, ``Test flavor SU(3) symmetry in exclusive Λ_c decays," Phys. Rev. D93, 056008 (2016)

 $\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F *flavor symmetry*:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{\mathbf{3}})(\mathbf{B}_c)_i$$

 $\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{3})(\mathbf{B}_c)_i$$

Light front approach*

$\mathbf{B}_c \to \mathbf{B}_n$	T-amp		
$\Xi_c^0\to \Xi^-$	α_1	$\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.54 \pm 0.28) \times 10^{-2}$	1.35×10-2
$\Xi_c^+\to \Xi^0$	α_1	$\mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (10.1 \pm 1.1) \times 10^{-2}$	5.39×10-2
$\Lambda_c^+\to\Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$	1.63×10-2
$\Xi_c^0 \rightarrow \Sigma^-$	$-\alpha_1 s_c$	$\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (1.63 \pm 0.18) \times 10^{-3}$	0.95×10-3
$\Xi_c^+\to \Sigma^0$	$\sqrt{\frac{1}{2}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (3.23 \pm 0.36) \times 10^{-3}$	1.87×10-3
$\Xi_c^+\to\Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$		8.22×10-4
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$	$\mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$	2.01×10-3

*Z.X. Zhao, ``Weak decays of heavy baryons in the light-front approach," Chin. Phys. C42, 093101 (2018)

 $\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{3})(\mathbf{B}_c)_i$$

Light front approach*

$\mathbf{B}_c o \mathbf{B}_n$	T-amp		3
$\Xi_c^0\to\Xi^-$	α_1	$\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.54 \pm 0.28) \times 10^{-2}$	1.35×10-2
$\Xi_c^+\to \Xi^0$	α_1	$\mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (10.1 \pm 1.1) \times 10^{-2}$	5.39×10-2
$\Lambda_c^+\to\Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$	1.63×10-2
$\Xi_c^0\to \Sigma^-$	$-\alpha_1 s_c$	$\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (1.63 \pm 0.18) \times 10^{-3}$	0.95×10-3
$\Xi_c^+\to \Sigma^0$	$\sqrt{\frac{1}{2}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (3.23 \pm 0.36) \times 10^{-3}$	1.87×10 -3
$\Xi_c^+\to\Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e) = (1.25 \pm 0.14) \times 10^{-3}$	8.22×10-4
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$	$\mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$	2.01×10-3

SU(3) results ← after timing factor 2

*Z.X. Zhao, ``Weak decays of heavy baryons in the light-front approach," Chin. Phys. C42, 093101 (2018) • Semileptonic decays of ch C.Q. Geng, C.W. Liu and T.H. Tsai, "Semileptonic Decays of Anti-triplet Charmed Baryons," Phys. Lett. B792, 214 (2019).

T.H.Tsai: Talk on July 24

 $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell) = \langle \mathbf{B}_n \ell^+ \nu_\ell | H_{eff}^\ell | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} V_{cq} T(\mathbf{B}_c \to \mathbf{B}_n) (\bar{u}_\nu v_\ell)_{V-A}$

Under SU(3)_F flavor symmetry:

 $\mathbf{B}_c \to \mathbf{B}_n \ell^+ \nu_\ell$

 $\mathbf{B}_c \to \mathbf{B}_n \mid T\text{-amp}$

$$T(\mathbf{B}_c \to \mathbf{B}_n) = \alpha_1(\mathbf{B}_n)^i_j H^j(\bar{3})(\mathbf{B}_c)_i$$

Light front approach*

$\Xi_c^0\to\Xi^-$	α_1	$\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.54 \pm 0.28) \times 10^{-2}$	1.35×10-2
$\Xi_c^+\to \Xi^0$	α_1	$\mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (10.1 \pm 1.1) \times 10^{-2}$	5.39×10-2
$\Lambda_c^+\to\Lambda^0$	$-\sqrt{\frac{2}{3}}\alpha_1$	$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$	1.63×10- 2
$\Xi_c^0\to \Sigma^-$	$-\alpha_1 s_c$	$\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (1.63 \pm 0.18) \times 10^{-3}$	0.95×10-3
$\Xi_c^+\to \Sigma^0$	$\sqrt{\frac{1}{2}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (3.23 \pm 0.36) \times 10^{-3}$	1.87×10- 3
$\Xi_c^+\to\Lambda^0$	$-\sqrt{\frac{1}{6}}\alpha_1 s_c$	$\mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e) = (1.25 \pm 0.14) \times 10^{-3}$	8.22×10-4
$\Lambda_c^+ \to n$	$-\alpha_1 s_c$	$\mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$	2.01×10 -3

SU(3) results ← after timing factor 2

*Z.X. Zhao,``Weak decays of heavy baryons in the light-front approach," Chin. Phys. C42, 093101 (2018)

• Two-body nonleptonic decays of charmed baryons

$$\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$$

$$\mathbf{B}_{\boldsymbol{c}} \rightarrow \mathbf{B}_{\boldsymbol{n}} M \qquad \qquad \mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix} \qquad \qquad M = \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{2}}(-\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & K^{0} \\ K^{-} & \bar{K}^{0} & -s_{\phi}\eta + c_{\phi}\eta' \end{pmatrix}$$

$$\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i\overline{u}_{\mathbf{B}_n} \left(A - B\gamma_5 \right) u_{\mathbf{B}_c}$$

spin-dependent amplitude

Note that A and B are relatively real if CP is conserved and FSIs are negligible.

• Two-body nonleptonic decays of charmed baryons

$$\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$$

$$\mathbf{B}_{\boldsymbol{c}} \rightarrow \mathbf{B}_{\boldsymbol{n}} M \qquad \qquad \mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix} \qquad \qquad M = \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{2}}(-\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & K^{0} \\ K^{-} & \bar{K}^{0} & -s_{\phi}\eta + c_{\phi}\eta' \end{pmatrix}$$

$$\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i \overline{u}_{\mathbf{B}_n} \left(A - B \gamma_5 \right) u_{\mathbf{B}_c}$$

spin-dependent amplitude

Note that A and B are relatively real if CP is conserved and FSIs are negligible.

Decay rate:

$$\Gamma = \frac{p_{\mathbf{B}_n}}{8\pi} \left(\frac{(m_{\mathbf{B}_c} + m_{\mathbf{B}_n})^2 - m_M^2}{m_{\mathbf{B}_c}^2} |A|^2 + \frac{(m_{\mathbf{B}_c} - m_{\mathbf{B}_n})^2 - m_M^2}{m_{\mathbf{B}_c}^2} |B|^2 \right)$$

Two-body nonleptonic decays of charmed baryons $B_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+})$ $\mathbf{B}_{\boldsymbol{c}} \rightarrow \mathbf{B}_{\boldsymbol{n}} M$ $\mathbf{B}_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{5}}\Lambda \end{pmatrix}$ $M = \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{2}}(-\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & K^{0} \\ K^{-} & \bar{K}^{0} & -s_{\phi}\eta + c_{\phi}\eta' \end{pmatrix}$ spin-dependent amplitude $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i \overline{u}_{\mathbf{B}_n} (A - B \gamma_5) u_{\mathbf{B}_n}$ Note that A and B are relatively real if CP is conserved and FSIs are negligible. $\Gamma = \frac{p_{\mathbf{B}_n}}{8\pi} \left(\frac{(m_{\mathbf{B}_c} + m_{\mathbf{B}_n})^2 - m_M^2}{m_{\mathbf{B}_n}^2} |A|^2 + \frac{(m_{\mathbf{B}_c} - m_{\mathbf{B}_n})^2 - m_M^2}{m_{\mathbf{B}_n}^2} |B|^2 \right)$ **Decay rate: Differential decay rate:** $\frac{d\Gamma}{d\theta} \propto 1 + \alpha \vec{P}_{\mathbf{B}_n} \cdot \hat{p}_{\mathbf{B}_n} = 1 + \alpha \cos \theta$, **Up-down asymmetry:** 2r Ro(4* R)

the longitudinal polarization asymmetry, *i.e.* $P_{\mathbf{B}_n} = \alpha$.

 $\mathcal{M}(\mathbf{B}_{c} \to \mathbf{B}_{n}M) = i\overline{u}_{\mathbf{B}_{n}} (A - B\gamma_{5}) u_{\mathbf{B}_{c}} \qquad \text{spin-dependent amplitude} \\ A_{(\mathbf{B}_{c} \to \mathbf{B}_{n}M)} = \\ a_{0}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(\mathbf{B}_{n})_{k}^{j}(M)_{l}^{l} + a_{1}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(\mathbf{B}_{n})_{k}^{l}(M)_{l}^{j} + a_{2}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(M)_{k}^{l}(\mathbf{B}_{n})_{l}^{j} + \\ a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}')^{kl} + a_{0}'(\mathbf{B}_{n})_{j}^{i}(M)_{l}^{l}H(\overline{15})_{i}^{jk}(\mathbf{B}_{c})_{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{l}^{k} + \\ a_{5}(\mathbf{B}_{n})_{j}^{i}(M)_{i}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k} + a_{6}(\mathbf{B}_{n})_{i}^{j}(M)_{l}^{m}H(\overline{15})_{m}^{li}(\mathbf{B}_{c})_{j} + a_{7}(\mathbf{B}_{n})_{i}^{l}(M)_{j}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k}, \\ B_{(\mathbf{B}_{c} \to \mathbf{B}_{n}M)} = A_{(\mathbf{B}_{c} \to \mathbf{B}_{n}M)}\{a_{i}^{(\prime)} \to b_{i}^{(\prime)}\}$

spin-dependent amplitude $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i \overline{u}_{\mathbf{B}_n} (A - B \gamma_5) u_{\mathbf{B}_n}$ $A_{(\mathbf{B}_c \to \mathbf{B}_n M)} =$ $a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^l_l + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^l_k (M)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l +$ $a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}^{\prime})^{kl} + a_{0}^{\prime}(\mathbf{B}_{n})_{i}^{i}(M)_{l}^{l}H(\overline{15})_{i}^{jk}(\mathbf{B}_{c})_{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{l}^{k} +$ $a_{5}(\mathbf{B}_{n})_{i}^{i}(M)_{i}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k} + a_{6}(\mathbf{B}_{n})_{i}^{j}(M)_{l}^{m}H(\overline{15})_{m}^{li}(\mathbf{B}_{c})_{j} + a_{7}(\mathbf{B}_{n})_{i}^{l}(M)_{i}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k},$ $B_{(\mathbf{B}_c \to \mathbf{B}_n M)} = A_{(\mathbf{B}_c \to \mathbf{B}_n M)} \{ a_i^{(\prime)} \to b_i^{(\prime)} \}$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$
Assumption
$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) \right\}$$

Two reasons: 1. $(c_{-}/c_{+})^{2} \sim 5.5$: 2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function

is totally antisymmetric in color indices.

