FLASY2019: 8th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology USTC Hefei, 24-26 July 2019

gCP symmetry in modular-invariant models of flavour

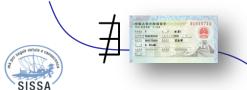
in collaboration with S.T. Petcov, A.V. Titov and P.P. Novichkov [1905.11970, accepted in JHEP]

João Penedo (CFTP, Lisbon)

FLASY2019: 8th Workshop on Flavour Symmetries and Consequences in Accelerators and Cosmology USTC Hefei, 24-26 July 2019

gCP symmetry in modular-invariant models of flavour

in collaboration with S.T. Petcov, A.V. Titov and P.P. Novichkov [1905.11970, accepted in JHEP]



João Penedo (CFTP, Lisbon)

3v flavour paradigm

VS.

Recall e.g. talk by J. Valle

Masses: ordering

$$\frac{\Delta m_{\odot}^2}{|\Delta m_A^2|} \sim \frac{1}{30}$$

Normal ordering (NO)

$$m_1 < m_2 < m_3$$
 m_3

$$\frac{m_2}{m_1}$$

Inverted ordering (IO)

$$m_3 < m_1 < m_2$$

$$----m_3$$

Mixing: parameterisation

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & \\ -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & e^{i\alpha_{21}/2} & \\ & & e^{i\alpha_{31}/2} \end{pmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij}, \, s_{ij} \equiv \sin \theta_{ij}$$

$$\begin{pmatrix} 2 & \\ 2 & \\ & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ & e^{i\alpha_{21}/2} \\ & & e^{i\alpha_{31}/2} \end{pmatrix}$$

3v flavour paradigm

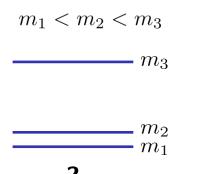
VS.

Recall e.g. talk by J. Valle

Masses: ordering

$$\frac{\Delta m_{\odot}^2}{|\Delta m_A^2|} \sim \frac{1}{30}$$

Normal ordering (NO)



Inverted ordering (IO)

$$m_3 < m_1 < m_2$$
 m_2
 m_1

Mixing: parameterisation

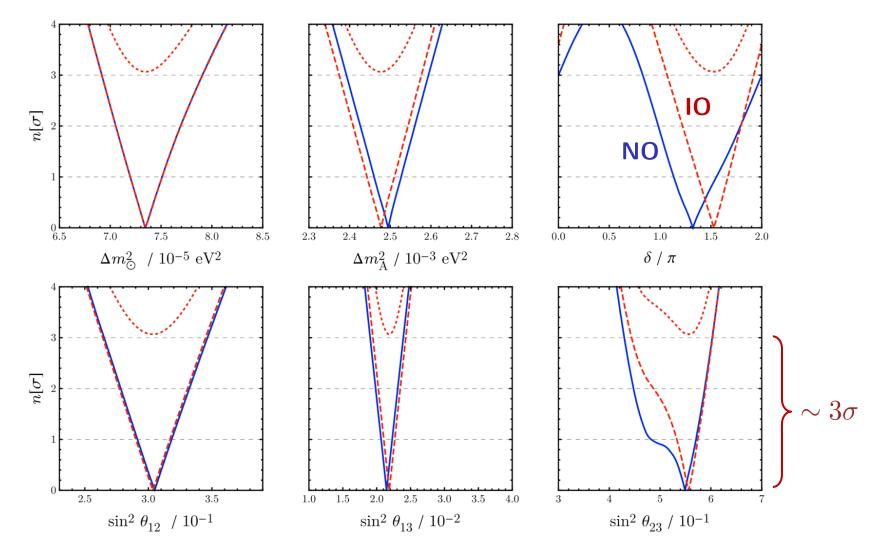
$$U_{\text{PMNS}} = \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & \\ -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & e^{i\alpha_{21}/2} & \\ & & e^{i\alpha_{31}/2} \end{pmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij}, \, s_{ij} \equiv \sin \theta_{ij}$$

$$\begin{pmatrix} 1 & & & & \\ & e^{ilpha_{21}/2} & & & \\ & & & e^{ilpha_{31}/2} \end{pmatrix}$$

