School of Physics and Astronomy

Recent Developments in Neutrino Models

with F. de Anda, E.Perdomo, S. Molina Sedgewick, S. Rowley, Y.L.Zhou, J.Hernandez-Garcia, C.C.Nishi, G.J.Ding, C.C.Li, P.T.Chen, X.G.Liu, A. Carcamo Hernandez

FLASY2019: 8th Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology

Why nu mass small?

Minkowski, Yanagida, Gell-Mann, Slansky, Ramond, Mohapatra, Senjanovic, Schecter, Valle

Minimal Type I seesaw

Type I seesaw with two RHNs s. Either one Dirac texture zero (NO) Or two Dirac texture zeros (IO)

S.F.K,hep-ph/9912492

S.F.K,hep-ph/0204360

Frampton,Glashow, Yanagida,hep-ph/0208157

Littlest Seesaw

Fit includes effects of RG corrections

SFK 1304.6264; 1512.07531

SFK, Molina Sedgwick, Rowley, 1808.01005

Describes:

3 neutrino masses (m₁=0),

3 mixing angles,

1 Dirac CP phase,

2 Majorana phases (1 zero)

1 BAU parameter YB

= 10 observables

of which 7 are constrained

	Predictions	1σ range
	$ heta_{12}/^{\circ}$	$34.254 \rightarrow 34.350$
2	$ heta_{13}/^{\circ}$	$8.370 \rightarrow 8.803$
	$ heta_{23}/^{\circ}$	$45.405 \rightarrow 45.834$
	$\Delta m_{12}^2 / 10^{-5} \mathrm{eV}^2$	$7.030 \rightarrow 7.673$
	$\Delta m_{31}^2 / 10^{-3} \mathrm{eV}^2$	$2.434 \rightarrow 2.561$
	$\delta/^{\circ}$	$-88.284 \rightarrow -86.568$
	$Y_B / 10^{-10}$	$0.839 \rightarrow 0.881$

Littlest Seesaw
SFK 1304.6264; 1312.07331
SFK, Molina Sedgwick,
Rowley, 1808.01005
Seesaw formula
$$M_{\nu} = m_D M_R^{-1} m_D^T \longrightarrow (M_{\nu})_{ij} \nu_{iL}^c \nu_{jL}^c = (M_{\nu}^*)_{ij} \nu_{iL} \nu_{jL}$$

Case I: $M_{\nu}^{I} = \omega m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_s \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$
Fits neutrino
data with
 $m_a/m_s = 10$
 $\omega = e^{i2\pi/3}$

Special case $m_a/m_s=11$ gives Littlest mu-tau seesaw

Case I:
$$M_{\nu} = m_s \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 + 11\omega & 3 + 11\omega \\ 1 & 3 + 11\omega & 1 + 11\omega \end{pmatrix}$$
,
Case II: $M_{\nu} = m_s \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 + 11\omega^2 & 3 + 11\omega^2 \\ 3 & 3 + 11\omega^2 & 9 + 11\omega^2 \end{pmatrix}$.

Maximal atmospheric Maximal CPV

1001 COCI. 1010 07001

S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou,1901.06877

Littlest mu-tau Seesaw

$$m_{a}/m_{s} = \prod_{M_{\nu}} \left(\begin{array}{ccc} 1 & 1 & 3 \\ 1 & 1 + 11\omega^{2} & 3 + \omega^{2} \\ 3 & 3 + 11\omega^{2} & 9 + 11\omega^{2} \end{array} \right) \qquad \omega = e^{i2\pi/3}$$
 unequal

S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou,1901.06877

Littlest mu-tau Seesaw

$$\mathbf{m}_{a}/\mathbf{m}_{s} = \mathbf{\Pi}$$

$$M_{\nu} = m_{s} \begin{pmatrix} 1 & 1 & 3 \\ 1 & +11\omega^{2} & 3+\omega^{2} \\ 3 & 3+11\omega^{2} & 9+11\omega^{2} \end{pmatrix} \qquad \omega = e^{i2\pi/3}$$

$$\mathbf{unequal}$$

$$\mathbf{M}_{\nu} = M_{\nu}^{\dagger}M_{\nu} = 11 |m_{s}|^{2} \begin{pmatrix} 1 & -1-2i\sqrt{3} & 1-2i\sqrt{3} \\ -1+2i\sqrt{3} & 19 & 17+4i\sqrt{3} \\ 1+2i\sqrt{3} & 17-4i\sqrt{3} & 19 \end{pmatrix} \text{equal}$$

