

Dark Matter Stability and Dirac Neutrinos using only SM Symmetries

Rahul Srivastava Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC) Valencia - SPAIN

Multimessenger Approach for Dark Matter Detection

Dark Matter Stability and Dirac Neutrinos using only SM Symmetries

Rahul Srivastava Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC) Valencia - SPAIN

Multimessenger Approach for Dark Matter Detection

Dark Matter Stability and Dirac Neutrinos using only SM Symmetries

Rahul Srivastava Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC) Valencia - SPAIN

Multimessenger Approach for Dark Matter Detection

Dark Matter Stability and Dirac Neutrinos using only SM Symmetries

Rahul Srivastava Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC) Valencia - SPAIN

 Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry

Dark Matter Stability not protected by any symmetry

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
- Dark Matter Stability not protected by any symmetry

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable

Dark Matter Stability not protected by any symmetry

 Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Explicit Symmetry I by some symmetry
 - Dark Matter is complete Stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
 Accidental Symmetry
- Dark Matter Explicit Symmetry I by some Symmetry
 - Dark Matter is complete v Stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
 Accidental Symmetry
- Dark Matter Explicit Symmetry I by some Symmetry
 - Dark Matter is complete stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
 Accidental Symmetry
- Dark Matter Explicit Symmetry I by some Symmetry
 - Dark Matter is complete stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
 Accidental Symmetry
- Dark Matter Explicit Symmetry I by some Symmetry
 - Dark Matter is complete stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym
- SM has no candidate for Dark Matter

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
 Accidental Symmetry
- Dark Matter Explicit Symmetry I by some Symmetry
 - Dark Matter is complete y Stable
 - Most WIMP models e.g. Scotogenic DM, Minimal DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym
- SM has no candidate for Dark Matter
- Does it has at least the symmetries to ensure DM stability?

• Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
 - gauge symmetry
- ullet However only $SU(3)_c \otimes U(1)_{em}$ remains conserved

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- However only $SU(3)_c \otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- However only $SU(3)_c \otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- \bullet Presence of massless (γ) and very light (ν) particles in SM means that Spacetime symmetries are also not suitable

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- However only $SU(3)_c \otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- \bullet Presence of massless (γ) and very light (ν) particles in SM means that Spacetime symmetries are also not suitable
- Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are automatically conserved in SM

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- However only $SU(3)_c \otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- Preconce of massless (γ) and very light (ν) particles in SM
 Automatic etime symmetries are also not suitable
 Accidental Symmetries: Lepton number U(1)_L and Baryon number U(1)_B are automatically conserved in SM

- Symmetries in SM: Based on $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- ullet However only $SU(3)_c \otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- \bullet Presence of massless (γ) and very light (ν) particles in SM means that Spacetime symmetries are also not suitable
- \bullet Automatic Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are automatically conserved in SM
- $U(1)_B$ and $U(1)_L$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos ²³

B & L are experimentally well established symmetries

• B & L are experimentally well established symmetries

- Older than SM: Historical origin of name
- No known experimental evidence of their violation

• B & L are experimentally well established symmetries

- Older than SM: Historical origin of name
- No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM

- B & L are experimentally well established symmetries
 - Older than SM: Historical origin of name
 - No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM
 - Models that do not share this feature have to take special care to bypass the experimental constraints

- B & L are experimentally well established symmetries
 - Older than SM: Historical origin of name
 - No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM
 - Models that do not share this feature have to take special care to bypass the experimental constraints
 - SUSY models have to put new symmetries, typically R-Parity, to be phenomenologically viable