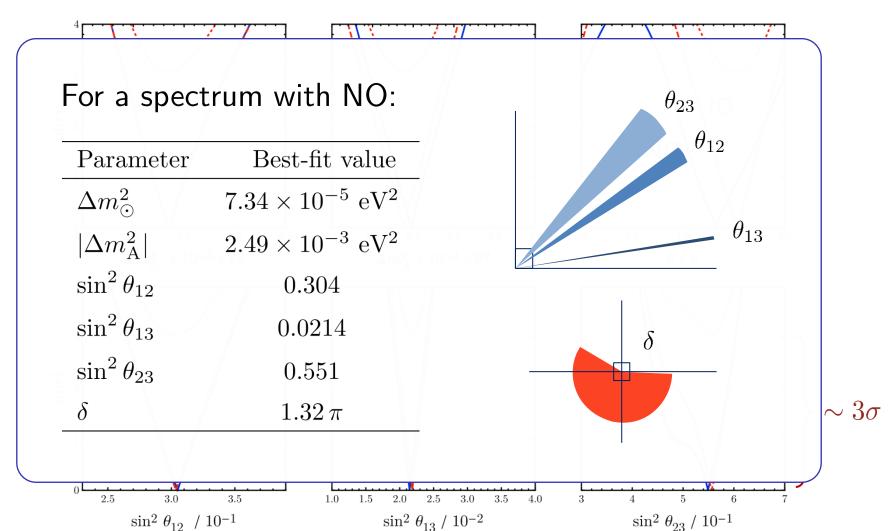
3ν flavour paradigm (cont.)

Capozzi et al., 1804.09678, see also Esteban et al., 1811.05487



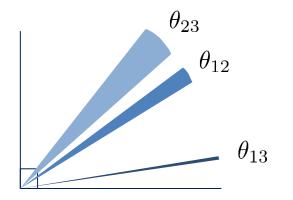
3ν flavour paradigm (cont.)

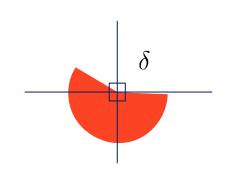
Capozzi et al., 1804.09678, see also Esteban et al., 1811.05487



Is there an organizing principle behind this?

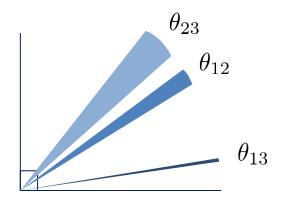
$$\frac{\Delta m_{\odot}^2}{|\Delta m_A^2|} \sim \frac{1}{30}$$

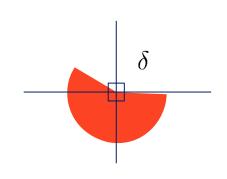




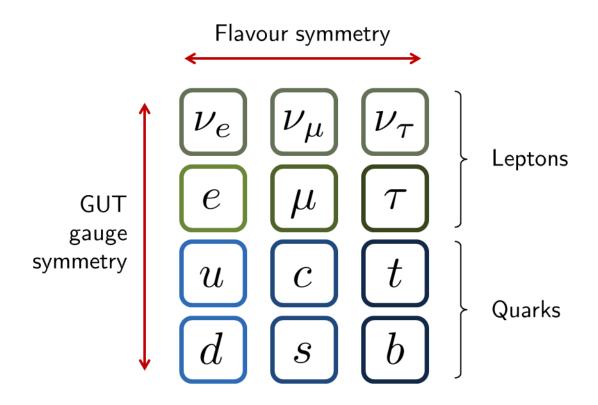
Is there an organizing principle behind this?

$$\frac{\Delta m_{\odot}^2}{|\Delta m_A^2|} \sim \frac{1}{30}$$





Flavour symmetries

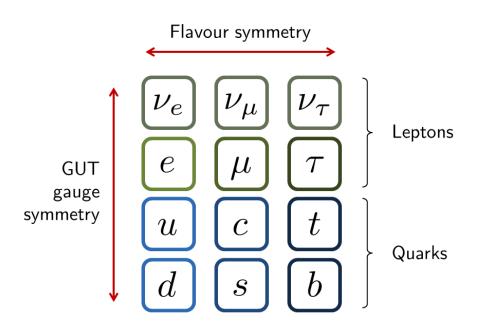


For reviews, see: Altarelli and Feruglio (2010), Ishimori et al. (2010), King and Luhn (2013), Petcov (2017)

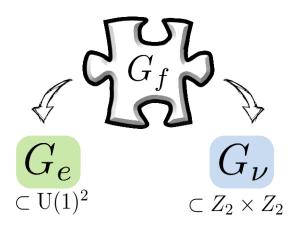
Flavour symmetries

For the lepton sector, at low energy and in some flavour basis:

$$\mathcal{L}_{\ell} = - \left(M_e \right)_{ij} \overline{\ell_{iL}} \, \ell_{jR} - \frac{1}{2} \left(M_{\nu} \right)_{ij} \overline{\nu_{iR}^C} \, \nu_{jL} + \text{h.c.}$$



Non-Abelian discrete flavour symmetries



constrain mixing and Dirac phase

Flavour symmetries + gCP

$$\psi(x) \to \rho_{\mathbf{r}}(g) \psi(x)$$

$$\psi(x) \to X_{\mathbf{r}}^{\mathrm{CP}} \, \overline{\psi}(x_{\mathrm{P}})$$

Branco, Lavoura, Rebelo (1986), Harrison, Scott (2002), Grimus, Lavoura (2003), Farzan, Smirnov (2006), Ferreira, Grimus, Lavoura, Ludl (2012), ...

