Lopsided texture compatible with thermal leptogenesis in partially composite Pati-Salam unification

M.J.S.Yang, Arxiv:1904.02881

Saitama Univ. (PD) Masaki Yang (梁正樹)

Abstract

- We research realistic FN charges compatible with leptogenesis and Pati-Salam unification.
- Partial compositeness can generate lopsided texture and can decrease FN charges from its GUT relation.

Lopsided texture compatible with thermal leptogenesis in partially composite Pati-Salam unification

M.J.S.Yang, Arxiv:1904.02881

it will be substantially modified...

Saitama Univ. (PD) Masaki Yang (梁正樹)

Abstract

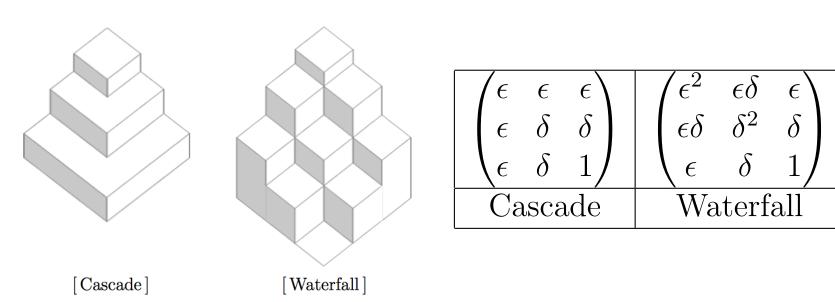
- We research realistic FN charges compatible with leptogenesis and Pati-Salam unification.
- Partial compositeness can generate lopsided texture and can decrease FN charges from its GUT relation.

Flavor puzzle: overview

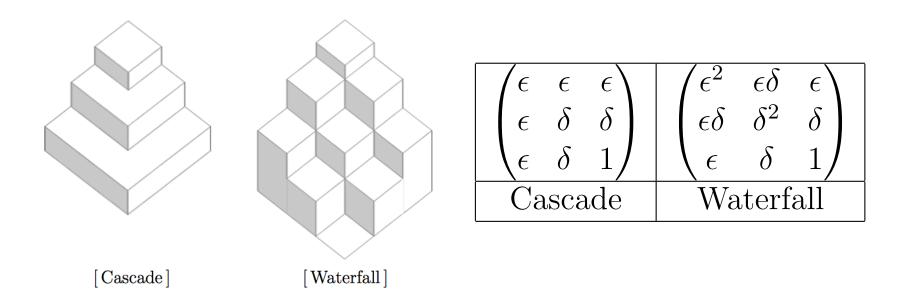
- Flavor symmetry U(1)_{FN} Froggatt & Nielsen, 79, 1600cited
 - SU(2), SU(3), ...
 - S_3 , Harari, Haut, Weyers, 78, A_4 , S_4 , ...
 - Family unification Ramond 79, Wilczek & Zee, 82, 280cited SO(16), SO(18), E_7 , E_8 , etc, \supset SO(10)×SU(3)
- 6 zero texture Weinberg 77, Fritzsch 77, 820cited
 - n(=2,3,4..) zero,
 - Democratic texture Harari, Haut, Weyers, 78,
 - Lopsided texture Sato, Yanagida, 98
- Ex. dim., Little (or composite) Higgs, Theory dep. approach

Texture \Rightarrow hint to what Higgs is ?

Cascade vs Waterfall Haba, Takahashi, Tanimoto, Yoshioka, '08



Cascade vs Waterfall Haba, Takahashi, Tanimoto, Yoshioka, '08



type I seesaw $M_R \propto Y_{ u}^T m_{ u}^{-1} Y_{ u}$

 m_v is not hierarchical \implies M_R is Waterfall whether Yv is cascade or not

M. Yang, '16 (Democratic M_R is difficult if $Yv \sim Yu$)

Universal origin of flavor ⇒ Waterfall is natural

Which waterfall is realistic for Yukawa?