S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou,1901.06877

Littlest mu-tau Seesaw

$$m_{a}/m_{s} = \Pi$$

$$M_{\nu} = m_{s} \begin{pmatrix} 1 & 1 & 3 \\ 1 & +11\omega^{2} & 3+\omega^{2} \\ 3 & 3+11\omega^{2} & 9+11\omega^{2} \end{pmatrix} \qquad \omega = e^{i2\pi/3}$$
unequal
$$(1 - 1 - 2i\sqrt{3} - 1 - 2i\sqrt{3})$$

$$H_{\nu} = M_{\nu}^{\dagger} M_{\nu} = 11 |m_{\rm s}|^2 \begin{pmatrix} -1 + 2i\sqrt{3} & 19 \\ 1 + 2i\sqrt{3} & 17 - 4i\sqrt{3} \end{pmatrix} \text{equal}$$

$$\begin{pmatrix} 2 \\ \sqrt{c} \\$$

$$U = \begin{pmatrix} \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} \\ \frac{1}{\sqrt{6}} & -\frac{c_{+}}{\sqrt{6}} - i\frac{c_{-}}{2} & -\frac{c_{-}}{\sqrt{6}} + i\frac{c_{+}}{2} \\ \frac{1}{\sqrt{6}} & -\frac{c_{+}}{\sqrt{6}} + i\frac{c_{-}}{2} & -\frac{c_{-}}{\sqrt{6}} - i\frac{c_{+}}{2} \end{pmatrix}$$
 symmetry
$$\theta_{23} = 45^{\circ}, \ \delta = -\pi/2$$

Littlest mu-tau seesaw

 $m_1 = 0$

Renormalisation Group Corrections

 $\begin{aligned} \theta_{13} &\approx 7.807^{\circ} - 8.000^{\circ}\epsilon \,, \\ \theta_{12} &\approx 34.50^{\circ} - 12.30^{\circ}\epsilon \,, \\ \theta_{23} &\approx 45.00^{\circ} - 31.64^{\circ}\epsilon \,, \\ \delta &\approx 270.00^{\circ} + 3.23^{\circ}\epsilon \,, \end{aligned}$

 $\Delta m_{21}^2 / \Delta m_{31}^2 \approx 0.0247 - 0.0147\epsilon$

G.J.Ding, S.F.K. and C.C.Li, 1807.07538, 1811.12340

Littlest Seesaw from S₄

P.T.Chen, G.J.Ding, S.F.K. and C.C.Li, 1906.11414

Littlest Seesaw from S₄ Tri-direct CP with S₄ gives the structure $m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta} \begin{pmatrix} 1 & 2-x & x \\ 2-x & (x-2)^2 & (2-x)x \\ x & (2-x)x & x^2 \end{pmatrix}$ TMI NO m_I=0

Original Littlest Seesaw $(x, \eta) = (3, 2\pi/3), (-1, -2\pi/3)$ $\sin^2 \theta_{23} \approx 0.5 \quad \delta_{CP} \approx -\pi/2$

New Littlest Seesaw $(x, \eta) = (-1/2, -\pi/2)$ $0.593 \le \sin^2 \theta_{23} \le 0.609$ UO $-0.358 \le \delta_{CP}/\pi \le -0.348$

A.E.Cárcamo Hernández and S.F.King, 1903.02565

Littlest Inverse Seesaw

Another
Possibility
$$M_{\nu} = \begin{pmatrix} 0_{3 \times 3} & m_D & 0_{3 \times 2} \\ m_D^T & 0_{2 \times 2} & M \\ 0_{2 \times 3} & M^T & \mu \end{pmatrix}$$
 cLFV, collider...
Talk by Antusch

 $m_D \sim \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix}, \qquad M \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mu \sim \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}, \qquad \omega = e^{\frac{2\pi i}{3}}.$

 $m_{
u} = -m_D (M^T)^{-1} \mu M^{-1} m_D^T$ Talk by Valle

Same low $m_{\nu} = m_{\nu a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{\nu b} \omega \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$ energy matrix

Hernandez-Garcia and SFK 1903.01474

Effective Weinberg operators for 2HDM in J.F.Oliver, A.Santamaria, hep-ph/0108020