Vanishing nonfactorizable contributions

spin-dependent amplitude $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i \overline{u}_{\mathbf{B}_n} (A - B \gamma_5) u_{\mathbf{B}_c}$ $A_{(\mathbf{B}_c \to \mathbf{B}_n M)} =$ $a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^l_l + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^l_k (M)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l +$ $a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}')^{kl}$

 $B_{(\mathbf{B}_c \to \mathbf{B}_n M)} = A_{(\mathbf{B}_c \to \mathbf{B}_n M)} \{ a_i^{(\prime)} \to b_i^{(\prime)} \}$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$
Assumption
$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) \right\}$$

Two reasons: 1. $(c_{-}/c_{+})^{2} \sim 5.5$: 2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function

is totally antisymmetric in color indices.

Vanishing nonfactorizable contributions

spin-dependent amplitude $\mathcal{M}(\mathbf{B}_c \to \mathbf{B}_n M) = i \overline{u}_{\mathbf{B}_n} (A - B \gamma_5) u_{\mathbf{B}_c}$ $A_{(\mathbf{B}_c \to \mathbf{B}_n M)} =$ $a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^l_l + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^l_k (M)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l +$ $a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}')^{kl}$

 $B_{(\mathbf{B}_c \to \mathbf{B}_n M)} = A_{(\mathbf{B}_c \to \mathbf{B}_n M)} \{ a_i^{(\prime)} \to b_i^{(\prime)} \}$

$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) + c_+ H(\overline{15}) \right\}$$
Assumption
$$\mathcal{H}_{eff}^{n\ell} = \frac{G_F}{\sqrt{2}} \left\{ c_- H(6) \right\}$$

Two reasons: 1. $(c_{-}/c_{+})^{2} \sim 5.5$: 2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function

is totally antisymmetric in color indices.

Vanishing nonfactorizable contributions

What is about the factorizable parts of H(15)?

$$\mathcal{M}(\mathbf{B}_{c} \to \mathbf{B}_{n}M) = i\overline{u}_{\mathbf{B}_{n}} (A - B\gamma_{5}) u_{\mathbf{B}_{c}} \qquad \text{spin-dependent amplitude} \\ A_{(\mathbf{B}_{c} \to \mathbf{B}_{n}M)} = \\ a_{0}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(\mathbf{B}_{n})_{k}^{j}(M)_{l}^{l} + a_{1}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(\mathbf{B}_{n})_{k}^{l}(M)_{l}^{j} + a_{2}H(6)_{ij}(\mathbf{B}_{c}')^{ik}(M)_{k}^{l}(\mathbf{B}_{n})_{l}^{j} + \\ a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}')^{kl} \qquad a_{4}(\mathbf{B}_{n})_{l}^{j}(M)_{l}^{lH}(\mathbf{D})_{l}^{lH}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n}) = a_{4}(\mathbf{H}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n})_{l}^{I}(\mathbf{H}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I} = \\ a_{3}H(6)_{ij}(\mathbf{H}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}')^{kl} \qquad a_{4}(\mathbf{B}_{n})_{l}^{j}(M)_{l}^{lH}(\mathbf{H}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n}) = a_{4}(\mathbf{H}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I} = \\ a_{3}H(\mathbf{B}_{n})_{l}^{i}(M)_{l}^{H}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n})_{l}^{I}(M)_{l}^{lH}(\mathbf{H}(\mathbf{D})_{l}^{lH}(\mathbf{B}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I} = \\ a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{n}')^{kl} = a_{6}(\mathbf{B}_{n})_{l}^{j}(M)_{l}^{lH}(\mathbf{H}(\mathbf{D})_{l}^{H}(\mathbf{B}_{n})_{l} = a_{4}(\mathbf{H}(\mathbf{D})_{l}^{I}(\mathbf{B}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I}(\mathbf{B}_{n})_{l}^{I} = \\ a_{3}H(\mathbf{B}_{n})_{l}^{I}(M)_{l}^{H}(\mathbf{D})_{l}^{I}(\mathbf{B}_{n})_{l}^{I}(\mathbf{H}(\mathbf{D})_{l}^{I}(\mathbf{B}_{n})_{$$

What is about the factorizable parts of H(15)?

 Q_{k} 2. $\mathcal{O}_{\overline{15}} = \frac{1}{2}(\bar{u}d\bar{s} + \bar{s}d\bar{u})c$ is symmetric, whereas the baryon wave function is totally antisymmetric in color indices.

Vanishing nonfactorizable contributions

C.Q. Geng, C.W. Liu and T.H. Tsai, Phys. Lett. B790, 225 (2019).

Channel	\mathcal{B}_{exp}	$lpha_{exp}$
$\Lambda_c^+\to\Lambda^0\pi^+$	$(13.0\pm 0.7) imes 10^{-3}$	-0.91 ± 0.15
$\Lambda_c^+ \to p K^0_S$	$(15.8\pm 0.8) imes 10^{-3}$	
$\Lambda_c^+\to \Sigma^0\pi^+$	$(12.9\pm 0.7) imes 10^{-3}$	
$\Lambda_c^+\to \Sigma^+\pi^0$	$(12.4 \pm 1.0) imes 10^{-3}$	-0.45 ± 0.32
$\Lambda_c^+\to \Sigma^+\eta$	$(4.1 \pm 2.0) imes 10^{-3}$	
$\Lambda_c^+\to \Sigma^+\eta'$	$(13.4\pm 5.7) imes 10^{-3}$	
$\Lambda_c^+\to \Xi^0 K^+$	$(5.9 \pm 1.0) imes 10^{-3}$	$*0.77 \pm 0.78$
$\Lambda_c^+ \to p \pi^0$	$(0.8 \pm 1.3) \times 10^{-4}$ [41]	
$\Lambda_c^+ \to p\eta$	$(12.4 \pm 3.0) imes 10^{-4}$	
$\Lambda_c^+\to\Lambda^0 K^+$	$(6.1 \pm 1.2) imes 10^{-4}$	
$\Lambda_c^+\to \Sigma^0 K^+$	$(5.2 \pm 0.8) imes 10^{-4}$	
$\Xi_c^0\to \Xi^-\pi^+$	$(1.80\pm 0.52)\times 10^{-2}$	-0.6 ± 0.4
$\Xi_c^0\to \Lambda^0 K^0_S$		
${}^{**}\mathcal{R}_{\Xi^0_c}$	0.210 ± 0.028	

*This value is not included in the data input.

C.Q. Geng, C.W. Liu and T.H. Tsai, "Asymmetries of anti-triplet charmed baryon decays," Phys. Lett. B794, 19 (2019).

16 data points above to fit with 10 real parameters:

$$(a_1, a_2, a_3, a_6, \tilde{a}, b_1, b_2, b_3, b_6, \tilde{b})$$

$$\tilde{a} \equiv a_0 + \frac{1}{3}(a_1 + a_2 - a_3)$$

 $\tilde{b} \equiv b_0 + \frac{1}{3}(b_1 + b_2 - b_3)$

$$\chi^2/d.o.f = 0.5$$

**
$$\mathcal{R}_{\Xi_c^0} \equiv \mathcal{B}(\Xi_c^0 \to \Lambda K_S^0) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+).$$

 $(a_1, a_2, a_3, a_6, \tilde{a}) = (4.34 \pm 0.50, -1.33 \pm 0.32, 1.25 \pm 0.36, -0.26 \pm 0.64, 1.77 \pm 0.83) 10^{-2} G_F \text{GeV}^2,$ $(b_1, b_2, b_3, b_6, \tilde{b}) = (-9.20 \pm 2.09, -8.03 \pm 1.19, 1.42 \pm 1.61, -4.05 \pm 2.48, 13.15 \pm 5.56) 10^{-2} G_F \text{GeV}^2.$