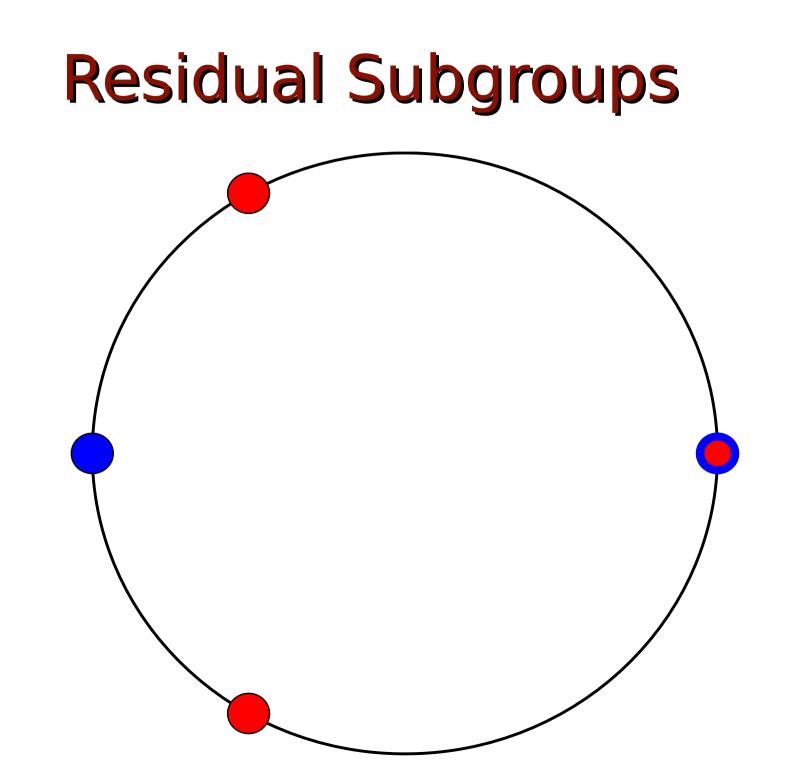
- B & L are experimentally well established symmetries
 - Older than SM: Historical origin of name
 - No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM
 - Models that do not share this feature have to take special care to bypass the experimental constraints
 - SUSY models have to put new symmetries, typically R-Parity, to be phenomenologically viable
- Massless neutrinos in SM: Lepton number is accidental in SM

- B & L are experimentally well established symmetries
 - Older than SM: Historical origin of name
 - No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM
 - Models that do not share this feature have to take special care to bypass the experimental constraints
 - SUSY models have to put new symmetries, typically R-Parity, to be phenomenologically viable

Massless neutrinos in SM: Lepton number is accidental in SM

 Neutrino oscillations and hence neutrino masses: Lepton Number cannot be an accidental symmetry in any completion of SM that accounts for neutrino masses

- B & L are experimentally well established symmetries
 - Older than SM: Historical origin of name
 - No known experimental evidence of their violation
- Their automatic conservation a nice feature of SM
 - Models that do not share this feature have to take special care to bypass the experimental constraints
 - SUSY models have to put new symmetries, typically R-Parity, to be phenomenologically viable


Massless neutrinos in SM: Lepton number is accidental in SM

- Neutrino oscillations and hence neutrino masses: Lepton Number cannot be an accidental symmetry in any completion of SM that accounts for neutrino masses
- Usual Choice: Explicitly break $U(1)_L \rightarrow Z_2$ in UV ³¹ completions (seesaw or loop) of Weinberg Operator

Lepton Number Breaking Pattern [Hirsch, RS, Valle '17]

• If $U(1)_L$ is conserved: Neutrinos are Dirac

- Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
 - ${\ensuremath{\, \bullet }} U(1)_L$ symmetry only admits Z_M subgroups i.e. cyclic groups of m elements
 - If x is a non-identity group element of Z_M , then $x^{M+1}\equiv x$
 - ${\mbox{\circ}}$ The Z_M groups only admit one-dimensional irreducible representations
 - \bullet Conveniently represented by using the n-th roots of $_{\rm _{32}}$ unity, $\omega=Exp[2\pi I/M]$ where $~\omega^M=1$

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

• $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$ • Neutrinos are always Dirac!!!
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!

• $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Neutrinos can be either Dirac or Majorana

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!

• $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Neutrinos can be either Dirac or Majorana

• For $U(1)_L \longrightarrow Z_{2N}$ case one can make further broad classification

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!

• $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Neutrinos can be either Dirac or Majorana

• For $U(1)_L \longrightarrow Z_{2N}$ case one can make further broad classification

• If $L_i \nsim \omega^N$ under $Z_{2N} \longrightarrow \text{Neutrinos are Dirac!!!}$

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!

• $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Neutrinos can be either Dirac or Majorana

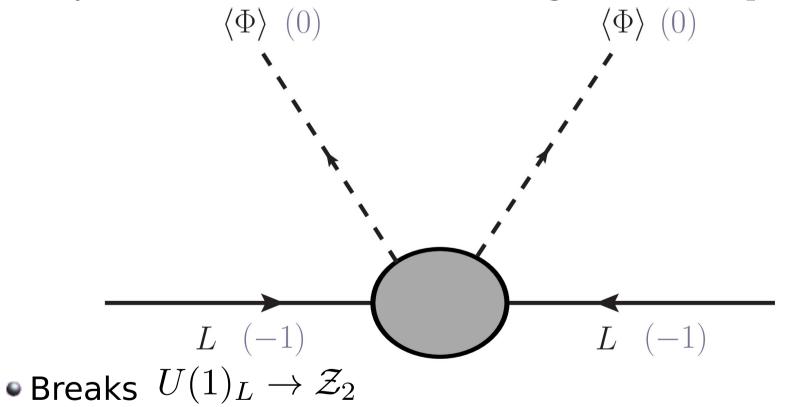
• For $U(1)_L \longrightarrow Z_{2N}$ case one can make further broad classification