Hernandez-Garcia and SFK 1903.01474

	Mi	nir	ma	1	Type Ib seesaw
				Z'	$y_i^{\nu} H_u L_i \nu^c + \epsilon_1 y_i^{\nu'} \tilde{H}_d L_i \overline{\nu^c}$ Assume
Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'	$ u_1 \nu_2 \nu_3 \nu^c \overline{\nu^c} \square \square$
Q_i	3	2	1/6	0	$\nu_1 \begin{pmatrix} 0 & 0 & 0 & y_1^{\nu} v \epsilon_1 y_1^{\nu'} v \end{pmatrix}$ couplings
u_i^c	$\overline{3}$	1	-2/3	0	$ \nu_2 = 0 = 0 = 0 = y_2^{\nu} i \epsilon_1 y_2^{\nu'} v' $ small
d_i^c	$\overline{3}$	1	1/3	0	$M^{\nu} = \nu_3 \qquad 0 \qquad 0 \qquad 0 \qquad y_3^{\nu} v \epsilon_1 y_3^{\nu'} v''$
L_i	1	2	-1/2	0	$ \begin{array}{c c} \nu^{c} & y_{1}^{\nu}v & y_{2}^{\nu}v & y_{3}^{\nu}v & 0 & M^{\nu} \\ \hline \overline{\nu^{c}} & \epsilon_{1}y_{1}^{\nu'}v' & \epsilon_{1}y_{2}^{\nu'}v' & \epsilon_{1}y_{3}^{\nu'}v & M^{\nu} & 0 \end{array} \right) \text{c.f. Antusch talk} $
e^c_i	1	1	1	0	$\overline{\nu^c} \left\{ \epsilon_1 y_1^{\nu'} v' \ \epsilon_1 y_2^{\nu'} v' \ \epsilon_1 y_3^{\nu'} v' \ M^{\nu} 0 \right\}$
$ u^c $	1	1	0	1	Light effective neutrino matrix
$\overline{\nu^c}$	1	1	0	-1	$\hat{m}_{ij} = \frac{\epsilon_1 v v'}{M^{\nu}} \left(y_i^{\nu} y_j^{\nu\prime} + y_i^{\nu\prime} y_j^{\nu} \right)$
ϕ	1	1	0	1	Unitarity violation due to large y
H_u	1	2	1/2	-1	
H_d	1	$egin{array}{c} 2 \\ 2 \end{array}$	-1/2	-1	$ \eta_{ij} = \frac{1}{2M^{\nu 2}} \left(v^2 y_i^{\nu *} y_j^{\nu} + \epsilon_1^2 v'^2 y_i^{\nu \prime *} y_j^{\nu \prime} \right) \simeq \frac{v^2}{2M^{\nu 2}} y_i^{\nu *} y_j^{\nu} $

Hernandez-Garcia and SFK 1903.01474

Minimal Type Ib seesaw

F.Feruglio, 1706.08749 Also Ferruccio's talk

Modular Forms

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

Level 3 Weight 2 acts as A4 triplet: $Y = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1+12q+36q^2+12q^3+84q^4+72q^5+\dots \\ -6q^{1/3}(1+7q+8q^2+18q^3+14q^4+\dots) \\ -18q^{2/3}(1+2q+5q^2+4q^3+8q^4+\dots) \end{pmatrix}$

 $q \equiv e^{i2\pi\tau}$ free modulus $\tau = \frac{\omega_2}{\omega_1}$ Weinberg $\frac{1}{\Lambda} \begin{pmatrix} H_u H_u & LL \end{pmatrix} \rightarrow m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix} \frac{v_u^2}{\Lambda}$ operator $\begin{array}{c} A_4: & 3 & 3 \\ \end{array}$

G.J.Ding, S.F.K. and X.-G.Liu, 19xx.xxxx See also talk by Tanimoto A4 Modular Symmetry