Flavour symmetries + gCP

constrain mixing, Dirac and Majorana phases

```
Feruglio, Hagedorn, Ziegler (2012),
Holthausen, Lindner, Schmidth (2013),
Chen, Fallbacher, Mahanthappa, Ratz, Trautner (2014), ...
```

Flavour symmetries + gCP

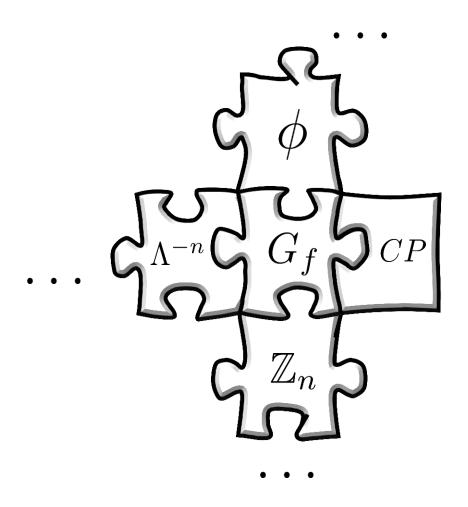
$$X_{\mathbf{r}}^{\text{CP}} \rho_{\mathbf{r}}^*(g) \left(X_{\mathbf{r}}^{\text{CP}} \right)^{-1} = \rho_{\mathbf{r}}(u(g))$$

Consistency condition [Feruglio, et al., Holthausen et al. (2012)]

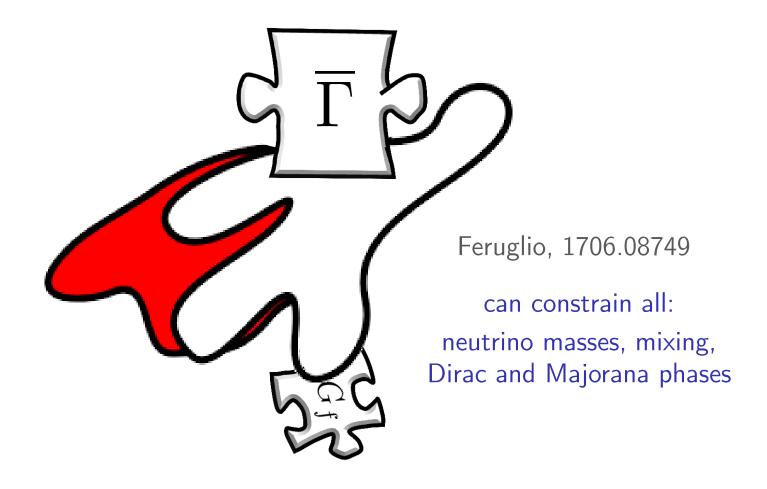
Class-inverting outer automorphism [Chen et al. (2014)]