• If $L_i \nsim \omega^N$ under $Z_{2N} \longrightarrow$ Neutrinos are Dirac!!! • If $L_i \sim \omega^N$ under $Z_{2N} \longrightarrow$ They are Majorana

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \ge 1$

Neutrinos are always Dirac!!!


• $U(1)_L \longrightarrow Z_M \equiv Z_{2N}$ where $N \ge 1$

Neutrinos can be either Dirac or Majorana

- For $U(1)_L \longrightarrow Z_{2N}$ case one can make further broad classification
 - If $L_i \nsim \omega^N$ under $Z_{2N} \longrightarrow$ Neutrinos are Dirac!!! • If $L_i \sim \omega^N$ under $Z_{2N} \longrightarrow$ They are Majorana
- From symmetry point of view: Dirac neutrinos are more natural !!!

Majorana Neutrinos: Weinberg Operator

 Weinberg Operator: Provides "effective" description of how Majorana neutrino mass can be generated [S. Weinberg '79]

- ullet Both reps of \mathcal{Z}_2 satisfy the Majorana condition
- All UV completions of Weinberg operator will
 ⁴³
 always lead to Majorana neutrinos

• Our Goal: Develop a general formalism where

• Our Goal: Develop a general formalism where

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

Neutrinos are Dirac in nature

• Our Goal: Develop a general formalism where

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

- Neutrinos are Dirac in nature
- Naturally small neutrino masses are generated through finite loops

• Our Goal: Develop a general formalism where

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

- Neutrinos are Dirac in nature
- Naturally small neutrino masses are generated through finite loops

• The dark sector participates in the loop

- Our Goal: Develop a general formalism where
 [C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]
- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
- The dark sector participates in the loop

- Our Goal: Develop a general formalism where [C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]
- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L ilde{\Phi}
 u_R$
- The dark sector participates in the loop

- Our Goal: Develop a general formalism where [C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]
- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L ilde{\Phi}
 u_R$
- The dark sector participates in the loop
 - The lightest particle being stable, a good DM candidate

- Our Goal: Develop a general formalism where [C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]
- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L ilde{\Phi}
 u_R$
- The dark sector participates in the loop

• The lightest particle being stable, a good DM candidate

• We aim to accomplish all this with Lepton Number

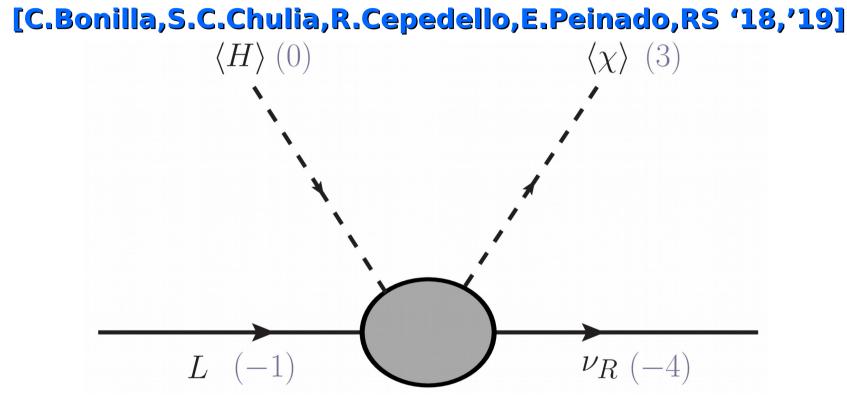
- Our Goal: Develop a general formalism where [C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]
- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L ilde{\Phi}
 u_R$
- The dark sector participates in the loop

• The lightest particle being stable, a good DM candidate

• We aim to accomplish all this with Lepton Number

No extra explicit or accidental symmetries

Lepton Number of Right Handed Neutrinos


- Baryon and Lepton number of all SM particles are fixed
- What is the Lepton number of Right Handed Neutrinos?
 - B and L symmetries are anomalous
 - Only B L combination can be anomaly free if lepton number carrying right handed neutrinos are added to SM
- Vector solution : Add three right handed neutrinos with B-L charges of (-1,-1,-1)