Channel	\mathcal{B}_{exp}	$lpha_{exp}$	$\mathcal{B}_{SU(3)_F}$	$lpha_{SU(3)_F}$
$\Lambda_c^+\to\Lambda^0\pi^+$	$(13.0\pm0.7) imes10^{-3}$	-0.91 ± 0.15	$(13.0\pm 0.7) imes 10^{-3}$	-0.87 ± 0.10
$\Lambda_c^+ \to p K^0_S$	$(15.8\pm0.8) imes10^{-3}$		$(15.7\pm0.8) imes10^{-3}$	$-0.89\substack{+0.26\\-0.11}$
$\Lambda_c^+\to \Sigma^0\pi^+$	$(12.9\pm0.7) imes10^{-3}$		$(12.7\pm0.6) imes10^{-3}$	-0.35 ± 0.27
$\Lambda_c^+\to \Sigma^+\pi^0$	$(12.4 \pm 1.0) imes 10^{-3}$	-0.45 ± 0.32	$(12.7\pm0.6) imes10^{-3}$	-0.35 ± 0.27
$\Lambda_c^+\to \Sigma^+\eta$	$(4.1 \pm 2.0) imes 10^{-3}$		$(3.2 \pm 1.3) imes 10^{-3}$	-0.40 ± 0.47
$\Lambda_c^+\to \Sigma^+\eta'$	$(13.4\pm5.7) imes10^{-3}$		$(14.4 \pm 5.6) \times 10^{-3}$	$1.00\substack{+0.00\\-0.17}$
$\Lambda_c^+\to \Xi^0 K^+$	$(5.9 \pm 1.0) imes 10^{-3}$	$*0.77 \pm 0.78$	$(5.6\pm 0.9) imes 10^{-3}$	$0.94\substack{+0.06\\-0.11}$
$\Lambda_c^+ \to p \pi^0$	$(0.8 \pm 1.3) \times 10^{-4}$ [41]		$(1.2 \pm 1.2) \times 10^{-4}$	-0.05 ± 0.72
$\Lambda_c^+ \to p\eta$	$(12.4 \pm 3.0) imes 10^{-4}$		$(11.5 \pm 2.7) \times 10^{-4}$	$-0.96\substack{+0.30\\-0.04}$
$\Lambda_c^+\to\Lambda^0 K^+$	$(6.1 \pm 1.2) imes 10^{-4}$		$(6.5 \pm 1.0) imes 10^{-4}$	0.32 ± 0.30
$\Lambda_c^+\to \Sigma^0 K^+$	$(5.2\pm 0.8) imes 10^{-4}$		$(5.4 \pm 0.7) imes 10^{-4}$	$-1.00\substack{+0.06\\-0.00}$
$\Xi_c^0\to \Xi^-\pi^+$	$(1.80 \pm 0.52) \times 10^{-2}$	-0.6 ± 0.4	$(2.21 \pm 0.14) \times 10^{-2}$	$-0.98\substack{+0.07\\-0.02}$
$\Xi_c^0\to \Lambda^0 K_S^0$			$(5.0\pm 0.3) imes 10^{-3}$	-0.70 ± 0.28
${}^{**}\mathcal{R}_{\Xi^0_c}$	0.210 ± 0.028			

 $\chi^{2}/d.o.f = 0.5$

*This value is not included in the data input.

 $^{**}\mathcal{R}_{\Xi_c^0} \equiv \mathcal{B}(\Xi_c^0 \to \Lambda K_S^0) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+).$

 $(a_1, a_2, a_3, a_6, \tilde{a}) = (4.34 \pm 0.50, -1.33 \pm 0.32, 1.25 \pm 0.36, -0.26 \pm 0.64, 1.77 \pm 0.83) 10^{-2} G_F \text{GeV}^2,$ $(b_1, b_2, b_3, b_6, \tilde{b}) = (-9.20 \pm 2.09, -8.03 \pm 1.19, 1.42 \pm 1.61, -4.05 \pm 2.48, 13.15 \pm 5.56) 10^{-2} G_F \text{GeV}^2.$

Cal	Cabibbo Allowed									
channel	$10^3 \mathcal{B}$	α								
$\Lambda_c^+\to\Lambda^0\pi^+$	13.0 ± 0.7	-0.87 ± 0.10								
$\Lambda_c^+ o p \bar{K}^0$	31.2 ± 1.6	$-0.90\substack{+0.22\\-0.10}$								
$\Lambda_c^+\to \Sigma^0\pi^+$	12.7 ± 0.6	-0.35 ± 0.27								
$\Lambda_c^+\to \Sigma^+\pi^0$	12.7 ± 0.6	-0.35 ± 0.27								
$\Lambda_c^+\to \Sigma^+\eta$	3.2 ± 1.3	-0.40 ± 0.47								
$\Lambda_c^+\to \Sigma^+\eta'$	14.4 ± 5.6	$1.00\substack{+0.00\\-0.17}$								
$\Lambda_c^+\to \Xi^0 K^+$	5.6 ± 0.9	$0.94\substack{+0.06\\-0.11}$								
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	$8.6\substack{+9.4\-7.8}$	$0.98\substack{+0.02\\-0.16}$								
$\Xi_c^+\to \Xi^0\pi^+$	3.8 ± 2.0	-0.32 ± 0.52								
$\Xi_c^0\to \Xi^-\pi^+$	22.1 ± 1.4	$-0.98\substack{+0.07\\-0.02}$								
$\Xi_c^0 o \Lambda^0 ar K^0$	10.5 ± 0.6	-0.68 ± 0.28								
$\Xi_c^0\to \Sigma^0 \bar{K}^0$	0.8 ± 0.8	-0.07 ± 0.90								
$\Xi_c^0\to \Sigma^+ K^-$	5.9 ± 1.1	0.81 ± 0.16								
$\Xi_c^0\to \Xi^0\pi^0$	7.6 ± 1.0	$-1.00\substack{+0.07\\-0.00}$								
$\Xi_c^0\to \Xi^0\eta$	10.3 ± 2.0	$0.93\substack{+0.07\\-0.19}$								
$\Xi_c^0\to \Xi^0\eta'$	9.1 ± 4.1	$0.98\substack{+0.02\\-0.27}$								

channel	our result	data	KK	XK	\mathbf{CT}	UVK	Zen	Iva	SV1	SV2
					$(\mathrm{CT'})$	(UVK')				(SV2')
$\Lambda_c^+\to\Lambda^0\pi^+$	-0.87 ± 0.10	-0.91 ± 0.15	-0.70	-0.67	-0.99	-0.87	-0.99	-0.95	-0.99	input
					(-0.95)	(-0.85)				
$\Lambda_c^+ \to p \bar{K}^0$	$-0.90\substack{+0.22\\-0.10}$		-1.0	0.51	-0.90	-0.99	-0.66	-0.97	-0.99	-0.99 ± 0.39
					(-0.49)	(-0.99)				
$\Lambda_c^+\to \Sigma^0\pi^+$	-0.35 ± 0.27		0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	-0.45 ± 0.32
					(0.78)	(-0.32)				
$\Lambda_c^+\to \Sigma^+\pi^0$	-0.35 ± 0.27	-0.45 ± 0.32	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	input
					(0.78)	(-0.32)				
$\Lambda_c^+\to \Sigma^+\eta$	-0.40 ± 0.47		0.33			-0.94	0	0.55	-0.99	0.92 ± 0.47
						(-0.99)				(0.96 ± 0.34)
$\Lambda_c^+\to \Sigma^+\eta'$	$1.00\substack{+0.00\\-0.17}$		-0.45			0.68	-0.91	-0.05	0.44	-0.75 ± 0.38
						(0.68)			0.44	(-0.91 ± 0.40)
$\Lambda_c^+\to \Xi^0 K^+$	$0.94\substack{+0.06\\-0.11}$	0.77 ± 0.78	0	0		0	0	0	0	0

channel	our result	data	KK	XK	\mathbf{CT}	UVK	Zen	Iva	SV1	SV2
					$(\mathrm{CT'})$	(UVK')				(SV2')
$\Lambda_c^+\to\Lambda^0\pi^+$	-0.87 ± 0.10	-0.91 ± 0.15	-0.70	-0.67	-0.99	-0.87	-0.99	-0.95	-0.99	input
					(-0.95)	(-0.85)				
$\Lambda_c^+ \to p \bar{K}^0$	$-0.90\substack{+0.22\\-0.10}$		-1.0	0.51	-0.90	-0.99	-0.66	-0.97	-0.99	-0.99 ± 0.39
					(-0.49)	(-0.99)				
$\Lambda_c^+\to \Sigma^0\pi^+$	-0.35 ± 0.27		0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	-0.45 ± 0.32
					(0.78)	(-0.32)				
$\Lambda_c^+\to \Sigma^+\pi^0$	-0.35 ± 0.27	-0.45 ± 0.32	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	input
					(0.78)	(-0.32)				
$\Lambda_c^+ \to \Sigma^+ \eta$	-0.40 ± 0.47		0.33			-0.94	0	0.55	-0.99	0.92 ± 0.47
						(-0.99)				(0.96 ± 0.34)
$\Lambda_c^+\to \Sigma^+\eta'$	$1.00\substack{+0.00\\-0.17}$		-0.45			0.68	-0.91	-0.05	0.44	-0.75 ± 0.38
						(0.68)			0.44	(-0.91 ± 0.40)
$\Lambda_c^+\to \Xi^0 K^+$	$0.94\substack{+0.06\\-0.11}$	0.77 ± 0.78	0	0		0	0	0	0	0

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{exp} = 0.77 \pm 0.78$$

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{SU(3)} = 0.94^{+0.06}_{-0.11}$$

channel	our result	BESIII Colla	oration	arYiv	•10 05 በ	1707	Zen	Iva	SV1	SV2
			JUI ALIUI	l, al Alv	.1303.0					(SV2')
$\Lambda_c^+\to\Lambda^0\pi^+$	-0.87 ± 0.10	-0.80±0.11	-0.70	-0.67	-0.99	-0.87	-0.99	-0.95	-0.99	input
					(-0.95)	(-0.85)				
$\Lambda_c^+ \to p \bar{K}^0$	$-0.90\substack{+0.22\\-0.10}$	0.18±0.45	-1.0	0.51	-0.90	-0.99	-0.66	-0.97	-0.99	-0.99 ± 0.39
						(-0.99)				
$\Lambda_c^+\to \Sigma^0\pi^+$	-0.35 ± 0.27	-0.73±0.18	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	-0.45 ± 0.32
					(0.78)	(-0.32)				
$\Lambda_c^+\to \Sigma^+\pi^0$	-0.35 ± 0.27	-0.57±0.12	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	input
					(0.78)	(-0.32)				
$\Lambda_c^+\to \Sigma^+\eta$	-0.40 ± 0.47		0.33			-0.94	0	0.55	-0.99	0.92 ± 0.47
						(-0.99)				(0.96 ± 0.34)
$\Lambda_c^+\to \Sigma^+\eta'$	$1.00\substack{+0.00\\-0.17}$		-0.45			0.68	-0.91	-0.05	0.44	-0.75 ± 0.38
						(0.68)			0.44	(-0.91 ± 0.40)
$\Lambda_c^+\to \Xi^0 K^+$	$0.94^{+0.06}_{-0.11}$	0.77 ± 0.78	0	0		0	0	0	0	0

