Recent Developments in Neutrino Models

with F. de Anda, E.Perdomo, S. Molina Sedgewick, S. Rowley, Y.L.Zhou, J.Hernandez-Garcia, C.C.Nishi, G.J.Ding, C.C.Li, P.T.Chen, X.G.Liu, A. Carcamo Hernandez

FLASY2019: 8th Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology

Why nu mass small?

Type I seesaw

Minkowski, Yanagida, Gell-Mann,Slansky,Ramond, Mohapatra, Senjanovic, Schecter, Valle

Minimal Type I seesaw

Type I seesaw with two RHNs
Either one Dirac texture zero (NO) s.e.k, hep-ph/0204360
Or two Dirac texture zeros (IO)

Littlest Seesaw

Dirac texture zero

$$
m_{D}=\left(\begin{array}{cc}
\stackrel{\downarrow}{0} & b e^{\mathrm{i} \pi / 3} \\
a & 3 b e^{\mathrm{i} \pi / 3} \\
a & b e^{\mathrm{i} \pi / 3}
\end{array}\right) \quad M_{R}=\left(\begin{array}{cc}
M_{\mathrm{atm}} & 0 \\
0 & M_{\mathrm{sol}}
\end{array}\right)
$$

Fit includes effects of RG corrections

SFK, Molina Sedgwick, Rowley, 1808.01005

Describes:
 3 neutrino masses ($m_{1}=0$), 3 mixing angles,
 1 Dirac CP phase, 2 Majorana phases (1 zero) 1 BAU parameter Y_{B} = 10 observables of which 7 are constrained

Predictions	1σ range
$\theta_{12} /{ }^{\circ}$	$34.254 \rightarrow 34.350$
$\theta_{13} /{ }^{\circ}$	$8.370 \rightarrow 8.803$
$\theta_{23} /{ }^{\circ}$	$45.405 \rightarrow 45.834$
$\Delta m_{12}{ }^{2} / 10^{-5} \mathrm{eV}^{2}$	$7.030 \rightarrow 7.673$
$\Delta m_{31}{ }^{2} / 10^{-3} \mathrm{eV}^{2}$	$2.434 \rightarrow 2.561$
$\delta /{ }^{\circ}$	$-88.284 \rightarrow-86.568$
$Y_{B} / 10^{-10}$	$0.839 \rightarrow 0.881$

Seesaw formula $M_{\nu}=m_{D} M_{R}^{-1} m_{D}^{T} \longrightarrow\left(M_{\nu}\right)_{i j} \nu_{i L}^{c} \nu_{j L}^{c}=\left(M_{\nu}^{*}\right)_{i j} \nu_{i L} \nu_{j L}$ Case I: $\quad \begin{aligned} & M_{\nu}^{I}=\omega \mathrm{m}_{\mathrm{a}} \\ & \left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+\mathrm{m}_{\mathrm{s}}\left(\begin{array}{lll}1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1\end{array}\right)\end{aligned}$

Case II: $\quad M_{\nu}^{\text {II }}=\omega^{2} \mathrm{~m}_{\mathrm{a}}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+\mathrm{m}_{\mathrm{s}}\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9\end{array}\right)$

Fits neutrino data with $\mathrm{m}_{\mathrm{a}} / \mathrm{m}_{\mathrm{s}}=10$ $\omega=e^{i 2 \pi / 3}$

Special case $m_{a} / m_{s}=$ | | gives Littlest mu-tau seesaw
Case I: $M_{\nu}=m_{s}\left(\begin{array}{ccc}1 & 3 & 1 \\ 39+11 \omega & 3+11 \omega \\ 13+11 \omega & 1+11 \omega\end{array}\right)$, Maximal atmospheric
Case II: $M_{\nu}=m_{s}\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & 1+11 \omega^{2} & 3+11 \omega^{2} \\ 3 & 3+11 \omega^{2} & 9+11 \omega^{2}\end{array}\right)$.
S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou, 1901.06877

Littlest mu-tau Seesaw
$\mathrm{m}_{\mathrm{a}} / \mathrm{m}_{\mathrm{s}}=\| \mid$

$$
M_{\nu}=m_{\mathrm{s}}\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1+11 \omega^{2} & 3+\omega^{2} \\
3 & 3+11 \omega^{2} & 9+11 \omega^{2}
\end{array}\right) \quad \begin{aligned}
& \omega=e^{i 2 \pi / 3} \\
& \text { unequal }
\end{aligned}
$$