Lepton Number of Right Handed Neutrinos

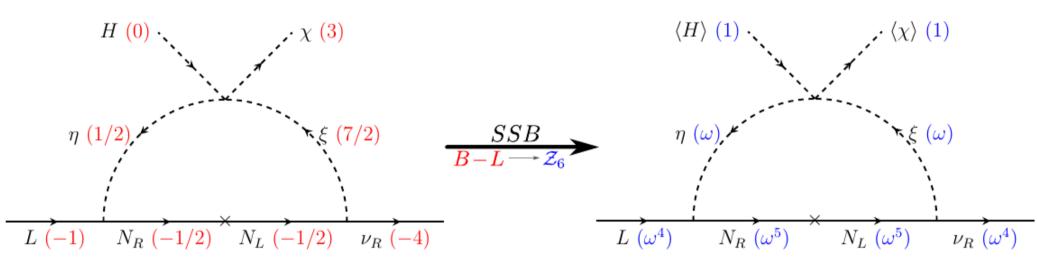
- Baryon and Lepton number of all SM particles are fixed
- What is the Lepton number of Right Handed Neutrinos?
 - B and L symmetries are anomalous
 - Only B L combination can be anomaly free if lepton number carrying right handed neutrinos are added to SM
- Vector solution : Add three right handed neutrinos with B–L charges of (-1,-1,-1)
- New Chiral Solution: Right handed neutrinos with B L charges of (-4,-4,5) [Ma, RS '14, Pollard, Ma, RS, Reza '15]
 - ullet Yukawa term $L ilde{\Phi}
 u_R$ automatically forbidden
 - Paves way for "naturally small" Dirac neutrino masses: Dirac neutrino mass mechanisms
 [RS et.al '15,'16,'17'18'19, Several other]

Generalized Weinberg Operator

Neutrino Mass can be generated at dim-5 level

• Since $\chi \sim 3$, its vev breaks $U(1)_{B-L} o \mathcal{Z}_{3m}; m \in \mathbb{Z}^+$

The exact residual subgroup depends on UV completion

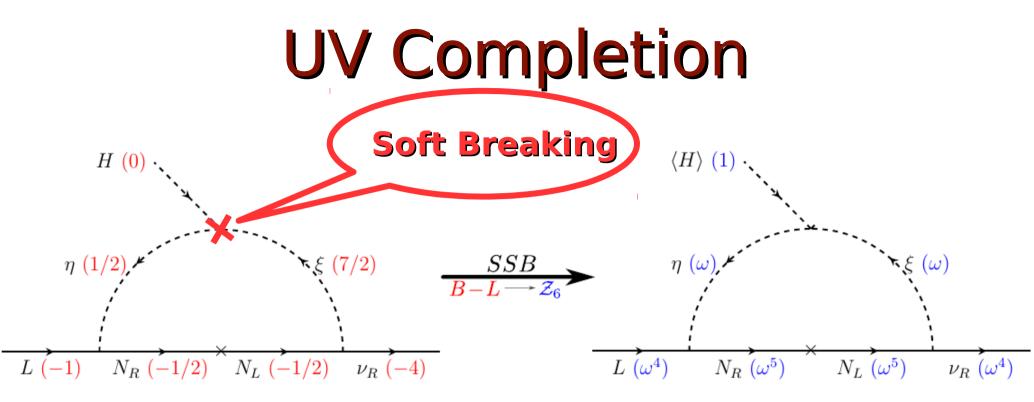

UV Completion

 One loop completion: Dark Sector particles in the loop a la Scotogenic models

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

- The Residual \mathcal{Z}_{3m} subgroup should protect Diracness and Dark Matter stability
 - Exact subgroup fixed by the smallest B-L charge in model
 - If SM leptons have smallest charge then $U(1)_{B-L} \to \mathcal{Z}_3$
 - Turns out \mathcal{Z}_3 is too small [C.Bonilla,E.Peinado,RS '19] • Cannot insure DM stability on its own
- Break $U(1)_{B-L} \to \mathcal{Z}_6$
 - Can be achieved if the particles running in loop carry half integral B-L charges