If Yukawas are symmetric → Aproximate 0 texture Hall, Rasin, 93 is necessary for CKM matrix

c.f.,
$$\mathbf{U} = \begin{pmatrix} (U_{11} << u_1) & \sqrt{u_1 u_2} & (U_{13} << \sqrt{u_1 u_3}) \\ \sqrt{u_1 u_2} & (U_{22} << u_2) & \sqrt{u_2 u_3} \\ (U_{13} << \sqrt{u_1 u_3}) & \sqrt{u_2 u_3} & u_3 \end{pmatrix},$$

But, zero textures require complicate symmetry and fields...

⇒ Asymmetric **lopsided texture** is natural?

- Coset space unif.
- U(1) Froggatt-Nielsen
- E6 twist mech.
- partial compositeness

Sato, Yanagida, 98 \leftarrow Talk at 1st day

Bando, Kugo, Yoshioka '99 Kaplan '99, Contino et al '06

Lopsided texture

Sato, Yanagida, 98 E₇/SU(5), coset space unif.

$$y_u \propto \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^0 \end{pmatrix}, \quad y_d \propto y_e^T \propto \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix}, \quad m_\nu \propto \begin{pmatrix} \lambda^2 & \lambda^1 & \lambda^1 \\ \lambda^1 & \lambda^0 & \lambda^0 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix}$$
$$\Rightarrow \quad V_{\rm CKM} \simeq \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}, \quad U_{\rm MNS} \simeq \begin{pmatrix} 1 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix},$$

Lopsided texture

Sato, Yanagida, 98 E₇/SU(5), coset space unif.

$$\begin{aligned} & 3 \quad 2 \quad 0 & 1 \quad 0 \quad 0 & 1 \quad 0 \quad 0 \\ & y_u \propto^2 \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^0 \end{pmatrix}, \quad y_d \propto y_e^T \propto^2 \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix}, \quad m_\nu \propto^0 \begin{pmatrix} \lambda^2 & \lambda^1 & \lambda^1 \\ \lambda^1 & \lambda^0 & \lambda^0 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix} \\ \Rightarrow \quad V_{\text{CKM}} \simeq \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}, \quad U_{\text{MNS}} \simeq \begin{pmatrix} 1 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}, \end{aligned}$$

Lopsided texture

Sato, Yanagida, 98 E₇/SU(5), coset space unif.

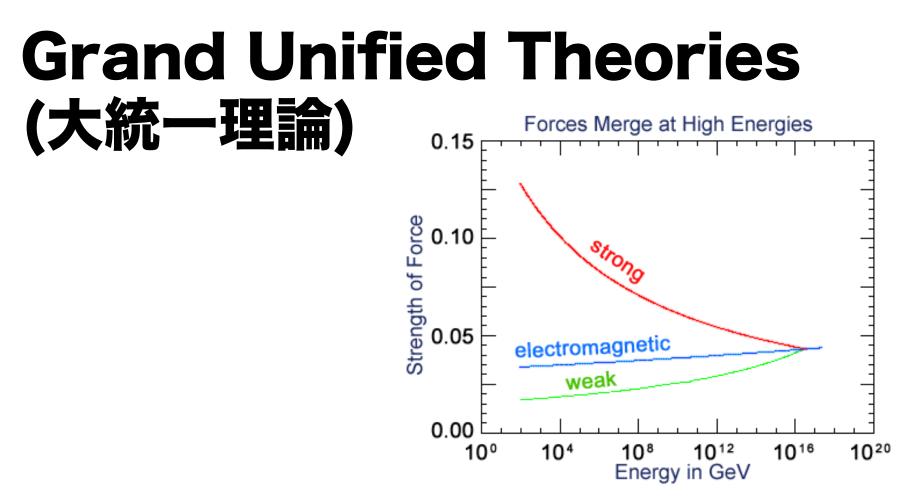
$$\begin{aligned} & 3 \quad 2 \quad 0 & 1 \quad 0 \quad 0 & 1 \quad 0 \quad 0 \\ & 3 \begin{pmatrix} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^0 \end{pmatrix}, \quad y_d \propto y_e^T \propto^2 \begin{pmatrix} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix}, \quad m_\nu \propto^0 \begin{pmatrix} \lambda^2 & \lambda^1 & \lambda^1 \\ \lambda^1 & \lambda^0 & \lambda^0 \\ \lambda^1 & \lambda^0 & \lambda^0 \end{pmatrix} \\ & \Rightarrow \quad V_{\text{CKM}} \simeq \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}, \quad U_{\text{MNS}} \simeq \begin{pmatrix} 1 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}, \end{aligned}$$