Problems with the usual approach

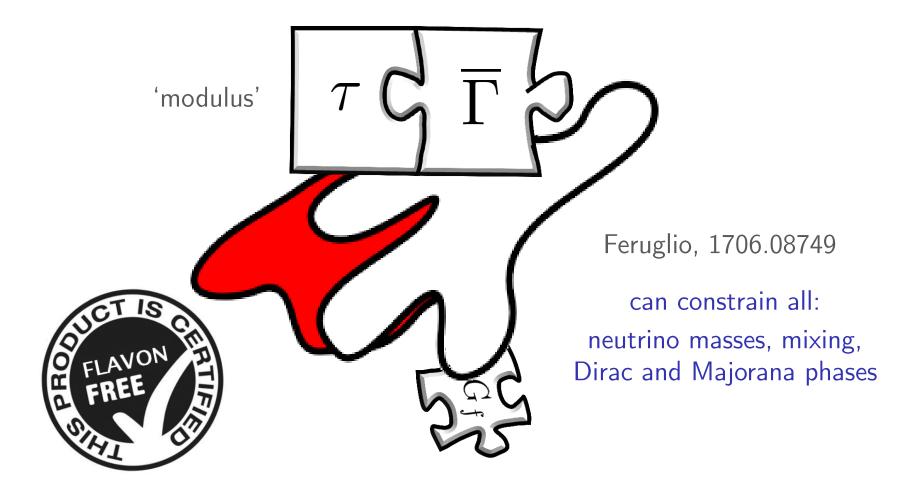
Problems with the usual approach



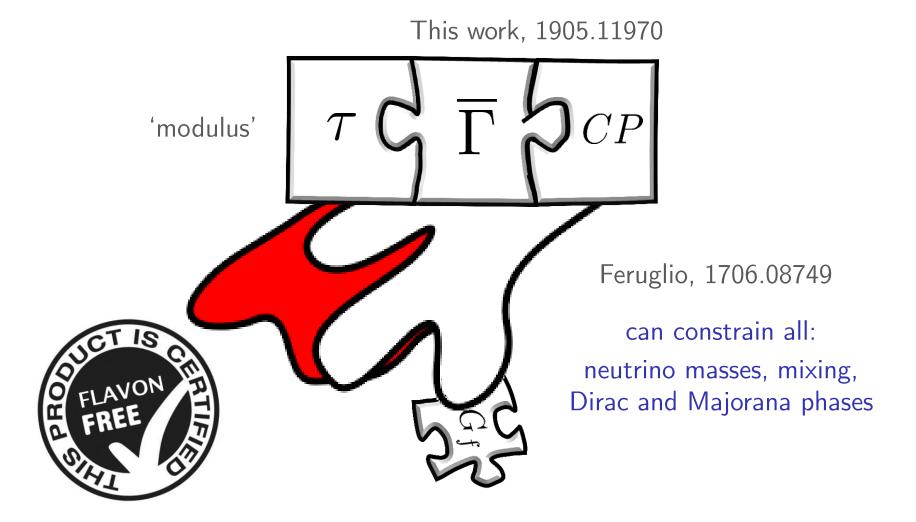
Modular symmetry to the rescue!



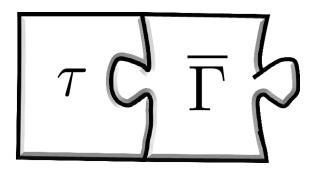
Modular symmetry to the rescue!



Modular symmetry to the rescue!



How does this work?



$$\mathbf{G} \overline{\Gamma} \mathbf{b} \simeq \mathrm{PSL}(2, \mathbb{Z})$$

$$\tau \to \frac{a\tau + b}{c\tau + d}$$

$$a, b, c, d \in \mathbb{Z}$$
 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 1$

$$\overline{\Gamma} > \simeq PSL(2, \mathbb{Z})$$

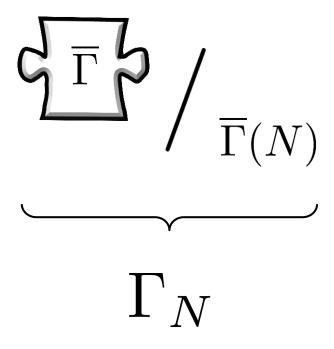
$$\tau \to \frac{a\tau + b}{c\tau + d}$$

$$a, b, c, d \in \mathbb{Z}$$
 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 1$

$$S^{2} = (ST)^{3} = 1 \begin{cases} S: \tau \to -1/\tau, & S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ T: \tau \to \tau + 1, & T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{cases}$$

For recent generalisations, see Varzielas et al., 1906.02208; Liu, Ding, 1907.01488

Quotient behaves like a flavour group:

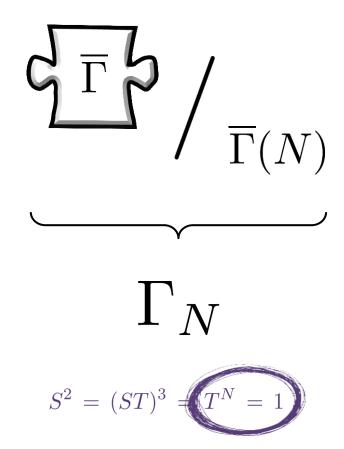


Bottom-up approach

For top-down, see e.g.:

Kobayashi et al., 1804.06644 Kobayashi, Tamba, 1811.11384 de Anda et al., 1812.05620 Baur et al., 1901.03251 Kariyazono et al., 1904.07546

Quotient behaves like a flavour group:



$$\Gamma_2 \simeq S_3$$

Kobayashi et al., $1803.10391 (+A_4)$ Kobayashi et al., $1812.11072 (+A_4)$ Kobayashi et al., 1906.10341Okada, Orikasa, 1907.04716

$$\Gamma_3 \simeq A_4$$

Feruglio, 1706.08749
Feruglio, Criado, 1807.01125
Kobayashi et al., 1808.03012
Okada, Tanimoto, 1812.09677
Novichkov et al., 1812.11289
Nomura, Okada, 1904.03937
Okada, Tanimoto, 1905.13421
Nomura, Okada, 1906.03927

$$\Gamma_4 \simeq S_4$$

JP, Petcov, 1806.11040 Novichkov et al., 1811.04933 Kobayashi et al., 1907.09141

$$\Gamma_5 \simeq A_5$$

Novichkov et al., 1812.02158 Ding et al., 1903.12588

Modular forms: the stars of the show

<u>Transformation of superfields:</u>

$$\psi \to (c\tau + d)^{-k_{\psi}} \rho_{\mathbf{r}}(\gamma) \psi$$

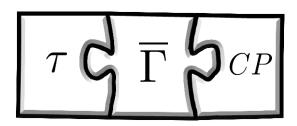
$$\Gamma_{N}, \ \gamma \in \overline{\Gamma}$$