S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou,1901.06877

Littlest mu-tau Seesaw

$\mathrm{m}_{\mathrm{a}} / \mathrm{m}_{\mathrm{s}}=\| \mid$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{s}}=| | \\
& M_{\nu}=m_{\mathrm{s}}\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1+11 \omega^{2} & 3+\omega^{2} \\
3 & 3+11 \omega^{2} & 9+11 \omega^{2}
\end{array}\right) \quad \omega=e^{i 2 \pi / 3} \text { unequal } \\
& H_{\nu}=M_{\nu}^{\dagger} M_{\nu}=11\left|m_{\mathrm{s}}\right|^{2}\left(\begin{array}{ccc}
1 & -1-2 i \sqrt{3} & 1-2 i \sqrt{3} \\
-1+2 i \sqrt{3} & 19 & 17+4 i \sqrt{3} \\
1+2 i \sqrt{3} & 17-4 i \sqrt{3} & 19
\end{array}\right) \text { equal }
\end{aligned}
$$

S.F.K. and C.C.Nishi,1807.00023; S.F.K. and Y.L.Zhou,1901.06877

Littlest mu-tau Seesaw

$\mathrm{m}_{\mathrm{a}} / \mathrm{m}_{\mathrm{s}}=\| \mid$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{s}}=\| \mathrm{l} \\
& M_{\nu}=m_{\mathrm{s}}\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1+11 \omega^{2} & 3+\omega^{2} \\
3 & 3+11 \omega^{2} & 9+11 \omega^{2}
\end{array}\right) \quad \begin{array}{c}
9=e^{i 2 \pi / 3} \\
\text { unequal }
\end{array} \\
& H_{\nu}=M_{\nu}^{\dagger} M_{\nu}=11\left|m_{\mathrm{s}}\right|^{2}\left(\begin{array}{ccc}
1 & -1-2 i \sqrt{3} & 1-2 i \sqrt{3} \\
-1+2 i \sqrt{3} & 19 & 17+4 i \sqrt{3} \\
1+2 i \sqrt{3} & 17-4 i \sqrt{3} & 19
\end{array}\right) \text { equal }
\end{aligned}
$$

$$
U=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{c_{+}}{\sqrt{6}} & \frac{c_{-}}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & -\frac{c_{+}}{\sqrt{6}}-i \frac{c_{-}}{2}-\frac{c_{-}}{\sqrt{6}}+i \frac{c_{+}}{2} \\
\frac{1}{\sqrt{6}} & -\frac{c_{+}}{\sqrt{6}}+i \frac{c_{-}}{2} & -\frac{c_{-}}{\sqrt{6}}-i \frac{c_{+}}{2}
\end{array}\right) \text { Mu-tau reflection } \quad \text { symmetry } \theta_{23}=45^{\circ}, \delta=-\pi / 2
$$

Littlest mu-tau seesaw

$$
m_{1}=0
$$

$$
U=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{c_{+}}{\sqrt{6}} & \frac{c_{-}}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}-\frac{c_{+}}{\sqrt{6}}-i \frac{c_{-}}{2}-\frac{c_{-}}{\sqrt{6}}+i \frac{c_{+}}{2} \\
\frac{1}{\sqrt{6}}-\frac{c_{+}}{\sqrt{6}}+i \frac{c_{-}}{2}-\frac{c_{-}}{\sqrt{6}}-i \frac{c_{+}}{2}
\end{array}\right)
$$

Renormalisation

Group Corrections

$$
\begin{aligned}
\theta_{13} & \approx 7.807^{\circ}-8.000^{\circ} \epsilon \\
\theta_{12} & \approx 34.50^{\circ}-12.30^{\circ} \epsilon \\
\theta_{23} & \approx 45.00^{\circ}-31.64^{\circ} \epsilon \\
\delta & \approx 270.00^{\circ}+3.23^{\circ} \epsilon
\end{aligned}
$$

$\Delta m_{21}^{2} / \Delta m_{31}^{2} \approx 0.0247-0.0147 \epsilon$

G.J.Ding, S.F.K. and C.C.Li, 1807.07538, 1811.12340
 Littlest Seesaw from S_{4}

Littlest Seesaw from S_{4}

Tri-direct CP with S_{4} gives the structure

$$
m_{\nu}=m_{a}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)+m_{s} e^{i \eta}\left(\begin{array}{ccc}
1 & 2-x & x \\
2-x & (x-2)^{2} & (2-x) x \\
x & (2-x) x & x^{2}
\end{array}\right)
$$