U(1) FN mechanism is compatible with SU(5) GUT

$$\mathcal{L} = \sum_{f} c_{ij}^{f} \left(\frac{\langle \theta \rangle}{M}\right)^{n_{Li} + n_{Rj}} \bar{f}_{Li} f_{Rj} H + \text{h.c.}, \quad \frac{\langle \theta \rangle}{M} = \lambda,$$

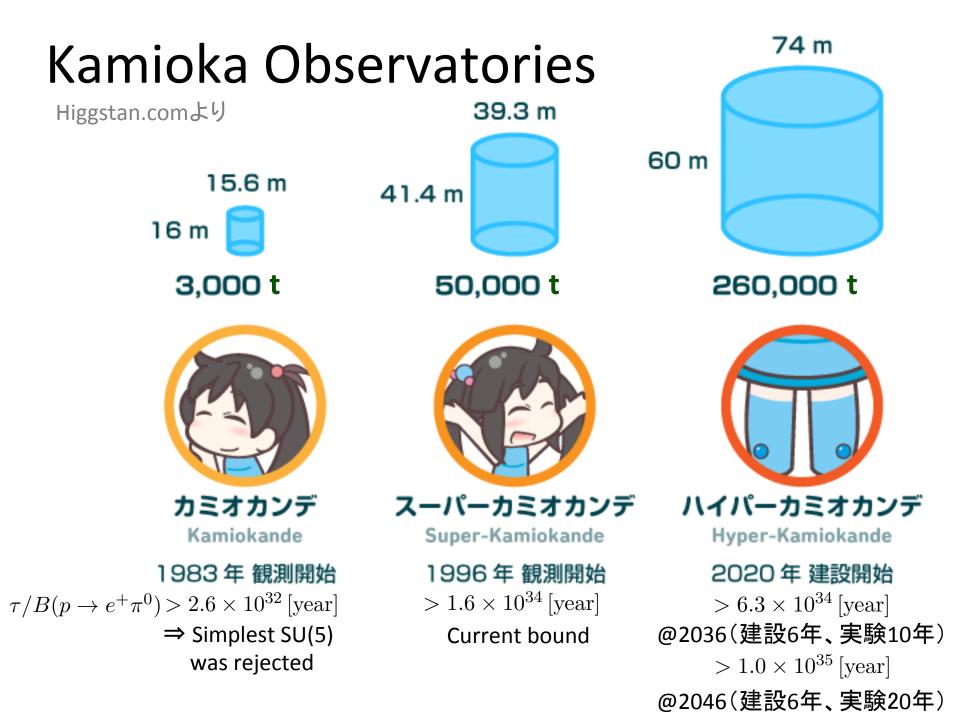
$$\frac{\overline{\text{Field}} \ \mathbf{10}_{1} \ \mathbf{10}_{2} \ \mathbf{10}_{3} \ \overline{\mathbf{5}}_{1} \ \overline{\mathbf{5}}_{2} \ \overline{\mathbf{5}}_{3} \ \mathbf{1}_{1} \ \mathbf{1}_{2} \ \mathbf{1}_{3}}{U(1) \ \mathbf{3} \ \mathbf{2} \ \mathbf{0} \ n+1 \ n \ n \ n_{\nu_{1}} \ n_{\nu_{2}} \ n_{\nu_{3}}} \qquad \mathbf{10} = (\mathsf{q}_{\mathsf{L}}, \mathsf{u}_{\mathsf{R}}, \mathsf{e}_{\mathsf{R}}),$$