Ň	lodels	mass matrices	assignment	weight				
1	IOUEIS		$\rho_{E^c_{1,2,3}}$	$k_{E_{1,2,3}^{c}}$	k_L	k_{N^c}		
$\mathcal{A}1$		W1, C1	1, 1, 1	1, 3, 5	1	_		
	$\mathcal{A}2$	W1, C2	1', 1', 1'	1,3,5	1	—		
	$\mathcal{A}3$	W1, C3	1 '', 1 '', 1 ''	1,3,5	1	—		
Weinberg	$\mathcal{A}4$	W1, C4	1, 1, 1'	1,3,1	1	—		
	$\mathcal{A}5$	W1, C5	1, 1, 1''	1,3,1	1	—		
operator	$\mathcal{A}6$	W1, C6	1', 1', 1	1,3,1	1	—		
	$\mathcal{A}7$	W1, C7	1'', 1'', 1;	1,3,1	1	—		
	$\mathcal{A}8$	W1, C8	1 '', 1 '', 1 '	1,3,1	1	—		
	$\mathcal{A}9$	W1, C9	1 ', 1 ', 1 ''	1, 3, 1	1	—		
	A10	W1, C10	1, 1'', 1'	1,1,1	1	—		
	$\mathcal{B}1(\mathcal{C}1)[\mathcal{D}1]$	S1(S2)[S3], C1	1, 1, 1	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}2(\mathcal{C}2)[\mathcal{D}2]$	S1(S2)[S3], C2	1', 1', 1'	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}3(\mathcal{C}3)[\mathcal{D}3]$	S1(S2)[S3], C3	1 '', 1 '', 1 ''	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
Type I	$\mathcal{B}4(\mathcal{C}4)[\mathcal{D}4]$	S1(S2)[S3], C4	1, 1, 1'	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}5(\mathcal{C}5)[\mathcal{D}5]$	S1(S2)[S3], C5	1, 1, 1''	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
see-saw	$\mathcal{B}6(\mathcal{C}6)[\mathcal{D}6]$	S1(S2)[S3], C6	1', 1', 1	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}7(\mathcal{C}7)[\mathcal{D}7]$	S1(S2)[S3], C7	1', 1', 1''	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}8(\mathcal{C}8)[\mathcal{D}8]$	S1(S2)[S3], C8	1'', 1'', 1	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}9(\mathcal{C}9)[\mathcal{D}9]$	S1(S2)[S3], C9	1 '', 1 '', 1 '	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}10(\mathcal{C}10)[\mathcal{D}10]$	S1(S2)[S3], C10	1, 1'', 1'	0(3)[1], 0(3)[1], 0(3)[1]	2(-1)[1]	0(1)[1]		

Comprehensive study of 40 simplest cases without flavons

Models	Ordering		Models	Orde	ring	Models	Orde	ring	Models	Orde	ring	
Models	NO	IO	Moders	riouers	NO	IO	MODELS	NO	IO	MODELS	NO	IO
$\mathcal{A}1$	X	X	B 1	~	/	C1	X	X	$\mathcal{D}1$	~	~	
$\mathcal{A}2$	X	X	$\mathcal{B}2$	~	~	$\mathcal{C}2$	X	X	$\mathcal{D}2$	~	~	
$\mathcal{A}3$	X	X	B 3	v	~	<i>C</i> 3	X	X	$\mathcal{D}3$	~	~	
$\mathcal{A}4$	X	X	$\mathcal{B}4$	X	X	$\mathcal{C}4$	X	X	$\mathcal{D}4$	X	~	
$\mathcal{A}5$	X	X	$\mathcal{B}5$	X	X	$\mathcal{C}5$	X	X	$\mathcal{D}5$	~	×	
$\mathcal{A}6$	X	X	$\mathcal{B}6$	X	~	$\mathcal{C}6$	X	X	$\mathcal{D}6$	~	×	
$\mathcal{A}7$	X	X	<i>B</i> 7	X	X	C7	X	X	07	~		
$\mathcal{A}8$	X	X	$\mathcal{B}8$	X	X	C8	X	X	$\mathcal{D}8$	~	~	
$\mathcal{A}9$	X	×	B 9	~	V	C9	X	×	$\mathcal{D}9$	~	~	
A10	×	×	$\mathcal{B}10$	~	~	C10	×	×	$\mathcal{D}10$	~	v	

<u>Minimal Models:</u>

 $\mathcal{B}_9, \mathcal{B}_{10}, \mathcal{D}_5 \sim \mathcal{D}_{10}$ 8 inputs for I 2 observables (6 lepton masses, 6 PMNS) Large nu mass, deltaCP

G.J.Ding, S.F.K. and X.-G.Liu, 1903.12588 See also talk by Titov A5 Modular Symmetry