UV Completion

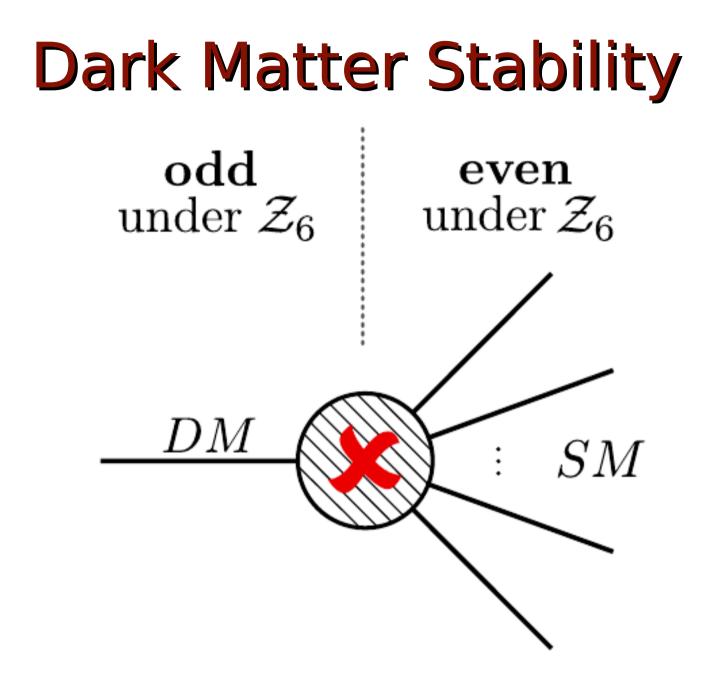

(a) $U(1)_{B-L}$ charge assignment.

(b) Residual \mathcal{Z}_6 charge assignment.

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

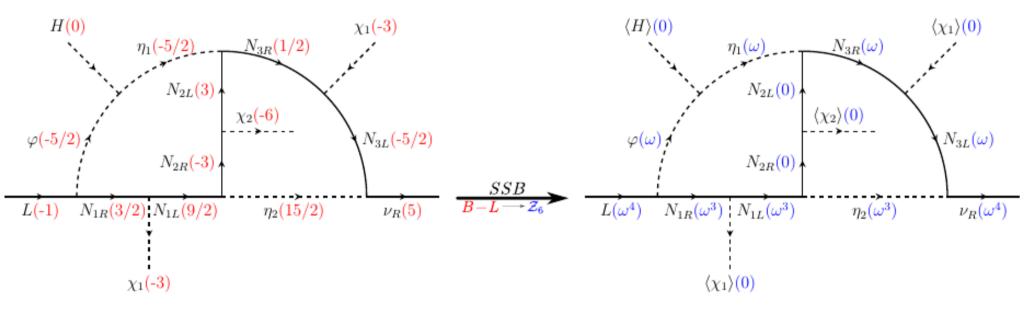
• Here $\omega = e^{2\pi I/6}; \omega^6 = 1$ is the 6th root of unity.

- All particles carrying fractional B-L charges belong to Dark Sector
 - Lightest Dark Sector particle will be Stable Dark Matter Candidate


(a) $U(1)_{B-L}$ charge assignment.

(b) Residual \mathcal{Z}_6 charge assignment.

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]


• Here $\omega = e^{2\pi I/6}; \omega^6 = 1$ is the 6th root of unity.

- All particles carrying fractional B-L charges belong to Dark Sector
 - Lightest Dark Sector particle will be Stable Dark Matter Candidate

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18,'19]

Two Loop Model

(a) $U(1)_{B-L}$ charge assignment.

(b) Remnant \mathcal{Z}_6 charge assignment.

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS; Coming Soon]