<u>Invariance of superpotential requires functions:</u>

$$Y(\tau) \to (c\tau + d)^{k_Y} \rho_{\mathbf{r}_Y}(\gamma) Y(\tau)$$

Play the role of flavons, but structures are completely fixed given the modulus VEV

Modular symmetry + gCP

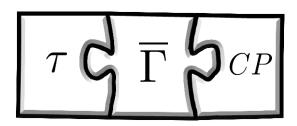


$$\tau \xrightarrow{\mathrm{CP}} ?$$

$$\psi \xrightarrow{\mathrm{CP}} ?$$

$$Y(\tau) \xrightarrow{\mathrm{CP}} ?$$

Modular symmetry + gCP



$$\tau \xrightarrow{\mathrm{CP}} ?$$

$$\tau \xrightarrow{\mathrm{CP}} ? \qquad \psi(x) \xrightarrow{\mathrm{CP}} X_{\mathbf{r}}^{\mathrm{CP}} \overline{\psi}(x_{\mathrm{P}}) \qquad Y(\tau) \xrightarrow{\mathrm{CP}} ?$$

$$Y(\tau) \xrightarrow{\mathrm{CP}} ?$$

Modular symmetry + gCP: the modulus

 $n \in \mathbb{Z}$, but can choose n = 0 without loss of generality:

$$\tau_{\rm CP} = -\tau^*$$

Extended modular group

$$\tau_{\rm CP} = -\tau^*$$

Extended modular group

$$\tau \xrightarrow{\mathrm{CP}} -\tau^* \xrightarrow{\gamma} -\frac{a\tau^* + b}{c\tau^* + d} \xrightarrow{\mathrm{CP}^{-1}} \frac{a\tau - b}{-c\tau + d}$$

$$u(\gamma) \equiv \operatorname{CP} \gamma \operatorname{CP}^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

$$au_{
m CP} = - au^*$$

$$CP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

João Penedo

FLASY2019

Extended modular group

$$\overline{\Gamma}^* = \left\langle \tau \xrightarrow{T} \tau + 1, \ \tau \xrightarrow{S} -1/\tau, \ \tau \xrightarrow{CP} -\tau^* \right\rangle \simeq \mathrm{PGL}(2, \mathbb{Z})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \overline{\Gamma}^* : \begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} & \text{if} \quad ad - bc = 1 \\ \tau \to \frac{a\tau^* + b}{c\tau^* + d} & \text{if} \quad ad - bc = -1 \end{cases}$$

Modular symmetry + gCP: consistency

Déjà vu
$$X_{\mathbf{r}}^{\mathrm{CP}}\,\rho_{\mathbf{r}}^*(\gamma)\left(X_{\mathbf{r}}^{\mathrm{CP}}\right)^{-1} = \rho_{\mathbf{r}}(u(\gamma))$$

but now there is a unique automorphism

$$u(\gamma) \equiv \operatorname{CP} \gamma \operatorname{CP}^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \qquad \Rightarrow \qquad X^{\operatorname{CP}}_{\mathbf{r}} \text{ uniquely determined}$$

$$\rho_{\mathbf{r}}^*(\gamma) = \rho_{\mathbf{r}}(u(\gamma))$$

$$X_{\mathbf{r}}^{\mathrm{CP}} = \mathbb{1}_{\mathbf{r}}$$

CP is canonical

Modular symmetry + gCP: the modular forms

$$Y(au) \xrightarrow{\mathrm{CP}} ?$$
 $Y(au) \sim \psi$
$$Y(au) \xrightarrow{\mathrm{CP}} Y(au_{\mathrm{CP}}) = Y(- au^*)$$
 under the modular group

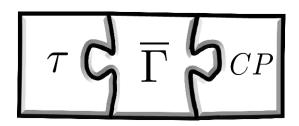
$$Y(-\tau^*) = X_{\mathbf{r}}^{\mathrm{CP}} Y^*(\tau)$$

In a sym. basis Y's conjugate, q-expansions have real coeffs

Proven to hold:

- Up to a phase normalisation
- For the groups studied in the literature (N<6)