assignment weight							
Model	q	mass matrices	assignment	W6			
HOUCED			$\left(ho_{E^c}, ho_L, ho_{N^c} ight)$	$k_{E_{1,2,3}}$	k_L	k_{N^c}	
$ $ \mathcal{A}		W1	(1, 3, -)	—	1	-	
	$\mathcal{A}2$	W2	(1 , 3 ',-)	—	1	_	
	$\mathcal{A}3$	S1	$({f 1},{f 3},{f 3})$	—	2	0	
With	$\mathcal{A}4$	S2	$({f 1},{f 3},{f 3})$	—	-1	1	
flavons	$\mathcal{A}5$	S3	$({f 1},{f 3}',{f 3})$	—	2	0	
	$\mathcal{A}6$	<i>S</i> 4	$({f 1},{f 3},{f 3}')$	—	2	0	
	$\mathcal{A}7$	S5	$({f 1},{f 3}',{f 3}')$	—	2	0	
	$\mathcal{A}8$	S6	$({f 1},{f 3'},{f 3'})$	_	-1	1	
	$\mathcal{B}1$	C1 , $W1$	(1, 3, -)	1, 3, 5	1	_	
	$\mathcal{B}2$	C2 , $W2$	(1 , 3 ',-)	1, 3, 5	1	_	
	$\mathcal{B}3$	C1 , $S1$	$({f 1},{f 3},{f 3})$	0,2,4	2	0	
Without	$\mathcal{B}4$	C1 , $S2$	$({f 1},{f 3},{f 3})$	3, 5, 7	-1	1	
flavons	$\mathcal{B}5$	C2 , $S3$	$({f 1},{f 3'},{f 3})$	0,2,4	2	0	
	$\mathcal{B}6$	C1 , $S4$	$({f 1},{f 3},{f 3}')$	0,2,4	2	0	
	<i>B</i> 7	C2 , $S5$	$({f 1},{f 3'},{f 3'})$	0,2,4	2	0	
	$\mathcal{B}8$	C2 , $S6$	$({f 1},{f 3'},{f 3'})$	3, 5, 7	-1	1	

Comprehensive study of simplest cases with and without flavons

Results very dependent on **free modulus**

	Models	free input parameters p_i	overall factors	
	$\mathcal{A}1, \mathcal{A}2$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	v_u^2/Λ	τ
With	$\mathcal{A}4, \mathcal{A}5, \mathcal{A}6, \mathcal{A}8$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	$g^2 v_u^2 / \Lambda$	
flavons	$\mathcal{A}3, \mathcal{A}7$	{Re τ , Im τ , $ g_1/g_2 $, Arg (g_1/g_2) }	$g_2^2 v_u^2 / \Lambda$	
	$\mathcal{B}1, \mathcal{B}2$	$\left \{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta/\alpha, \gamma_1/\alpha, \gamma_2/\alpha , \operatorname{Arg}(\gamma_2/\alpha) \} \right $	$\alpha v_d, v_u^2/\Lambda$	
Without	$\mathcal{B}4, \mathcal{B}5, \mathcal{B}6, \mathcal{B}8$	{Re τ , Im τ , β/α , γ_1/α , $ \gamma_2/\alpha $, $\operatorname{Arg}(\gamma_2/\alpha)$ }	$\alpha v_d, g^2 v_u^2 / \Lambda$	
flavons	$\mathcal{B}3, \mathcal{B}7$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta/\alpha, \gamma_1/\alpha, \gamma_2/\alpha , \\\operatorname{Arg}(\gamma_2/\alpha), g_1/g_2 , \operatorname{Arg}(g_1/g_2)\}$	$\alpha v_d, \ g_2^2 v_u^2 / \Lambda$	

Modular Symmetry and orbifolds

Consider a finite modular symmetry $\bar{\Gamma}_M \simeq \{S, T | S^2 = (ST)^3 = T^M = \mathbb{I}\}/\{\pm 1\}$

Represented by the modular transformations (level M>2)

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T_{(M)} = \begin{pmatrix} e^{-2i\pi/M} & 0 \\ 1 & e^{2i\pi/M} \end{pmatrix}$$

We show that for the orbifold T^2/\mathbb{Z}_2 the **fixed points** are only invariant for a particular level M=3 and **fixed modulus** $\omega = e^{i2\pi/3}$

 $\overline{\Gamma}_3 = A_4$ with $\tau = \omega$ or $\tau = \omega + 1$.

The orbifold T^2/\mathbb{Z}_2 with $\omega = e^{i2\pi/3}$ and modular A_4 symmetry

Orbifold $\left\{0, \frac{1}{2}, \frac{\omega}{2}, \frac{1+\omega}{2}\right\}$ Invariant under A4 modular Fixed Points $\left\{0, \frac{1}{2}, \frac{\omega}{2}, \frac{1+\omega}{2}\right\}$ and A4 remnant symmetry:

A4 remnant (linear): $S: (z_1, z_2, z_3, z_4) \rightarrow (z_4, z_3, z_2, z_1)$ $T: (z_1, z_2, z_3, z_4) \rightarrow (z_2, z_3, z_1, z_4)$

$$\mathcal{S}^2 = \mathcal{T}^3 = (\mathcal{ST})^3 = 1$$

(A4 modular="passive", and A4 remnant="active")