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{exp} = 0.77 \pm 0.78$$

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{SU(3)} = 0.94^{+0.06}_{-0.11}$$

channel	new result	BESIII Colla	oration	orViu	•1005 A	4707	Zen	Iva	SV1	SV2
	new result	DESIII CUIId	JUI ALIUI	, al Alv	.1303.04	4101				(SV2')
$\Lambda_c^+\to\Lambda^0\pi^+$	-0.78 ± 0.07	-0.80 ± 0.11	-0.70	-0.67	-0.99	-0.87	-0.99	-0.95	-0.99	input
					(-0.95)	(-0.85)				
$\Lambda_c^+ \to pK_S$	0.03 ± 0.29	0.18 ± 0.45	-1.0	0.51	-0.90	-0.99	-0.66	-0.97	-0.99	-0.99 ± 0.39
	\frown				(-0.49)	(-0.99)				
$\Lambda_c^+\to \Sigma^0\pi^+$	-0.57 ± 0.09	-0.73 ± 0.18	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	-0.45 ± 0.32 input
					(0.78)	(-0.32)				
$\Lambda_c^+ \to \Sigma^+ \pi^0$	-0.57 ± 0.09	-0.57 ± 0.12	0.70	0.92	-0.49	-0.32	0.39	0.43	-0.31	input
					(0.78)	(-0.32)				
$\Lambda_c^+ \to \Sigma^+ \eta$	-0.44 ± 0.47		0.33			-0.94	0	0.55	-0.99	0.92 ± 0.47
						(-0.99)				(0.96 ± 0.34)
$\Lambda_c^+\to \Sigma^+\eta'$	$0.83\substack{+0.17\\-0.25}$		-0.45			0.68	-0.91	-0.05	0.44	-0.75 ± 0.38
						(0.68)			0.44	(-0.91 ± 0.40)
$\Lambda_c^+ \to \Xi^0 K^+$	$1.00\substack{+0.00\\-0.11}$	0.77 ± 0.78	0	0		0	0	0	0	0

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{exp} = 0.77 \pm 0.78$$

$$\alpha(\Lambda_c^+ \to \Xi^0 K^+)_{SU(3)} = 1.00^{+0.00}_{-0.11}$$

Ca	bibbo Supp	ressed
channel	$10^4 B$	α
$\Lambda_c^+ \to p \pi^0$	1.2 ± 1.2	-0.05 ± 0.72
$\Lambda_c^+ \to p\eta$	12.4 ± 3.5	$-0.94\substack{+0.26\\-0.06}$
$\Lambda_c^+ \to p \eta'$	24.5 ± 14.6	$0.91\substack{+0.09\\-0.21}$
$\Lambda_c^+ \to n\pi^+$	8.5 ± 2.0	0.12 ± 0.19
$\Lambda_c^+\to\Lambda^0 K^+$	6.5 ± 1.0	0.32 ± 0.32
$\Lambda_c^+\to \Sigma^0 K^+$	5.4 ± 0.7	$-1.00\substack{+0.06\\-0.00}$
$\Lambda_c^+\to \Sigma^+ K^0$	10.9 ± 1.5	$-1.0\substack{+0.06\\-0.00}$
$\Xi_c^+\to\Lambda^0\pi^+$	12.3 ± 4.1	-0.19 ± 0.24
$\Xi_c^+ \to p \bar{K}^0$	43.3 ± 7.8	$-0.93\substack{+0.09\\-0.07}$
$\Xi_c^+\to \Sigma^0\pi^+$	25.5 ± 2.6	-0.38 ± 0.27
$\Xi_c^+\to \Sigma^+\pi^0$	26.9 ± 6.5	0.10 ± 0.43
$\Xi_c^+\to \Sigma^+\eta$	15.5 ± 10.3	$0.58\substack{+0.42\\-0.59}$
$\Xi_c^+\to \Sigma^+\eta^\prime$	34.6 ± 21.9	$0.72^{+0.28}_{-0.41}$
$\Xi_c^+\to \Xi^0 K^+$	8.2 ± 1.9	0.17 ± 0.28
$\Xi_c^0\to\Lambda^0\pi^0$	2.3 ± 0.8	-0.09 ± 0.23
$\Xi_c^0\to\Lambda^0\eta$	6.4 ± 2.3	-0.42 ± 0.27
$\Xi_c^0\to\Lambda^0\eta^\prime$	16.4 ± 10.6	$0.87\substack{+0.13\\-0.28}$
$\Xi_c^0 \to p K^-$	5.0 ± 1.1	0.67 ± 0.17
$\Xi_c^0 \to n \bar{K}^0$	7.5 ± 0.5	-0.47 ± 0.34
$\Xi_c^0\to \Sigma^0\pi^0$	3.8 ± 0.7	$-0.88\substack{+0.19\\-0.12}$
$\Xi_c^0\to \Sigma^0\eta$	1.4 ± 0.8	0.09 ± 0.77
$\Xi_c^0\to \Sigma^0\eta'$	3.3 ± 2.2	$0.70\substack{+0.30\\-0.43}$
$\Xi_c^0\to \Sigma^+\pi^-$	3.9 ± 0.8	0.78 ± 0.17
$\Xi_c^0\to \Sigma^-\pi^+$	13.3 ± 0.9	$-1.00\substack{+0.02\\-0.00}$
$\Xi_c^0\to \Xi^0 K^0$	7.2 ± 0.4	-0.32 ± 0.25
$\Xi_c^0\to \Xi^- K^+$	9.8 ± 0.6	$-0.95\substack{+0.06\\-0.05}$

Cabibbo Suppressed

TABLE VI. Summary of our results with $SU(3)_F$ and those in the literature for the up-down asymmetries of the singly Cabibbo-suppressed charmed baryon decays, where UVK, SV2 and CKX are from Refs. [31], [16] and [37], respectively.

channel	our result	UVK ^(/)	SV2 ^(')	CKX
$\Lambda_c^+ \to p \pi^0$	-0.05 ± 0.72	0.82(0.85)	0.05(0.05)	-0.95
$\Lambda_c^+ o p\eta$	$-0.94\substack{+0.26\\-0.06}$	-1.00(-0.79)	-0.74(-0.45)	-0.56
$\Lambda_c^+ \to p \eta'$	$0.91\substack{+0.09\\-0.21}$	0.87(0.87)	-0.97(-0.99)	
$\Lambda_c^+ \to n\pi^+$	0.12 ± 0.19	-0.13(0.68)	0.05 (0.05)	-0.90
$\Lambda_c^+\to\Lambda^0 K^+$	0.32 ± 0.32	-0.99(-0.99)	-0.54(0.97)	-0.96
$\Lambda_c^+\to \Sigma^0 K^+$	$-1.00\substack{+0.06\\-0.00}$	-0.80(-0.80)	0.68(-0.98)	-0.73
$\Lambda_c^+\to \Sigma^+ K^0$	$-1.00\substack{+0.06\\-0.00}$	-0.80(-0.80)	0.68(-0.98)	-0.74

- [31] T. Uppal, R. C. Verma and M. P. Khanna, Phys. Rev. D 49, 3417 (1994).
- [16] K. K. Sharma and R. C. Verma, Phys. Rev. D 55, 7067 (1997).
- [37] H. Y. Cheng, X. W. Kang and F. Xu, Phys. Rev. D 97, 074028 (2018).

Doubly	y Cabibbo Sı	Ippressed
channel	$10^5 \mathcal{B}$	α
$\Lambda_c^+ \to p K^0$	$1.2^{+1.4}_{-1.2}$	$1.00\substack{+0\\-0.09}$
$\Lambda_c^+ \to nK^+$	0.4 ± 0.2	$-0.41\substack{+0.62\\-0.59}$
$\Xi_c^+\to \Lambda^0 K^+$	3.3 ± 0.8	0.76 ± 0.24
$\Xi_c^+ \to p \pi^0$	6.0 ± 1.4	0.65 ± 0.17
$\Xi_c^+ \to p\eta$	20.4 ± 8.4	-0.75 ± 0.15
$\Xi_c^+ \to p \eta'$	40.1 ± 27.7	$0.80\substack{+0.20\\-0.30}$
$\Xi_c^+ \to n\pi^+$	12.1 ± 2.8	0.65 ± 0.17
$\Xi_c^+\to \Sigma^0 K^+$	11.9 ± 0.7	$-0.99\substack{+0.03\\-0.01}$
$\Xi_c^+\to \Sigma^+ K^0$	19.5 ± 1.7	$-0.82\pm^{+0.28}_{-0.18}$
$\Xi_c^0\to\Lambda^0 K^0$	0.6 ± 0.2	0.32 ± 0.45
$\Xi_c^0 \to p \pi^-$	3.1 ± 0.7	0.65 ± 0.17
$\Xi_c^0 \to n \pi^0$	1.5 ± 0.4	0.65 ± 0.17
$\Xi_c^0 \to n\eta$	5.2 ± 2.1	-0.75 ± 0.15
$\Xi_c^0 ightarrow n\eta^\prime$	10.2 ± 7.1	$0.80\substack{+0.20\\-0.30}$
$\Xi_c^0\to \Sigma^0 K^0$	2.5 ± 0.2	$-0.82^{+0.28}_{-0.18}$
$\Xi_c^0\to \Sigma^- K^+$	6.1 ± 0.4	$-0.99\substack{+0.03\\-0.01}$

K_S-**K**_L asymmetries in charmed baryon decays

$$\mathbf{R}_{K_{S,L}^{0}}(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S,L}^{0}) = \frac{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) - \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) + \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}$$