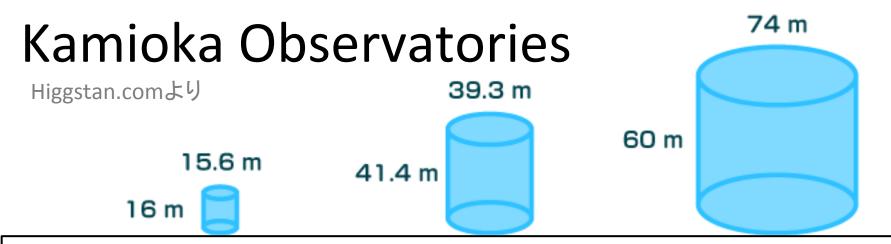
$$\mathbf{5} = (\mathsf{d}_{\mathsf{R}}, \mathsf{I}_{\mathsf{L}}), \mathbf{1} = \mathsf{v}_{\mathsf{R}}$$



unification of gauge bosons,
 quarks and leptons ⇒ proton decay

⇒ verify by Kamiokande





>10³⁶[year] @ 2070 by UK ?? Perhaps, protons do not decay?

カミオカンデ Kamiokande

1983 年 観測開始

 $au/B(p
ightarrow e^+ \pi^0) > 2.6 imes 10^{32} [year]$ \Rightarrow Simplest SU(5) was rejected

Super-Kamiokande

1996 年 観測開始 > 1.6 × 10³⁴ [year]

Current bound

ハイパーカミオカンデ

Hyper-Kamiokande

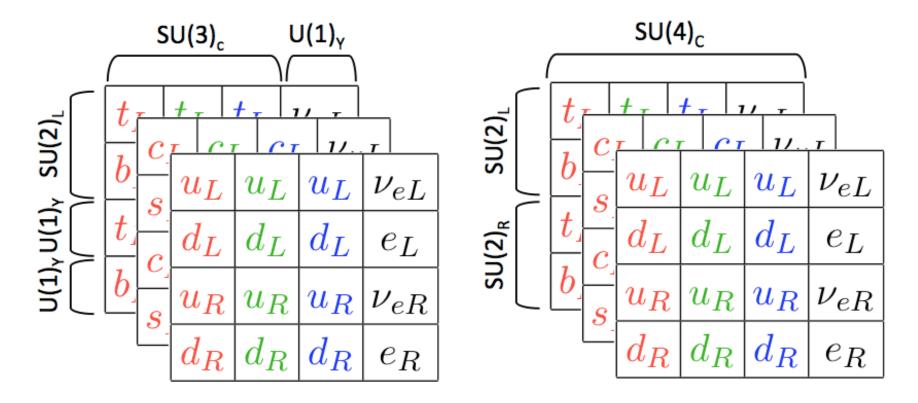
2020年建設開始

> 6.3 × 10³⁴ [year] @2036(建設6年、実験10年) > 1.0 × 10³⁵ [year]

@2046(建設6年、実験20年)

SU(4)×SU(2)_L×SU(2)_R Pati-Salam model

GUT without proton decay (only L is broken)



SM

PS model

SSB and GUT breaking Higgs

GUT breaking effect should mediate flavor texture

We choose a bi-fundamental rep. Higgs Antoniadis, Leontaris, 89

$$\begin{aligned} H_R^{\alpha a}(\mathbf{4}, \mathbf{1}, \mathbf{2}) &= \begin{pmatrix} u_H^1 & u_H^2 & u_H^3 & \nu_H \\ d_H^1 & d_H^2 & d_H^3 & e_H^- \end{pmatrix}, \quad \langle H_R \rangle = \langle \nu_H \rangle \sim M_{\text{GUT}}, \\ SU(4)_c \times SU(2)_L \times SU(2)_R \to SU(3)_c \times SU(2)_L \times U(1)_Y \end{aligned}$$

(It corresponds 16 rep. Higgs in SO(10).)

It can couples only to d_{Ri} and I_{Li} (and v_{Ri}).