General Two Loop Model

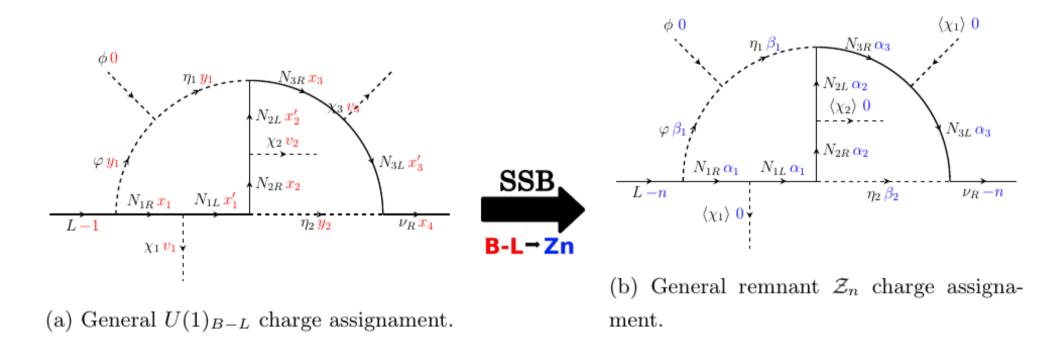
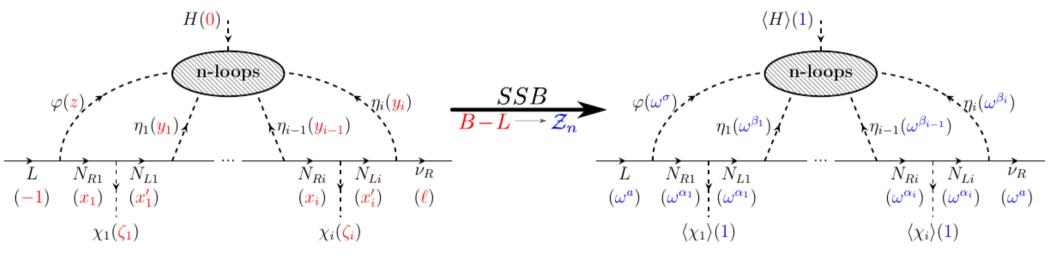
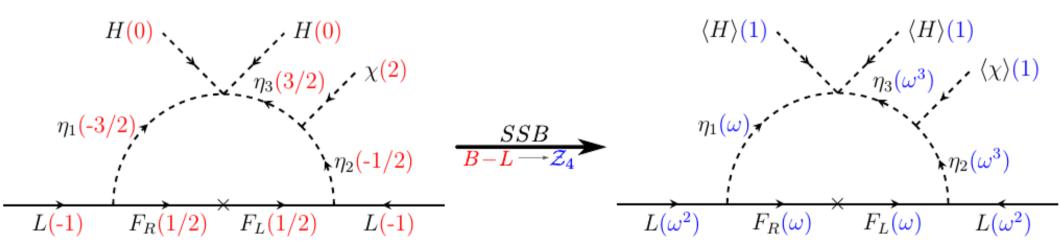



Figure 1: General charge assignment for a given topology and its spontaneous symmetry breaking

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS; Coming Soon]

Completely General N Loop Formalism


(a) General $U(1)_{B-L}$ charge assignment.

(b) General residual \mathcal{Z}_n charge assignment.

Figure 1: General charge assignment for any topology and its spontaneous symmetry breaking pattern.

[C.Bonilla,S.C.Chulia,R.Cepedello,E.Peinado,RS '18]

B-L Scotogenic for Majorana Neurinos

[S.C.Chulia, R.Cepedello, E.Peinado, RS '19]

B-L Scotogenic for Majorana Neurinos

Hard Breaking: Remove these fields $H(\mathbf{0}$ H(0) $|H\rangle(1)$ H (1) $\cdot \chi(2)$ $\eta_3(3/2)$ $\eta_1(-3/$ $\frac{SSB}{I \longrightarrow \mathbb{Z}_4}$ $\eta_1(\boldsymbol{\omega})$ $\eta_2(-1/2)$ $\eta_2(\omega^3)$ $L(\omega^2)$ $L(\omega^2)$ $F_R(\omega)$ $F_L(\omega)$ L(-1) $F_{R}(1/2)$ $F_L(1/2)$ L(-1)

[S.C.Chulia, R.Cepedello, E.Peinado, RS '19]

Conclusions

- Nature of Neutrinos and Dark matter are two of the most important open questions
- We definitely need additional particles beyond those in SM to account for Dark Matter as well as mass of neutrinos
- However, I hope I convinced you that the symmetries present in SM are enough to
 - Account for Dark Matter stability
 - Protect Diracness of neutrinos
 - Explain the smallness of neutrino mass
- The Dirac nature of neutrinos and Dark Matter Stability are intimately related
 - Guaranteed by the same Residual Subgroup of B-L 65

Conclusions

- The relation between Diracness and Dark Matter Stability is even deeper
 - Also holds true for Dirac Seesaw Mechanisms
 [S.C.Chulia, E. Ma, RS, J.W.F.Valle '16] [SCC, RS, JWFV, '17,'18, '19]
 - The relation actually holds independent of the mass generation mechanism for Dirac neutrinos
 [S.C.Chulia,RS, J.W.F.Valle '18]
- For certain special cases, the formalism discussed here can also be adopted for Majorana neutrinos [S.C.Chulia,R.Cepedello,E.Peinado,RS '19]
 - Leads to a Scotogenic like mechanism

Thank You