Modular symmetry + gCP



$$\tau \xrightarrow{\mathrm{CP}} -\tau^*$$

$$\psi(x) \xrightarrow{\mathrm{CP}} X_{\mathbf{r}}^{\mathrm{CP}} \overline{\psi}(x_{\mathrm{P}})$$

$$\tau \xrightarrow{\mathrm{CP}} -\tau^* \qquad \psi(x) \xrightarrow{\mathrm{CP}} X_{\mathbf{r}}^{\mathrm{CP}} \overline{\psi}(x_{\mathrm{P}}) \qquad Y(\tau) \xrightarrow{\mathrm{CP}} X_{\mathbf{r}}^{\mathrm{CP}} Y^*(\tau)$$

Unbroken gCP: couplings

$$W \stackrel{\operatorname{CP}}{\longleftrightarrow} \overline{W}$$

In a symmetric basis:

$$g(Y\psi \dots \psi)_{\mathbf{1}} \stackrel{\operatorname{CP}}{\longleftrightarrow} g^* \overline{(Y\psi \dots \psi)_{\mathbf{1}}}$$

$$\downarrow^{\psi(x)} \stackrel{\operatorname{CP}}{\longleftrightarrow} \overline{\psi}_{(x_{\mathrm{P}})}$$

$$\downarrow^{Y(\tau)} \stackrel{\operatorname{CP}}{\longleftrightarrow} Y^*(\tau)}$$

$$g(Y^*\overline{\psi}\dots\overline{\psi})_{\mathbf{1}}$$

 $g \in \mathbb{R}$

Unbroken gCP: observables

In a symmetric basis, gCP implies:

$$M_{e,\nu}(-\tau^*) = M_{e,\nu}^*(\tau)$$

$$M_{e,\nu} \equiv M_{e,\nu}(g,\tau)$$

João Penedo 2º

Unbroken gCP: observables

In a symmetric basis, gCP implies:

$$M_{e,\nu}(-\tau^*) = M_{e,\nu}^*(\tau)$$

$$M_{e,
u}\equiv M_{e,
u}(g,\overline{ au})$$

In a symmetric basis, gCP implies:

$$M_{e,\nu}(-\tau^*) = M_{e,\nu}^*(\tau)$$

$$M_{e,
u}\equiv M_{e,
u}(g,\overline{ au})$$

Naïvely: need $-\tau^* = \tau$ to get real mass matrix and hence $\sin \delta = \sin \alpha_{21} = \sin \alpha_{31} = 0$

In a symmetric basis, gCP implies:

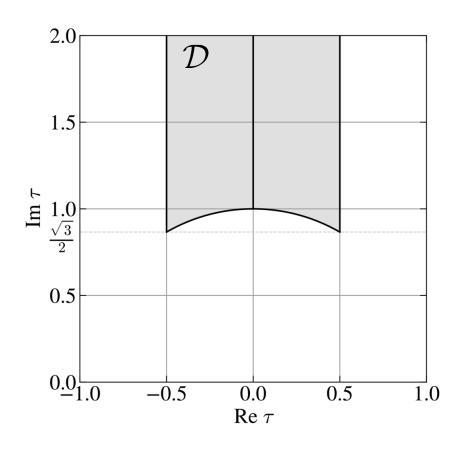
$$M_{e,\nu}(-\tau^*) = M_{e,\nu}^*(\tau)$$

Actually: just need $-\tau^* = \gamma \tau$ to get

$$\sin \delta = \sin \alpha_{21} = \sin \alpha_{31} = 0$$

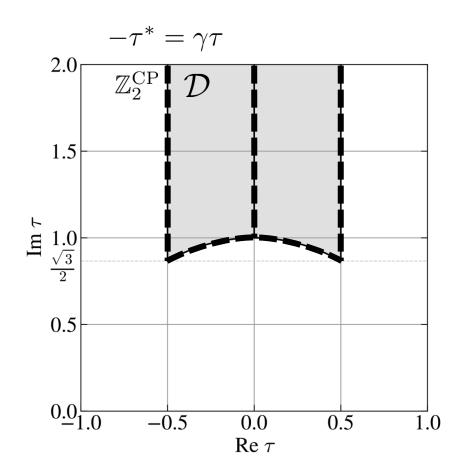
$$\operatorname{obs}[M_{e,\nu}(\tau)] = \operatorname{obs}[M_{e,\nu}(\gamma\tau)] = \operatorname{obs}[M_{e,\nu}^*(\tau)]$$

Points outside fundamental domain physically equivalent to pts inside



Points outside fundamental domain physically equivalent to pts inside

CPV away from dashed lines



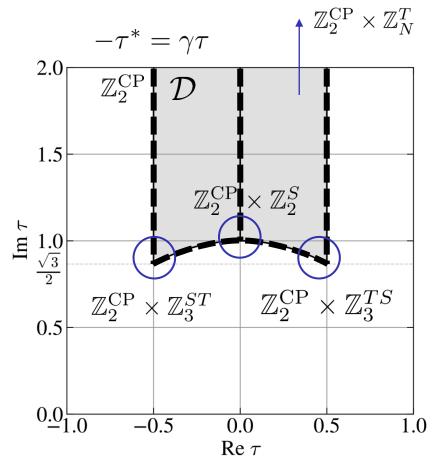
$$M_{e,\nu} \equiv M_{e,\nu}(g,\tau)$$
 can be **only source** of CPV