 \Rightarrow GUT inv. FN charge is determined as $n_{qi} = (3, 2, 0)$

FN charges in GUT

$$y_{\nu} \propto \begin{pmatrix} \lambda^{n_{\nu 1}+1} & \lambda^{n_{\nu 2}+1} & \lambda^{n_{\nu 3}+1} \\ \lambda^{n_{\nu 1}} & \lambda^{n_{\nu 2}} & \lambda^{n_{\nu 3}} \\ \lambda^{n_{\nu 1}} & \lambda^{n_{\nu 2}} & \lambda^{n_{\nu 3}} \end{pmatrix}, \quad M_{\nu R} \propto \begin{pmatrix} \lambda^{2n_{\nu 1}} & \lambda^{n_{\nu 1}+n_{\nu 2}} & \lambda^{n_{\nu 1}+n_{\nu 3}} \\ \lambda^{n_{\nu 1}+n_{\nu 2}} & \lambda^{2n_{\nu 2}} & \lambda^{n_{\nu 2}+n_{\nu 3}} \\ \lambda^{n_{\nu 1}+n_{\nu 3}} & \lambda^{n_{\nu 2}+n_{\nu 3}} & \lambda^{2n_{\nu 3}} \end{pmatrix}$$

FN charges of v_{Ri} are not determined: we consider two case

$$n_{\nu i} \simeq n_{qi} = (3, 2, 0)$$
 quark type
 $n_{\nu i} \simeq n_{li} = (n+1, n, n)$ lepton type

(n depend on tan β through the mass : $m_{ei} = y v \cos \beta/\sqrt{2}$.)

Observation: FN charges in PS GUT

1. GUT Higgs H : (4,1,2)

 \Rightarrow it determines GUT inv. FN charge as $n_{qi} = (3, 2, 0)$

2. Thermal leptogenesis (by v_{R1})

Davidson – Ibarra bound $M_{\nu R1} \gtrsim 10^9 \text{GeV} \Rightarrow 5.5 \gtrsim (n_{\nu 1} + n_{l1}).$ However, if v_{Ri} are not hierarchical, it does not holds 3. Manitude of M_{GUT} and M_{F} Davidson, Kitano, 04

n = 0 $(3, 2, 0) \rightarrow (1, 0, 0)$ Large mixing $M_{GUT} \gtrsim M_F$ n = 2 $(3, 2, 0) \rightarrow (3, 2, 2)$ Small mixing $M_{GUT} \ll M_F$

Back up (for insurance)

$$m_{\nu}^{\text{diag}} \sim m \begin{pmatrix} \lambda^{2n_{l1}} & 0 & 0 \\ 0 & \lambda^{2n_{l2}} & 0 \\ 0 & 0 & \lambda^{2n_{l3}} \end{pmatrix} \sim \begin{pmatrix} 0.002 & 0 & 0 \\ 0 & 0.01 & 0 \\ 0 & 0 & 0.05 \end{pmatrix} \text{ [eV]}.$$

$$M_{\nu R} = \frac{v^2 s_{\beta}^2}{2} y_{\nu}^T m_{\nu}^{-1} y_{\nu}, \qquad (17)$$

$$= \frac{v^2 s_{\beta}^2}{2m} \begin{pmatrix} \lambda^{2n_{\nu 1}} & \lambda^{n_{\nu 1}+n_{\nu 2}} & \lambda^{n_{\nu 1}+n_{\nu 3}} \\ \lambda^{n_{\nu 1}+n_{\nu 2}} & \lambda^{2n_{\nu 2}} & \lambda^{n_{\nu 2}+n_{\nu 3}} \\ \lambda^{n_{\nu 1}+n_{\nu 3}} & \lambda^{n_{\nu 2}+n_{\nu 3}} & \lambda^{2n_{\nu 3}} \end{pmatrix} \sim \frac{246^2 \,[\text{GeV}^2] s_{\beta}^2 \lambda^{2n_{\nu 1}}}{2m} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda^{2(n_{\nu 2}-n_{\nu 1})} & 0 \\ 0 & 0 & \lambda^{2(n_{\nu 3}-n_{\nu 1})} \end{pmatrix}$$