 $K_S^0 - K_L^0$ asymmetries between Cabbibo favored and doubly suppressed modes

channel	Irreducible amplitude for A	$10^3 \mathcal{B}_{SU(3)_F}$	$\alpha_{SU(3)_F}$	$10^2 \mathbf{R}_{K^0_{S,L}}$
$\Lambda_c^+ \to p K^0_S$	$\sqrt{2}\left((a_1 - \frac{a_6}{2}) + (a_3 - \frac{a_6}{2})s_c^2\right)$	15.7 ± 0.8	$-0.89\substack{+0.26\\-0.11}$	0.9 ± 1.1
$\Lambda_c^+ \to p K_L^0$	$-\sqrt{2}\left(\left(a_1 - \frac{a_6}{2}\right) - \left(a_3 - \frac{a_6}{2}\right)s_c^2\right)$) 15.5 ± 0.8	$-0.92\substack{+0.21\\-0.08}$	
$\Xi_c^+\to \Sigma^+ K^0_S$	$-\sqrt{2}\left(\left(a_3 - \frac{a_6}{2}\right) + \left(a_1 - \frac{a_6}{2}\right)s_c^2\right)$) $4.9^{+5.9}_{-4.2}$	$0.89\substack{+0.11 \\ -0.46}$	11.8 ± 7.8
$\Xi_c^+\to \Sigma^+ K_L^0$	$\sqrt{2}\left((a_3 - \frac{a_6}{2}) - (a_1 - \frac{a_6}{2})s_c^2\right)$	$3.9^{+5.1}_{-3.5}$	$1.00\substack{+0.00\\-0.18}$	
$\Xi_c^0\to \Sigma^0 K^0_S$	$(a_2 + a_3 - \frac{a_6}{2}) + (a_1 - \frac{a_6}{2})s_c^2$	0.5 ± 0.4	$-0.34\substack{+0.95\\-0.66}$	17.0 ± 14.6
$\Xi_c^0\to \Sigma^0 K_L^0$	$-(a_2 + a_3 - \frac{a_6}{2}) + (a_1 - \frac{a_6}{2})s_6^2$	$2 0.3^{+0.5}_{-0.3}$	0.28 ± 0.71	
$\Xi_c^0\to \Lambda^0 K^0_S$	$\frac{1}{\sqrt{3}}((2a_1-a_2-a_3-\frac{a_6}{2}))$	5.0 ± 0.3	-0.70 ± 0.28	-4.3 ± 0.3
	$-(a_1 - 2a_2 - 2a_3 + \frac{a_6}{2})s_c^2)$			
$\Xi_c^0\to \Lambda^0 K_L^0$	$-\frac{1}{\sqrt{3}}((2a_1-a_2-a_3-\frac{a_6}{2})$	5.5 ± 0.3	-0.66 ± 0.28	
	$+(a_1-2a_2-2a_3+\frac{a_6}{2})s_c^2)$			

K_S-**K**_L asymmetries in charmed baryon decays

$$\mathbf{R}_{K_{S,L}^{0}}(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S,L}^{0}) = \frac{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) - \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}{\Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{S}^{0}) + \Gamma(\mathbf{B}_{c} \to \mathbf{B}_{n}K_{L}^{0})}$$

 $K_S^0 - K_L^0$ asymmetries between Cabbibo favored and doubly suppressed modes

channel	Irreducible am	plitude for A	$10^3 \mathcal{B}_{SU(3)_F}$	$lpha_{SU(3)_F}$	$10^2 \mathbf{R}_{K^0_{S,L}}$		
$\Lambda_c^+ \to p K^0_S$	$\sqrt{2}\left((a_1 - \frac{a_6}{2}) + \right)$	$(a_3 - \frac{a_6}{2})s_c^2)$	15.7 ± 0.8	$-0.89\substack{+0.26\\-0.11}$	0.9 ± 1.1	-1.0 ~ 8.7	
$\Lambda_c^+ \to p K_L^0$	$-\sqrt{2}\left(\left(a_1 - \frac{a_6}{2}\right)\right)$	$-(a_3 - \frac{a_6}{2})s_c^2)$	15.5 ± 0.8	$-0.92\substack{+0.21\\-0.08}$			
$\Xi_c^+\to \Sigma^+ K^0_S$	$-\sqrt{2}\left(\left(a_3-\frac{a_6}{2}\right)\right)$	$+(a_1 - \frac{a_6}{2})s_c^2)$	$4.9\substack{+5.9 \\ -4.2}$	$0.89\substack{+0.11 \\ -0.46}$	11.8 ± 7.8	-11.3 ~ 39.0	
$\Xi_c^+\to \Sigma^+ K_L^0$	$\sqrt{2}\left((a_3 - \frac{a_6}{2}) - \right)$	$\left(a_1 - \frac{a_6}{2}\right)s_c^2\right)$	$3.9^{+5.1}_{-3.5}$	$1.00\substack{+0.00\\-0.18}$			
$\Xi_c^0\to \Sigma^0 K^0_S$	$(a_2 + a_3 - \frac{a_6}{2})$	$+(a_1 - \frac{a_6}{2})s_c^2$	0.5 ± 0.4	$-0.34\substack{+0.95\\-0.66}$	17.0 ± 14.6	9.1±1.6	
$\Xi_c^0\to \Sigma^0 K_L^0$	$-(a_2+a_3-\frac{a_6}{2})$	$+(a_1-\frac{a_6}{2})s_c^2$	$0.3\substack{+0.5 \\ -0.3}$	0.28 ± 0.71			
$\Xi_c^0\to \Lambda^0 K^0_S$	$\frac{1}{\sqrt{3}}((2a_1-a_2)$	$-a_3 - \frac{a_6}{2})$	5.0 ± 0.3	-0.70 ± 0.28	-4.3 ± 0.3	-3.7±0.4	
	$-(a_1-2a_2-2a_2)$	$2a_3 + \frac{a_6}{2})s_c^2$					
$\Xi_c^0\to \Lambda^0 K_L^0$	$-\frac{1}{\sqrt{3}}((2a_1-a_2))$	$(a_2 - a_3 - \frac{a_6}{2})$	5.5 ± 0.3	-0.66 ± 0.28			
	$+(a_1-2a_2-2a_2-2a_2)$	$2a_3 + \frac{a_6}{2})s_c^2$		Guo, W.H. Long and F aryon decays into neut		asymmetries and CP viola 1803, 066 (2018)	tion

• Three-body nonleptonic decays of charmed baryons

 $\mathbf{B}_c \to \mathbf{B}_n M M'$

J.Y. Cen, C.Q. Geng, C.W. Liu and T.H. Tsai, "Up-down asymmetries in charmed baryon three-body decays," arXiv:1906.01848 [hep-ph].

$$\mathcal{M}(\mathbf{B}_{\mathbf{c}} \to \mathbf{B}_{\mathbf{n}} M M') = \langle \mathbf{B}_{\mathbf{n}} M M' | \mathcal{H}_{eff} | \mathbf{B}_{\mathbf{c}} \rangle = i \bar{u}_{\mathbf{B}_{\mathbf{n}}} (A - B \gamma_5) u_{\mathbf{B}_{\mathbf{c}}}$$

Under SU(3)_F flavor symmetry:

 $\begin{aligned} A(\mathbf{B_c} \to \mathbf{B}_n M M') &= a_1(\bar{\mathbf{B}}_n)_i^k (M)_l^m (M)_m^l H(6)_{jk} T^{ij} + a_2(\bar{\mathbf{B}}_n)_i^k (M)_j^m (M)_m^l H(6)_{kl} T^{ij} \\ &+ a_3(\bar{\mathbf{B}}_n)_i^k (M)_k^m (M)_m^l H(6)_{jl} T^{ij} + a_4(\bar{\mathbf{B}}_n)_i^k (M)_j^l (M)_k^m H(6)_{lm} T^{ij} \\ &+ a_5(\bar{\mathbf{B}}_n)_k^l (M)_j^m (M)_m^k H(6)_{il} T^{ij} + a_6(\bar{\mathbf{B}}_n)_k^l (M)_j^m (M)_l^k H(6)_{im} T^{ij} \end{aligned}$

$$B(\mathbf{B}_{\mathbf{c}} \to \mathbf{B}_n M M') = A(\mathbf{B}_{\mathbf{c}} \to \mathbf{B}_n M M') \{a_i \to b_i\}$$

$$T^{ij} = \epsilon^{ijk} (\mathbf{B}_{\mathbf{c}})_k$$

Remarks:

1. Consider only the S-wave (L=0) contributions from MM' in the amplitudes.

2. Neglect the contributions from H(15).

3. Take the data with only the non-resonant parts.

TABLE I. A-amplitudes of $\Lambda_c^+ \to \mathbf{B_n} M M'.$

CF mode	A	CS mode	At_c^{-1}	DCS mode	At_c^{-2}
$\Sigma^+ \pi^0 \pi^0$	$4a_1 + 2a_2 + 2a_3 + 2a_4 - 2a_5$	$\Sigma^+ \pi^0 K^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + 2\sqrt{2}a_4$	$\Sigma^+ K^0 K^0$	$4a_4$
$\Sigma^+\pi^+\pi^-$	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6 \\$	$\Sigma^+\pi^-K^+$	$-2a_2 - 2a_3 + 2a_6$	$\Sigma^0 K^0 K^+$	$2\sqrt{2}a_4$
$\Sigma^+ K^0 \bar{K}^0$	$4a_1 + 2a_2 + 2a_3$	$\Sigma^+ K^0 \eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$	$\Sigma^- K^+ K^+$	$-4a_{4}$
$\Sigma^+ K^+ K^-$	$4a_1 - 2a_5$	$\Sigma^0 \pi^+ K^0$	$-\sqrt{2}a_2 - \sqrt{2}a_3 - 2\sqrt{2}a_4$	$p\pi^0 K^0$	$-\sqrt{2}a_2$
$\Sigma^+ \eta^0 \eta^0$	$4a_1 + \frac{2a_2}{3} + \frac{2a_3}{3} + \frac{2a_4}{3} - \frac{2a_5}{3}$	$\Sigma^0 K^+ \eta^0$	$\frac{\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$	$p\pi^-K^+$	$2a_2$
$\Sigma^0 \pi^0 \pi^+$	$-2a_4 - 2a_6$	$\Sigma^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0\eta^0$	$-\frac{\sqrt{6}a_2}{3}-\frac{2\sqrt{6}a_4}{3}$
$\Sigma^0 K^+ \bar{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$-4a_1 - 2a_2 + 2a_5$	$n\pi^0 K^+$	$-\sqrt{2}a_2$
$\Sigma^-\pi^+\pi^+$	$-4a_4 - 4a_6$	$p\pi^0\eta^0$	$\frac{2\sqrt{3}a_2}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$n\pi^+K^0$	$-2a_{2}$
$\Xi^0 \pi^0 K^+$	$-\sqrt{2}a_5$	$p\pi^+\pi^-$	$-4a_1 - 2a_2 + 2a_5$	$nK^+\eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_4}{3}$
$\Xi^0\pi^+K^0$	$-2a_5 - 2a_6$	pK^+K^-	$-4a_1 - 2a_3 + 2a_5 + 2a_6$		
$\Xi^-\pi^+K^+$	$-2a_{6}$	$p\eta^0\eta^0$	$-4a_1 - \frac{2a_2}{3} - \frac{8a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$		
$p\pi^0 \bar{K}^0$	$-\sqrt{2}a_3 - \sqrt{2}a_4$	$n\pi^+\eta^0$	$\frac{2\sqrt{6}a_2}{3} - \frac{2\sqrt{6}a_4}{3} + \frac{2\sqrt{6}a_5}{3}$		
$p\pi^+K^-$	$2a_3 - 2a_6$	$nK^+\bar{K}^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$		
$p \bar{K}^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3}$	$\Lambda^0\pi^0K^+$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_5}{3}$		
$n\pi^+ \bar{K}^0$	$-2a_4 - 2a_6$	$\Lambda^0 \pi^+ K^0$	$\frac{\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_5}{3}$		
$\Lambda^0\pi^+\eta^0$	$\begin{array}{r} -2a_4 - 2a_6 \\ -\frac{2a_2}{3} + \frac{2a_3}{3} - \frac{2a_5}{3} - 2a_6 \end{array}$	$\Lambda^0 K^+ \eta^0$	$-\frac{a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3} + 2a_6$		
$\Lambda^0 K^+ \bar{K}^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} - \frac{\sqrt{6}a_5}{3}$				

TABLE II. A-amplitudes of $\Xi_c^+ \to \mathbf{B_n} M M'.$

CF mode	Α	CS mode	At_c^{-1}	DCS mode	At_c^{-2}
$\Sigma^+\pi^0\bar{K}^0$	$-\sqrt{2}a_2 - \sqrt{2}a_4$	$\Sigma^+ \pi^0 \pi^0$	$-4a_1 - 2a_3 + 2a_5$	$\Sigma^+ \pi^0 K^0$	$-\sqrt{2}a_3$
$\Sigma^+\pi^+K^-$	$2a_2$	$\Sigma^+ \pi^0 \eta^0$	$\frac{2\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3} + \frac{2\sqrt{3}a_5}{3}$	$\Sigma^+\pi^-K^+$	$2a_3 - 2a_6$
$\Sigma^+ ar K^0 \eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3}$	$\Sigma^+\pi^+\pi^-$	$-4a_1 - 2a_3 + 2a_5 + 2a_6$	$\Sigma^+ K^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Sigma^0\pi^+\bar{K}^0$	$\sqrt{2}a_4$	$\Sigma^+ K^+ K^-$	$-4a_1 - 2a_2 + 2a_5$	$\Sigma^0 \pi^0 K^+$	$a_3 - 2a_6$
$\Xi^0\pi^0\pi^+$	$\sqrt{2}a_4$	$\Sigma^+ \eta^0 \eta^0$	$-4a_1 - \frac{8a_2}{3} - \frac{2a_3}{3} + \frac{4a_4}{3} + \frac{2a_5}{3}$	$\Sigma^0 \pi^+ K^0$	$\sqrt{2}a_3$
$\Xi^0\pi^+\eta^0$	$-\frac{2\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_4}{3}$	$\Sigma^0 \pi^0 \pi^+$	$2a_6$	$\Sigma^0 K^+ \eta^0$	$-\frac{\sqrt{3}a_3}{3} - \frac{2\sqrt{3}a_4}{3}$
$\Xi^0 K^+ \bar{K}^0$	$-2a_{2}$	$\Sigma^0 \pi^+ \eta^0$	$-\frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3} - \frac{2\sqrt{3}a_5}{3}$	$\Sigma^-\pi^+K^+$	$-2a_{6}$
$\Xi^-\pi^+\pi^+$	$-4a_{4}$	$\Sigma^0 K^+ \bar{K}^0$	$-\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_5$	$\Xi^0 K^0 K^+$	$-2a_4 - 2a_6$
$p\bar{K}^0\bar{K}^0$	$4a_4$	$\Sigma^-\pi^+\pi^+$	$4a_6$	$\Xi^-K^+K^+$	$-4a_4 - 4a_6$
$\Lambda^0 \pi^+ ar K^0$	$\sqrt{6}a_4$	$\Xi^0 \pi^0 K^+$	$\sqrt{2}a_2 - \sqrt{2}a_4 + \sqrt{2}a_5$	$p\pi^0\pi^0$	$4a_1 - 2a_5$
		$\Xi^0 \pi^+ K^0$	$2a_2 + 2a_4 + 2a_5 + 2a_6$	$p\pi^0\eta^0$	$-\frac{2\sqrt{3}a_5}{3}$
		$\Xi^0 K^+ \eta^0$	$-\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_4}{3} - \frac{\sqrt{6}a_5}{3}$	$p\pi^+\pi^-$	$4a_1 - 2a_5$
		$\Xi^-\pi^+K^+$	$4a_4 + 2a_6$	$pK^0\bar{K}^0$	$4a_1 + 2a_2 + 2a_3$
		$p\pi^0 \bar{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3$	pK^+K^-	$4a_1 + 2a_2 + 2a_3 - 2a_5 - 2a_6$
		$p\pi^+K^-$	$-2a_2 - 2a_3 + 2a_6$	$p\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3} + \frac{8a_4}{3} - \frac{2a_5}{3}$
		$p\bar{K}^0\eta^0$	$\frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{4\sqrt{6}a_4}{3}$	$n\pi^+\eta^0$	$-\frac{2\sqrt{6}a_5}{3}$
		$n\pi^+\bar{K}^0$	$2a_6$	$nK^+\bar{K}^0$	$-2a_5 - 2a_6$
		$\Lambda^0 \pi^+ \eta^0$	$-\frac{4a_2}{3} - \frac{2a_3}{3} + 2a_4 + \frac{2a_5}{3} + 2a_6$	$\Lambda^0 \pi^0 K^+$	$\frac{2\sqrt{3}a_2}{3} + \frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_5}{3}$
		$\Lambda^0 K^+ \bar{K}^0$	$\begin{array}{r} -2a_2 - 2a_3 + 2a_6\\ \frac{\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{4\sqrt{6}a_4}{3}\\ 2a_6\\ -\frac{4a_2}{3} - \frac{2a_3}{3} + 2a_4 + \frac{2a_5}{3} + 2a_6\\ -\frac{2\sqrt{6}a_2}{3} - \frac{\sqrt{6}a_3}{3} - \sqrt{6}a_4 + \frac{\sqrt{6}a_5}{3} \end{array}$	$\Lambda^0 \pi^+ K^0$	$\frac{2\sqrt{6}a_2}{3} + \frac{\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_5}{3}$