Points outside fundamental domain physically equivalent to pts inside

CPV away from dashed lines

Enhancement by **residual** modular symmetries at certain points

Novichkov et al., 1811.04933 Novichkov et al., 1812.11289



 $M_{e,\nu} \equiv M_{e,\nu}(g,\tau)$ can be **only source** of CPV, like in...

An (S_4) example, finally!

Ingredients: N, field content, their weights and irreps

Recipe: find couplings and t

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d}$$
$$+ g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}},$$
$$\in \mathbb{C}$$

minimal setup

Novichkov, JP, Petcov, Titov, 1811.04933

An (S_4) example, finally!

Ingredients: N, field content, their weights and irreps

Recipe: find couplings and t

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d}$$
$$+ g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}},$$
$$\in \mathbb{C}$$

Novichkov, JP, Petcov, Titov, 1811.04933

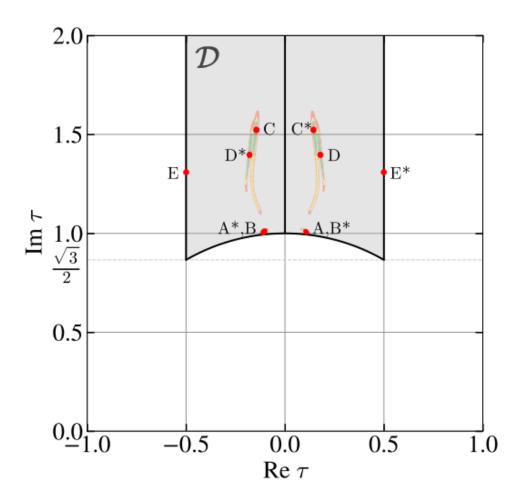
minimal setup

→ even more minimal

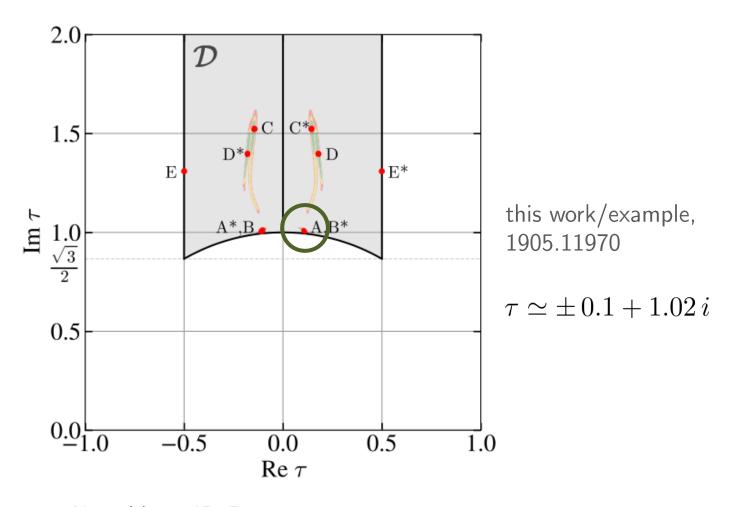
$$gCP \Rightarrow g' \in \mathbb{R}$$

τ is the only source of CPV

happens accidentally in a model by Feruglio, Criado, 1807.01125



Novichkov, JP, Petcov, Titov, 1811.04933



Novichkov, JP, Petcov, Titov, 1811.04933

7 (4) parameters vs.

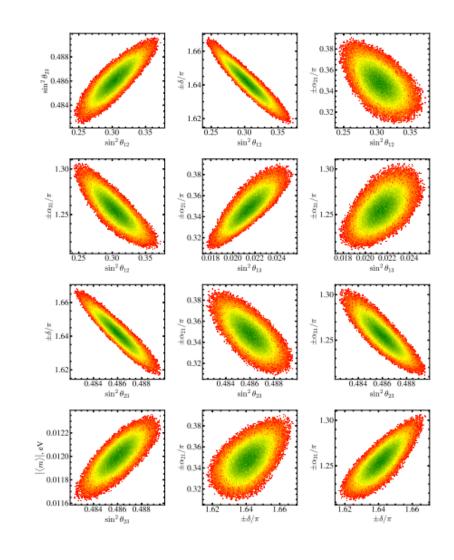
12 (9) observables

$$\sin^2 \theta_{23} \sim 0.49$$
$$\delta \sim 1.6\pi$$
$$\alpha_{21} \sim 0.3\pi$$
$$\alpha_{31} \sim 1.3\pi$$