$$M_{\nu R1} \sim \frac{6 \times 10^4 \,[\text{GeV}^2] s_\beta^2 \lambda^{2n_{\nu 1}}}{2\lambda^{-2n_{l1}} 0.002 \,[\text{eV}]} \gtrsim 10^9 \,[\text{GeV}],$$

$$6 \times 10^{14} \,[\text{GeV}] s_\beta^2 \lambda^{2(n_{\nu 1}+n_{l1}-1)} \gtrsim 10^9 \,[\text{GeV}],$$

$$1.5 \times 10^7 \lambda^{2(n_{\nu 1}+n_{l1})} \gtrsim 1, \quad \Rightarrow \quad 5.5 \gtrsim (n_{\nu 1}+n_{l1}).$$

Table of summary

	quark type	lepton type	
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (1, 0, 0)$	
$n = 0$ $n_{li} = (1, 0, 0)$		$n_{li} = (1, 0, 0)$	
$\tan\beta\simeq 40$	it would be	it requires another	
$M_{\rm GUT} \gtrsim M_F$	simplest realization	change of $n_{\nu i}$	
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (3, 2, 2)$	
n=2	$n_{li} = (3, 2, 2)$	$n_{li} = (3, 2, 2)$	
$\tan\beta\simeq 1$	incompatible with	it requires another	
$M_{\rm GUT} \ll M_F$	thermal leptogenesis	change of $n_{\nu i}$	

Table of summary

	quark type	lepton type	
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (1, 0, 0)$	
$n = 0$ $n_{li} = (1, 0, 0)$		$n_{li} = (1, 0, 0)$	
$\tan\beta\simeq 40$	it would be	it requires another	
$M_{\rm GUT} \gtrsim M_F$	simplest realization	change of $n_{\nu i}$	
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (3, 2, 2)$	
$n = 2$ $n_{li} = (3, 2, 2)$		$n_{li} = (3, 2, 2)$	
$\tan\beta\simeq 1$	incompatible with	it requires another	
$M_{\rm GUT} \ll M_F$	thermal leptogenesis	change of $n_{\nu i}$	

It contains E6 twist model

Table of summary It will be discussed In next paper

	quark type	lepton type
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (1, 0, 0)$
n = 0	$n_{li} = (1, 0, 0)$	$n_{li} = (1, 0, 0)$
$\tan\beta\simeq 40$	it would be	it requires another
$M_{\rm GUT} \gtrsim M_F$	simplest realization	change of $n_{\nu i}$
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (3, 2, 2)$
n=2	$n_{li} = (3, 2, 2)$	$n_{li} = (3, 2, 2)$
$\tan\beta\simeq 1$	incompatible with	it requires another
$M_{\rm GUT} \ll M_F$	thermal leptogenesis	change of $n_{\nu i}$

It contains E6 twist model

Table of summary It will be discussed

Today 's talk

In next paper

	quark type	lepton type
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (1, 0, 0)$
n = 0	$n_{li} = (1, 0, 0)$	$n_{li} = (1, 0, 0)$
$\tan\beta\simeq 40$	it would be	it requires another
$M_{\rm GUT} \gtrsim M_F$	simplest realization	change of $n_{\nu i}$
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (3, 2, 2)$
n=2	$n_{li} = (3, 2, 2)$	$n_{li} = (3, 2, 2)$
$\tan\beta\simeq 1$	incompatible with	it requires another
$M_{\rm GUT} \ll M_F$	thermal leptogenesis	change of $n_{\nu i}$

It contains E6 twist model

Table of summary It will be discussed

Today 's talk

In next paper

	quark type	lepton type
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (1, 0, 0)$
n = 0	$n_{li} = (1, 0, 0)$	$n_{li} = (1, 0, 0)$
$\tan\beta\simeq40$	it would be	it requires another
$M_{\rm GUT} \gtrsim M_F$	simplest realization	change of $n_{\nu i}$
	$n_{\nu i} = (3, 2, 0)$	$n_{\nu i} = (3, 2, 2)$
n=2	$n_{li} = (3, 2, 2)$	$n_{li} = (3, 2, 2)$
$\tan\beta\simeq 1$	incompatible with	it requires another
$M_{\rm GUT} \ll M_F$	thermal leptogenesis	change of $n_{\nu i}$

It contains E6 twist model

Here, the case n=1 (or $(3,2,0) \rightarrow (2,1,1)$) is not considered, because it requires both increase and decrease of FN charges.