TABLE III. A-amplitudes of $\Xi_c^0 \to {\bf B_n} M M'.$

CF mode	Α	CS mode	At_c^{-1}	DCS mode	At_c^{-2}
$\Sigma^+\pi^0K^-$	$\sqrt{2}a_{\rm B}$	$\Sigma^+ \pi^0 \pi^-$	$-\sqrt{2}a_6$	$\Sigma^+\pi^-K^0$	$-2a_{6}$
$\Sigma^+\pi^-\bar{K}^0$	$2a_5 + 2a_6$	$\Sigma^+\pi^-\eta^0$	$\frac{2\sqrt{6}a_{\delta}}{3} + \sqrt{6}a_{\delta}$	$\Sigma^0 \pi^0 K^0$	$a_3 - 2a_6$
$\Sigma^+ K^- \eta^0$	$-\frac{\sqrt{6}a_5}{3}$	$\Sigma^+ K^0 K^-$	$2a_5$	$\Sigma^0\pi^-K^+$	$-\sqrt{2}a_3$
$\Sigma^0 \pi^0 \bar{K}^0$	$a_2 + a_4 + a_5 + 2a_6$	$\Sigma^0 \pi^0 \pi^0$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5 - 2\sqrt{2}a_6$	$\Sigma^0 K^0 \eta^0$	$\frac{\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$
$\Sigma^0\pi^+K^-$	$-\sqrt{2}a_2 - \sqrt{2}a_5$	$\Sigma^0 \pi^0 \eta^0$	$-\frac{\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_4}{3} + \frac{\sqrt{6}a_5}{3} + \sqrt{6}a_6$	$\Sigma^-\pi^0 K^+$	$\sqrt{2}a_3$
$\Sigma^0 K^0 \eta^0$	$\frac{\sqrt{3}a_2}{3} - \frac{\sqrt{3}a_4}{3} + \frac{\sqrt{3}a_5}{3}$	$\Sigma^0 \pi^+ \pi^-$	$2\sqrt{2}a_1 + \sqrt{2}a_3 - \sqrt{2}a_5$	$\Sigma^-\pi^+K^0$	$2a_3 - 2a_6$
$\Sigma^-\pi^+\bar{K}^0$	$2a_4 + 2a_6$	$\Sigma^0 K^0 \bar{K}^0$	$\sqrt{2}(2a_1 + a_2 + a_3 + a_4 - a_5)$	$\Sigma^- K^+ \eta^0$	$-\frac{\sqrt{6}a_3}{3} - \frac{2\sqrt{6}a_4}{3}$
$\Xi^0 \pi^0 \eta^0$	$\frac{2\sqrt{3}a_2}{3} + \frac{2\sqrt{3}a_3}{3} + \frac{2\sqrt{3}a_4}{3}$	$\Sigma^0 K^+ K^-$	$2\sqrt{2}a_1 + \sqrt{2}a_2$	$\Xi^0 K^0 K^0$	$-4a_4 - 4a_6$
$\Xi^0\pi^+\pi^-$	$-4a_1 - 2a_2 - 2a_3$	$\Sigma^0 \eta^0 \eta^0$	$\sqrt{2}(2a_1 + \frac{4a_2}{3} + \frac{a_3}{3} - \frac{2a_4}{3} - \frac{a_5}{3})$	$\Xi^- K^0 K^+$	$-2a_4 - 2a_6$
$\Xi^0 K^0 \bar{K}^0$	$-2(2a_1 + a_2 + a_3)$	$\Sigma^-\pi^0\pi^+$	$-\sqrt{2}a_6$	$p\pi^-\eta^0$	$-\frac{2\sqrt{6}a_{5}}{3}$
	$-a_5 - a_6)$	$\Sigma^- \pi^+ \eta^0$	$-\frac{2\sqrt{6}a_3}{3} + \frac{2\sqrt{6}a_4}{3} + \sqrt{6}a_6$	pK^0K^-	$-2a_{5}-2a_{6}$
$\Xi^0 K^+ K^-$	$-4a_1 + 2a_5$	$\Sigma^- K^+ \bar{K}^0$	$-2a_3 - 2a_4$	$n\pi^{0}\pi^{0}$	$4a_1 - 2a_5$
$\Xi^0 \eta^0 \eta^0$	$-2(2a_1 + \frac{a_2}{3} + \frac{a_3}{3})$	$\Xi^0\pi^-K^+$	$2a_2 + 2a_3 + 2a_5$	$n\pi^0\eta^0$	$\frac{2\sqrt{3}a_{5}}{3}$
	$+\frac{a_4}{3}-\frac{4a_5}{3})$	$\Xi^0 K^0 \eta^0$	$\sqrt{6}(-\frac{a_2}{3} - \frac{a_3}{3} + \frac{2a_4}{3} - \frac{a_5}{3} + a_6)$	$n\pi^+\pi^-$	$4a_1 - 2a_5$
$\Xi^-\pi^0\pi^+$	$\sqrt{2}a_4$	$\Xi^-\pi^0 K^+$	$\sqrt{2}a_3 - \sqrt{2}a_4 - \sqrt{2}a_6$	$nK^0\overline{K}^0$	$2(2a_1 + a_2 + a_3)$
$\Xi^-\pi^+\eta^0$	$-\frac{2\sqrt{6}a_3}{3} - \frac{\sqrt{6}a_4}{3}$	$\Xi^-\pi^+K^0$	$2a_3 + 2a_4$		$-a_5 - a_6)$
$\Xi^- K^+ \overline{K}^0$	$-2a_3 + 2a_6$	$p\pi^0K^-$	$-\sqrt{2}a_5 - \sqrt{2}a_6$	nK^+K^-	$4a_1 + 2a_2 + 2a_3$
$pK^-\overline{K}^0$	$2a_6$	$p\pi^-\bar{K}^0$	$-2a_{5}$	$n\eta^0\eta^0$	$4a_1 + \frac{8a_2}{3} + \frac{8a_3}{3}$
nK^0K^0	$4a_4 + 4a_6$	$pK^-\eta^0$	$\frac{\sqrt{6}a_{6}}{3} + \sqrt{6}a_{6}$		$+\frac{8a_4}{3}-\frac{2a_5}{3}$
$\Lambda^0 \pi^0 \overline{K}^0$	$-\sqrt{3}(\frac{a_2}{3} + \frac{2a_3}{3} + a_4 + \frac{a_5}{3})$	$n\pi^0 \overline{K}^0$	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5 - \sqrt{2}a_6$	$\Lambda^0 \pi^0 K^0$	$-\sqrt{3}(\frac{2a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3})$
$\Lambda^0 \pi^+ K^-$	$\frac{\sqrt{6}a_2}{3} + \frac{2\sqrt{6}a_3}{3} + \frac{\sqrt{6}a_5}{3}$	$n\pi^+K^-$	$\sqrt{2}a_2 + \sqrt{2}a_3 + \sqrt{2}a_5 - \sqrt{2}a_6$ $-2a_2 - 2a_3 - 2a_5$ $\sqrt{6}(\frac{a_2}{3} + \frac{a_3}{3} + \frac{4a_4}{3} + \frac{a_5}{3} + a_6)$	$\Lambda^0 \pi^- K^+$	$\sqrt{6}(\frac{2a_2}{3} + \frac{a_3}{3} + \frac{2a_5}{3})$
		$nK^0\eta^0$	$\sqrt{6}(\frac{a_2}{3} + \frac{a_3}{3} + \frac{4a_4}{3} + \frac{a_5}{3} + a_6)$		
		$\Lambda^0 \pi^0 \pi^0$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_6}{3})$ $\sqrt{2}(\frac{2a_2}{3} + \frac{a_3}{3} - a_4 - \frac{a_6}{3} - a_6)$ $\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_6}{3})$		
		$\Lambda^0 \pi^0 \eta^0$	$\sqrt{2}(\frac{2a_2}{3} + \frac{a_3}{3} - a_4 - \frac{a_5}{3} - a_6)$		
		$\Lambda^0 \pi^+ \pi^-$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - \frac{a_3}{3} + \frac{a_5}{3})$		
		V ₀ K ₀ K ₀	$\sqrt{6}(-2a_1-a_2-a_3-a_4+a_5)$		
			$\sqrt{6}(-2a_1 - \frac{a_2}{3} - \frac{2a_3}{3} + \frac{2a_5}{3})$		
		$\Lambda^0 \eta^0 \eta^0$	$\sqrt{6}(-2a_1 - \frac{2a_2}{3} - a_3 + \frac{2a_4}{3})$		
			$+a_{5}+2a_{6})$		

	data	our results				data	our	results	
$10^2 \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$	3.4 ± 0.4	3.4 ± 0.5	$10^2 \mathcal{B}(\Lambda_c^+$ -	$\rightarrow p\bar{K}$	$\dot{\xi}^0 \eta$	1.6 ± 0.4	0.7	± 0.1	
$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+ \bar{K}^0)$	5.6 ± 1.1	5.8 ± 1.0	$10^2 \mathcal{B}(\Lambda_c^+ \rightarrow$	$\Sigma^+ \tau$	$\pi^{0}\pi^{0}$) 1.3 ± 0.1	1.3	± 0.2	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+ \eta)$	1.8 ± 0.3	1.7 ± 0.3	$10^4 \mathcal{B}(\Lambda_c^+ \rightarrow$	$\rightarrow pK^{-}$	$^{+}\pi^{-}$) 1.0 ± 0.1	1.0	± 0.1	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-)$	4.4 ± 0.3	4.5 ± 0.3	$10^2 \mathcal{B}(\Xi_c^+ \rightarrow$	$\Xi^{-}\pi$	+π+	$() 4.7 \pm 1.7$	5.4	± 1.3	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+)$	1.9 ± 0.2	1.9 ± 0.3	$10^2 \mathcal{B}(\Xi_c^0 \rightarrow$	$\Lambda^0 K$	π^{+}) 1.9 ± 0.6	2.2	± 0.6	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)$	2.2 ± 0.8	1.0 ± 0.1	$10^4 \mathcal{B}(\Xi_c^0 \rightarrow 0)$	$\Lambda^0 K$	$-K^+$	(-) 5.2 ± 1.9	6.2	± 1.2	
$10^3 {\cal B}(\Lambda_c^+\to \Sigma^+ K^+ \pi^-)$	2.1 ± 0.6	2.5 ± 0.3							
$10^3 \mathcal{B}(\Lambda_c^+ \to \Xi^- K^+ \pi^+)$	6.2 ± 0.6	6.1 ± 0.8							
$10^3 \mathcal{B}(\Lambda_c^+ \to p \pi^- \pi^+)$	4.2 ± 0.4	4.7 ± 0.4		ſ					
$10^4 \mathcal{B}(\Lambda_c^+ o p K^- K^+)$	5.2 ± 1.2	5.0 ± 1.2			a_i	result	b_i	rest	ılt
					<i>a</i> ₁	9.2 ± 0.7	b_1	18.3 4	- 0.9
16 data points above	to fit wit	h 12 real p	arameters:		<i>a</i> ₂	-3.7 ± 0.5	b_2	-9.8 -	⊦ 2.4
					a 3	-7.3 ± 0.4	ł <i>b</i> 3	$4.4 \pm$	2.1
$\chi^2/d.o.f$	= 9.6/	4 = 2.4	ļ		a_4	2.3 ± 0.4	b_4	-5.4 =	± 2.9
•					a_5	11.5 ± 1.3	b_5	38.8 1	2.2
					a 6	-3.7 ± 0.2	2 <i>b</i> 6	12.7 ±	2.3

TABLE IV. The data inputs from Refs. [3, 28–31] and reproductions for $\mathcal{B}(\Lambda_c^+ \to \mathbf{B_n} MM).$