The orbifold T^2/\mathbb{Z}_2 with $\omega = e^{i2\pi/3}$ and modular A_4 symmetry

				nd SL plet s				
(1 0 0) $(1 0 0)$			E	Brane	field	ds		
$T_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, T_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = U_1$				Rep	resentati			
$\left(\begin{array}{cccc} 0 & 0 & -1 \end{array}\right) \left(\begin{array}{cccc} 0 & 1 & 0 \end{array}\right)$			Field	$A_4 \ltimes \mathbb{Z}_2$	SU(5)	U(1)	
$\langle 1 \rangle$ $\langle 0 \rangle$ Vacuu	m		F	3	5	<i>a</i> +	2c	
$\langle \phi_1 \rangle = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \langle \phi_2 \rangle = v_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ alignme	ent		$\begin{array}{c}N_s^c\\N_a^c\end{array}$	$egin{array}{c} 3 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	1 1	$\frac{a}{4\epsilon}$	ı	
	,		ξ	1	1	-2	a	
$\mathcal{W}_{Y} = y_{s}^{N} \xi N_{s}^{c} N_{s}^{c} + y_{a}^{N} \xi \frac{\xi^{3}}{\Lambda^{3}} N_{a}^{c} N_{a}^{c} \qquad \text{from b}$	C´S			Bulk [·]	field	S		
11	Field		Rep	resentation		Lo	calizat	ion
$+ y_s^{\nu} \frac{\xi}{\Lambda} F H_5 N_s^c + y_a^{\nu} \frac{\phi_2 \xi}{\Lambda^2} F H_5 N_a^c$	Tielu	A_4	SU(5)	U(1)	Weight	P_0	$P_{1/2}$	$P_{\omega/2}$
$+ y_{3}^{e} \frac{\phi_{1}}{\Lambda} F H_{\bar{5}} T_{3}^{+} + y_{2}^{e} \frac{\phi_{1}\xi}{\Lambda^{2}} F H_{\bar{5}} T_{2}^{+} + y_{1}^{e} \frac{\phi_{1}\xi^{2}}{\Lambda^{3}} F H_{\bar{5}} T_{1}^{+}$	$\begin{array}{c} T_1^{\pm} \\ T_2^{\pm} \end{array}$	1″	10	c+4a	$-\gamma$	+1	±1	±1
	$T_{1}^{\pm} \\ T_{2}^{\pm} \\ T_{3}^{\pm}$	$\frac{1}{1}$	10 10	c+2a	$-\gamma \ -\gamma$	+1 +1	± 1 ± 1	± 1 ± 1
$+ y_3^d \frac{\phi_1}{\Lambda} F H_{\bar{5}} T_3^- + y_2^d \frac{\phi_1 \xi}{\Lambda^2} F H_{\bar{5}} T_2^- + y_1^d \frac{\phi_1 \xi^2}{\Lambda^3} F H_{\bar{5}} T_1^-$	$H_5 \ H_{ar{5}}$	$egin{array}{c} 1 \ 1' \end{array}$	$5 \overline{5}$	-2c	$-\alpha$	+1	+1	+1
				b	$\alpha + \gamma$	+1	+1	+1
$+ y_{ij}^{u} H_5 T_i^{+} T_j^{-} \frac{\xi^{6-i-j}}{\Lambda^{6-i-j}},$	$\phi_1 \ \phi_2$	3 3	1 1	$\begin{array}{c} -b - a - 3c \\ -3a \end{array}$	$-\alpha$ $\alpha - \beta$	+1 +1	+1 -1	-1 + 1
$\Lambda^{0} \gamma^{j} \Lambda^{0-i-j}$	-							

F. De Anda, S.F.K., E.Perdomo, 1812.05620

The orbifold T^2/\mathbb{Z}_2 with $\omega = e^{i2\pi/3}$ and modular A_4 symmetry

4 models

- □ Littlest seesaw fit with RG corrections fixes M_R's
- □ Littlest mu-tau seesaw…one parameter…wow
- New Littlest seesaw from tri-direct CP symmetry
- Type 1b and Inverse seesaw possibilities
 6d models
- □ A4 and A5 results sensitive to free modulus tau
- Orbifold T2/Z2 suggests A4 with fixed tau = omega
- □ Explicit A4xSU(5) model with mu-tau symmetry