FN charge should be <u>decrease</u>! ⇒ Partial compositeness

The partial compositeness

D. Kaplan '91, R. Contino, T. Kramer, M. Son, and R. Sundrum, '07

composite

 δ

Waterfa

- Elemental and composite fields are mixed as γ-ρ mixing
- Higgs (NGB of a global sym.) only couples to composites
- Theory has massless chiral and massive vectorlike fermions

model

(We just assume vectorlike massive fermions And UV completion (and global sym.) is not considered.)

elementals (massless chiral) composites (massive vectorlike) Higgs fields

	$SU(4)_c$	$SU(2)_L$	$SU(2)_R$
f_{Li}	4	2	1
f_{Ri}	4	1	2
$F_{(L,R)i}$	4	2	1
$F'_{(L,R)i}$	4	1	2
Φ	1	2	2
H_R	4	1	2

 $\mathcal{L}_{\text{composite}} = \bar{F}_i (i \not\!\!D - M_{F_i}) F_i + \bar{F}'_i (i \not\!\!D - M_{F'_i}) F'_i + Y^F_{ij} \bar{F}_{Li} \Phi F'_{Rj} + \text{h.c.},$ $\mathcal{L}_{\text{mixing}} = \lambda^{f_L}_{ij} \bar{f}_{Li} F_{Rj} + \lambda^{f_R}_{ij} \bar{F}'_{Li} f_{Rj} + \text{h.c.},$

⇒ GUT inv. Yukawa matrices

$$y_{\rm SM}^f = \lambda^{f_L} M_F^{-1} Y^F M_{F'}^{-1} \lambda^{f_R}.$$

decrese FN charges of d_{Ri} , I_{Li} (3,2,0) \rightarrow (1,0,0) \Rightarrow Increase of λ^{f} or Decrease of M_{F} by $\langle H_{GUT} \rangle$

Exotics $\psi_L^{\alpha\beta}(6,1,1) \sim (\tilde{D}_R^c, \tilde{D}_L) \quad \chi_R^{ab}(1,2,2) \sim (\tilde{L}_L^c, \tilde{L}_R)$

Mediate GUT breaking vev to d_{Ri} and I_{Li}.

 $\psi + \chi$ form 10 rep fermion In SO(10) σ is for majorana mass

	$SU(4)_c$	$SU(2)_L$	$SU(2)_R$
ψ_L	6	1	1
χ_R	1	2	2
σ	1	1	1

The general Yukawa interactions (between only composites)

 $\mathcal{L} = Y^{6} \bar{\psi}_{L}^{\alpha\beta} H_{R}^{\alpha a} F_{R}^{\prime \beta a} + Y^{22} \bar{F}_{L}^{\alpha a} H_{R}^{\alpha b} \chi_{R}^{ab} \qquad (\sim 16_{\rm F} \, 10_{\rm F} \, 16_{\rm H} \text{ in SO(10)}) \\ + \tilde{Y}^{6} \bar{F}_{L}^{\prime \alpha a} H_{R}^{\dagger \beta a} \epsilon^{\alpha \beta \gamma \delta} (\psi_{L}^{c})^{\gamma \delta} + \tilde{Y}^{22} \epsilon^{ad} (\bar{\chi}_{R}^{c})^{de} \epsilon^{eb} H_{R}^{\dagger \alpha a} F_{R}^{\alpha b} + h.c.,$