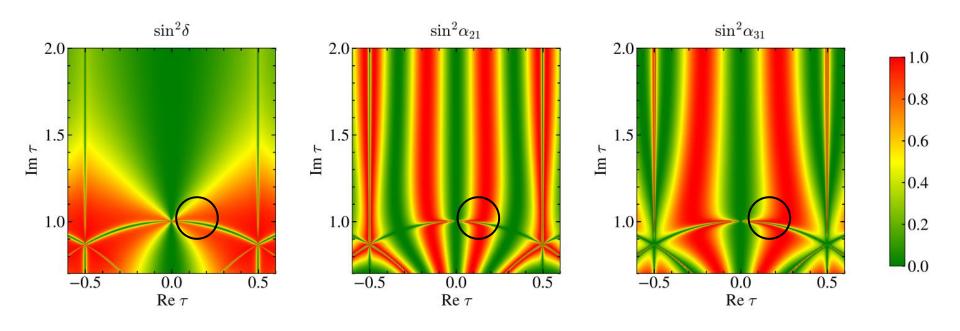
$$|\langle m \rangle|_{\beta\beta} \sim 12 \text{ meV}$$

 $\sum_i m_i \sim 0.08 \text{ eV}$

$$[n\sigma = 1]$$



A check (CP-conserving τ):



A small departure from the lines can already bring about large CPV

Summary

- (Modular symmetry brings advantages over the traditional discrete flavour symmetry approach)
- The modular symmetry can be combined with gCP.

Summary

- (Modular symmetry brings advantages over the traditional discrete flavour symmetry approach)
- The modular symmetry can be combined with gCP:
 - $\tau \rightarrow n \tau^*$
 - Consistency condition w/ unique automorphism
 - Extended modular group

(in a symmetric basis:)

- CP canonical
- $Y(\tau_{\rm CP}) = Y^*(\tau)$
- Real couplings

Summary

- (Modular symmetry brings advantages over the traditional discrete flavour symmetry approach)
- The modular symmetry can be combined with gCP.
- τ can be the only source of CPV. Must be outside \coprod
- We've improved on an S_4 model example, increasing its predictive power.

Fri 26/07 (tomorrow, parallel)

16:20 A. Titov: $\Gamma_5 \simeq A_5$

16:40 **J. Penedo**: $\Gamma_4 \simeq S_4$

Backup slides

Lowest-weight modular forms: S₄

$$Y(a_1, \dots, a_6 | \tau) \equiv \frac{d}{d\tau} \left(\sum_{i=1}^6 a_i \log \eta_i(\tau) \right)$$

$$\sum_{i} a_i = 0$$

Lowest weight forms arrange into:

$$Y_2(au) = egin{pmatrix} Y_1(au) & Y_1(au) & Y_1(au) & Y_1(au) & Y_2(au) \end{pmatrix}$$
 doublet 2 $Y_2(au) & Y_2(au) & Y_2($

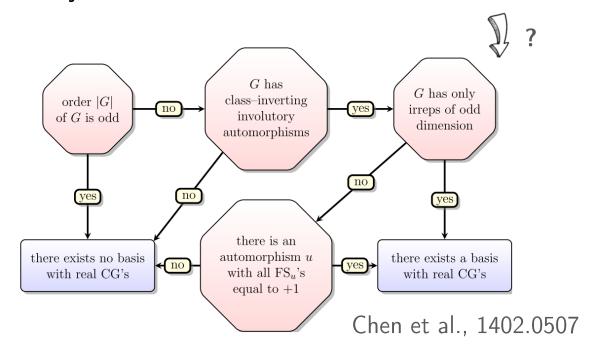
Correct dimension (5)

Products generate higher weight forms

Larger N(>5)

Our conclusions directly apply, provided:

- There is at most one lowest-weight form for each irrep
- There is a symmetric basis with real CGCs



João Penedo backup

Kähler potential

The minimal choice; a definition of the setup, at this point:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) = -h \Lambda_0^2 \log(-i(\tau - \overline{\tau})) + \sum_i \frac{|\chi_i|^2}{(-i(\tau - \overline{\tau}))^{k_i}}$$

$$\mathcal{L} \supset \sum_i rac{\partial_\mu \overline{\chi}_i \, \partial^\mu \chi_i}{(2 \, \mathrm{Im} \langle au
angle)^{k_i}}$$

Under a modular transformation, invariant up to a Kähler transformation:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) \to K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) + f(\chi_i; \tau) + f(\overline{\chi}_i; \overline{\tau})$$

There may exist potentially dangerous corrections to the Kähler, to be studied