CF mode	$10^{3}B$	CS mode	$10^4 B$	DC	S mode	$10^6 B$	
$\Sigma^+ \pi^0 \eta^0$	6.6 ± 3.4	$\Sigma^+ \pi^0 K^0$	9.9 ± 2.8	Σ^+	K^0K^0	1.3 ± 0.1	5
$\Sigma^+ K^0 \bar{K}^0$	2.9 ± 0.7	$\Sigma^+ K^0 \eta^0$	0.26 ± 0.06	Σ^0	K^0K^+	1.3 ± 0.1	5
$\Sigma^+ K^+ K^-$	2.5 ± 0.3	$\Sigma^0 \pi^0 K^+$	7.8 ± 2.3	Σ^{-}	K^+K^+	1.3 ± 0.1	5
$\Sigma^+ \eta^0 \eta^0$	$(3.2\pm 0.4)\times 10^{-4}$	$\Sigma^0 \pi^+ K^0$	9.6 ± 2.7	p	$\tau^{0}K^{0}$	50 ± 6	
$\Sigma^0 \pi^+ \eta^0$	6.3 ± 3.2	$\Sigma^0 K^+ \eta^0$	0.13 ± 0.03	p	K ⁰ η ⁰	3.3 ± 2.2	7
$\Sigma^0 K^+ \bar{K}^0$	0.26 ± 0.09	$p\pi^0\pi^0$	24 ± 2	n	$^{0}K^{+}$	51 ± 6	
$\Xi^0\pi^0K^+$	32 ± 6	$p\pi^0\eta^0$	34 ± 7	n	$r^{+}K^{0}$	99 ± 11	L
$\Xi^0\pi^+K^0$	44 ± 8	$pK^0\bar{K}^0$	37 ± 8	nl	$(+\eta^0)$	3.4 ± 2.2	7
$p\pi^0 \bar{K}^0$	23 ± 4	$p\eta^0\eta^0$	2.8 ± 1.2				
$n\pi^+\bar{K}^0$	11 ± 1	$n\pi^+\eta^0$	67 ± 13			TA	BI
		nK^+K^0	31 ± 9		CF	mode	Г
		$\Lambda^0 \pi^0 K^+$	35 ± 6			$\Sigma^{+}\pi^{0}\pi^{0}$	0
		$\Lambda^0 \pi^+ K^0$	67 ± 11		$\Lambda_c^+ \rightarrow$	$\Sigma^+ \pi^0 \eta^0$	0
		$\Lambda^0 K^+ \eta^0$	0.45 ± 0.10		$\Lambda_c^+ \rightarrow \Sigma$	$\Sigma^{+}\pi^{+}\pi^{-}$	0
		· ·			A+ \ \	$E^{+}K^{0}\bar{K}^{0}$	0

TABLE VI. Numerical results for $\mathcal{B}(\Lambda_c^+ \to \mathbf{B_n} M M')$.

TABLE IX. Numerical results for $\langle \alpha \rangle (\Lambda_c^+ \to \mathbf{B_n} M M')$.

CF mode	$\langle \alpha \rangle$	CS mode	$\langle \alpha \rangle$	DCS mode	$\langle \alpha \rangle$
$\Lambda_c^+\to \Sigma^+\pi^0\pi^0$	0.85 ± 0.13	$\Lambda_c^+\to \Sigma^+\pi^0 K^0$	0.76 ± 0.22	$\Lambda_c^+\to \Sigma^+ K^0 K^0$	-0.43 ± 0.32
$\Lambda_c^+\to \Sigma^+\pi^0\eta^0$	0.81 ± 0.18	$\Lambda_c^+ \rightarrow \Sigma^+ \pi^- K^+$	0.75 ± 0.15	$\Lambda_c^+\to \Sigma^0 K^0 K^+$	-0.43 ± 0.32
$\Lambda_c^+\to \Sigma^+\pi^+\pi^-$	0.16 ± 0.27	$\Lambda_c^+\to \Sigma^+ K^0 \eta^0$	-0.05 ± 0.07	$\Lambda_c^+ \rightarrow \Sigma^- K^+ K^+$	-0.43 ± 0.31
$\Lambda_c^+\to \Sigma^+ K^0 \bar{K}^0$	0.68 ± 0.07	$\Lambda_c^+\to \Sigma^0\pi^0 K^+$	0.75 ± 0.10	$\Lambda_c^+ \rightarrow p \pi^0 K^0$	$0.93^{+0.07}_{-0.10}$
$\Lambda_c^+\to \Sigma^+ K^+ K^-$	-0.06 ± 0.11	$\Lambda_c^+\to \Sigma^0\pi^+K^0$	0.75 ± 0.22	$\Lambda_c^+ \to p \pi^- K^+$	$0.93\substack{+0.07\\-0.10}$
$\Lambda_c^+ \rightarrow \Sigma^+ \eta^0 \eta^0$	0.03 ± 0.00	$\Lambda_c^+\to \Sigma^0 K^+ \eta^0$	-0.05 ± 0.07	$\Lambda_c^+ \rightarrow p K^0 \eta^0$	-0.38 ± 0.45
$\Lambda_c^+\to \Sigma^0\pi^0\pi^+$	$-0.96^{+0.07}_{-0.04}$	$\Lambda_c^+ \to \Sigma^- \pi^+ K^+$	0.70 ± 0.70	$\Lambda_c^+ \rightarrow n \pi^0 K^+$	$0.93^{+0.07}_{-0.10}$
$\Lambda_c^+\to \Sigma^0\pi^+\eta^0$	0.81 ± 0.18	$\Lambda_c^+ \rightarrow p \pi^0 \pi^0$	-0.95 ± 0.05	$\Lambda_c^+ \rightarrow n \pi^+ K^0$	$0.93^{+0.07}_{-0.10}$
$\Lambda_c^+\to \Sigma^0 K^+ \bar{K}^0$	0.30 ± 0.60	$\Lambda_c^+ \rightarrow p \pi^0 \eta^0$	0.84 ± 0.09	$\Lambda_c^+ \to n K^+ \eta^0$	-0.38 ± 0.45
$\Lambda_c^+\to \Sigma^-\pi^+\pi^+$	$-0.96^{+0.07}_{-0.04}$	$\Lambda_c^+ \to p \pi^+ \pi^-$	-0.95 ± 0.05		
$\Lambda_c^+\to \Xi^0\pi^0 K^+$	0.78 ± 0.03	$\Lambda_c^+ \rightarrow p K^0 \bar{K}^0$	0.84 ± 0.05		
$\Lambda_c^+\to \Xi^0\pi^+K^0$	0.96 ± 0.00	$\Lambda_c^+ \to p K^+ K^-$	-0.91 ± 0.09		
$\Lambda_c^+\to \Xi^-\pi^+K^+$	-0.78 ± 0.13	$\Lambda_c^+ \rightarrow p \eta^0 \eta^0$	0.62 ± 0.21		
$\Lambda_c^+ \rightarrow p \pi^0 \bar{K}^0$	0.11 ± 0.28	$\Lambda_c^+ ightarrow n \pi^+ \eta^0$	0.85 ± 0.09		
$\Lambda_c^+ \rightarrow p \pi^+ K^-$	0.89 ± 0.10	$\Lambda_c^+ \to n K^+ \bar{K}^0$	0.94 ± 0.03		
$\Lambda_c^+ \rightarrow p \bar{K}^0 \eta^0$	-0.38 ± 0.22	$\Lambda_c^+\to\Lambda^0\pi^0K^+$	0.97 ± 0.00		
$\Lambda_c^+ \rightarrow n \pi^+ \bar{K}^0$	$-0.91\substack{+0.13\\-0.09}$	$\Lambda_c^+\to\Lambda^0\pi^+K^0$	0.97 ± 0.00		
$\Lambda_c^+\to\Lambda^0\pi^+\eta^0$	0.54 ± 0.15	$\Lambda_c^+\to\Lambda^0 K^+\eta^0$	-0.28 ± 0.28		
$\Lambda_c^+\to\Lambda^0 K^+\bar{K}^0$	0.41 ± 0.08				

• Summary

We have studied the weak decays of charmed baryons based on SU(3) flavor symmetry. B_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c)

- We have studied the weak decays of charmed baryons based on SU(3) flavor symmetry. B_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c)
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of $\mathbf{B}_{\mathbf{C}}$, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$

- We have studied the weak decays of charmed baryons based on SU(3) flavor symmetry. B_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c)
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of **B**_c, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- ♥ For the two-body decays of $\mathbf{B}_c \rightarrow \mathbf{B}_n \mathbf{M}$, we have obtained a good fit for the 10 real parameters with 16 data points by including the factorizable contributions from H(15).

- We have studied the weak decays of charmed baryons **B**_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c) based on SU(3) flavor symmetry.
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of **B**_c, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- ✓ For the two-body decays of B_c → B_nM, we have obtained a good fit for the 10 real parameters with 16 data points by including the factorizable contributions from H(15).
- We have examined K_S-K_L asymmetries in the charmed baryon decays, which agree with those in the literature.

- We have studied the weak decays of charmed baryons **B**_c = (Ξ⁰_c, −Ξ⁺_c, Λ⁺_c) based on SU(3) flavor symmetry.
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of **B**_c, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- ♥ For the two-body decays of $\mathbf{B}_c \rightarrow \mathbf{B}_m \mathbf{M}$, we have obtained a good fit for the 10 real parameters with 16 data points by including the factorizable contributions from H(15).
- ♥ We have examined K_S-K_L asymmetries in the charmed baryon decays, which agree with those in the literature.
- By considering only the S-wave contributions from M_1M_2 and nonresonant data points without $H(\overline{15})$, we have systematically predicted the three-body decays of $\mathbf{B}_c \to \mathbf{B}_n M_1 M_2$ for the first time.

- ✓ We have studied the weak decays of charmed baryons based on SU(3) flavor symmetry. $B_c = (Ξ_c^0, -Ξ_c^+, Λ_c^+)$
- From the measured semileptonic decay of $\mathcal{B}(\Lambda_c^+ \to \Lambda^0 e^+ \nu_e) = (3.6 \pm 0.4) \times 10^{-2}$ we can predict other semileptonic decays of **B**_c, such as $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = (3.76 \pm 0.42) \times 10^{-3}$
- ♥ For the two-body decays of $\mathbf{B}_c \rightarrow \mathbf{B}_m \mathbf{M}$, we have obtained a good fit for the 10 real parameters with 16 data points by including the factorizable contributions from H(15).
- ♥ We have examined K_S-K_L asymmetries in the charmed baryon decays, which agree with those in the literature.
- By considering only the S-wave contributions from M_1M_2 and nonresonant data points without $H(\overline{15})$, we have systematically predicted the three-body decays of $B_c \rightarrow B_n M_1 M_2$ for the first time.

 SU(3)_F is a real flavor symmetry, which is very useful and powerful to study Charmed Baryons. The results can be tested by BESIII, LHCb, BELLE(II)

中国科学技术大学

University of Science and Technology of China

謝謝!

上海交通大學

SHANGHAI JIAO TONG UNIVERSITY