SSB induces additional linear mixing terms

$$\mathcal{L} \to Y_{ij}^6 V \bar{\tilde{D}}_{Li}^\alpha D_{Rj}^\alpha + Y_{ij}^{22} V \bar{L}_{Li}^a \tilde{L}_{Rj}^a + \tilde{Y}_{ij}^6 V \bar{D}_{Li}^\alpha \tilde{D}_{Rj}^\alpha + \tilde{Y}_{ij}^{22} V \bar{\tilde{L}}_{Li}^a L_{Rj}^a + h.c.,$$

Analysis

Higgs should couple only with composites (by some global sym.)

$$\Rightarrow$$
 Increase of λ^{\dagger} or Decrease of M_F by $\langle H_{GUT} \rangle$

Mass matrices

$$\bar{D}_L \begin{pmatrix} M_F & \lambda^f \end{pmatrix} \begin{pmatrix} D_R \\ d_R \end{pmatrix} \to \begin{pmatrix} \bar{D}_L & \bar{\tilde{D}}_L \end{pmatrix} \begin{pmatrix} M_F & \tilde{Y}^6 V & \lambda^f \\ Y^6 V & M_\psi & 0 \end{pmatrix} \begin{pmatrix} D_R \\ \tilde{D}_R \\ d_R \end{pmatrix}$$

decrese FN charges of d_{Ri} , I_{Li} (3,2,0) \rightarrow (1,0,0)

 \Rightarrow 1st, 2nd generation of D_{L,R}, L_{L,R} should be lighter M_{F1,2} $\rightarrow \lambda^2$ M_{F1,2}

it requires $\lambda^2 \sim 5\%$ fine-tuning between $M_{F, \psi}$ and Y⁶V.

(This shall not apply when Higgs couples to elemental fields directly. This case do not have fine tunings, but the "double seesaw formula" can not be justified.)

Majorana neutrino mass

Type I seesaw

- \Rightarrow hierarchy of Y_v and M_R should cancel
- ⇒ composite neutrino majorana mass is required

$$\begin{split} \mathcal{L} &= Y^{1R} \bar{F}_L^{\alpha a} H_R^{\alpha a} \sigma_R + \frac{M_{\sigma R}}{2} \bar{\sigma}_R^c \sigma_R + h.c., & \text{GUT breaking} \\ \mathcal{L} &\ni \zeta_{ij}^{f_R} \bar{N}_{Li} \nu_{Rj} - \bar{N}_{Li} M_{Ni} N_{Ri} - \frac{1}{2} m_{Rij} \bar{N}_{Ri}^c N_{Rj} + \text{h.c.}, & \text{Mediate} \\ \text{flavor structure} \\ \mathcal{L} &\ni -\frac{1}{2} M_{\nu Rij} \bar{\nu}_{Ri}^c \nu_{Rj} + \text{h.c.}, & M_{\nu Rij} = (\zeta^{f_R T} M_N^{-1} m_R M_N^{-1} \zeta^{f_R})_{ij}. \end{split}$$

Same flavor structure to Yv

⇒ heavy composites should have trivial flavor structure.

Conclusions

- We considered lopsided texture compatible with thermal leptogenesis in Pati-Salam unification.
- Partial compositeness can generate lopsided texture and decrease FN charges.
- since the GUT Higgs cannot couple with the massless fermions, λ² ~ 5% fine-tunings is required for Yukawa matrix.
- In composite sector, trivial flavor structure is desirable for large mixing of MNS matrix.

I appreciate if you ask slowly ^^;

Back up

Verifiability(検証可能性)

I don't care much, because

- 1. Verifiable models are studied all over the world
- 2. The true theory might be un-verifiable by exp.

in recent years.

Indirect constraint can be done by RGEs, leptogenesis, consistency, and simpleness.

Flavor texture vs proton decay

Natural texture GUT w/o proton decay

Asymmetric losided texture

PS GUT w/o B breaking

 \Rightarrow SU(5) is natural =

 \Rightarrow LR model

 \Rightarrow protons should decay \Rightarrow texture is symmetric

左右対称な模型から非対称な世代構造を出すには?