Original Littlest Seesaw

$$
(x, \eta)=(3,2 \pi / 3),(-1,-2 \pi / 3)
$$

$$
\sin ^{2} \theta_{23} \approx 0.5 \quad \delta_{C P} \approx-\pi / 2
$$

New Littlest Seesaw

$$
\begin{array}{r}
(x, \eta)=(-1 / 2,-\pi / 2) \\
0.593 \leq \sin ^{2} \theta_{23} \leq 0.609 \tag{UO}\\
-0.358 \leq \delta_{C P} / \pi \leq-0.348
\end{array}
$$

Littlest Inverse Seesaw

 Possibility ${ }_{\nu}\left(\begin{array}{ccc}0_{2 \times 3} & M^{T} & \mu\end{array}\right)$

Talk by Antusch
$m_{D} \sim\left(\begin{array}{cc}0 & b \\ a & 3 b \\ a & b\end{array}\right), \quad M \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad \mu \sim\left(\begin{array}{ll}1 & 0 \\ 0 & \omega\end{array}\right), \quad \omega=e^{\frac{2 \pi i}{3}}$.

$$
m_{\nu}=-m_{D}\left(M^{T}\right)^{-1} \mu M^{-1} m_{D}^{T} \quad \text { Talk by valle }
$$

Same low $m_{\nu}=m_{\nu a}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+m_{\nu b} \omega\left(\begin{array}{lll}1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1\end{array}\right)$
energy matrix

Type Ib seesaw

Hernandez-Garcia and SFK 1903.01474
Effective Weinberg operators for 2HDM in J.F.Oliver,A.Santamaria,hep-ph/0108020

Hernandez-Garcia and SFK 1903.01474

Hernandez-Garcia and SFK 1903.01474

Minimal Type lb seesaw

Modular Forms

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

Level 3 Weight 2

$$
Y=\left(\begin{array}{c}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right)=\left(\begin{array}{c}
1+12 q+36 q^{2}+12 q^{3}+84 q^{4}+72 q^{5}+\ldots \\
-6 q^{1 / 3}\left(1+7 q+8 q^{2}+18 q^{3}+14 q^{4}+\ldots\right) \\
-18 q^{2 / 3}\left(1+2 q+5 q^{2}+4 q^{3}+8 q^{4}+\ldots\right)
\end{array}\right)
$$

$q \equiv e^{i 2 \pi \tau}$ free modulus $\tau=\frac{\omega_{2}}{\omega_{1}}$
$\begin{gathered}\text { Weinberg } \\ \text { operator } \\ \Lambda\end{gathered}\left(\begin{array}{ccc}H_{u} H_{u} & L L & Y \\ \text { A }_{4}: & 3 & 3\end{array}\right) \rightarrow m_{\nu}=\left(\begin{array}{ccc}2 Y_{1} & -Y_{3} & -Y_{2} \\ -Y_{3} & 2 Y_{2} & -Y_{1} \\ -Y_{2} & -Y_{1} & 2 Y_{3}\end{array}\right) \frac{v_{u}^{2}}{\Lambda}$
G.J.Ding, S.F.K. and X.-G.Liu, 19xx.xxxxx See also talk by Tanimoto

A4 Modular Symmetry

Models		mass matrices	assignment	weight				
		$\rho_{E_{1,2,3}^{c}}$		$k_{E_{1,2,3}^{c}}$	k_{L}	$k_{N^{c}}$		
Weinberg operator	$\mathcal{A 1}$		$W 1, C 1$	1, 1, 1		1, 3, 5	1	-
	$\mathcal{A} 2$	$W 1, C 2$	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime}$		1,3,5	1	-	
	$\mathcal{A} 3$	$W 1, C 3$	$1^{\prime \prime}, 1^{\prime \prime}, 1^{\prime \prime}$		1, 3, 5	1	-	
	$\mathcal{A} 4$	$W 1, C 4$	1, 1, $\mathbf{1}^{\prime}$		1,3,1	1	-	
	$\mathcal{A} 5$	$W 1, C 5$	1, 1, $1^{\prime \prime}$		1, 3, 1	1	-	
	$\mathcal{A} 6$	$W 1, C 6$	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, \mathbf{1}$		1,3,1	1	-	
	$\mathcal{A} 7$	$W 1, C 7$	$\mathbf{1}^{\prime \prime}, 1^{\prime \prime}, 1 ;$		1, 3, 1	1	-	
	$\mathcal{A} 8$	W1, C8	$1^{\prime \prime}, 1^{\prime \prime}, 1^{\prime}$		1, 3, 1	1	-	
	$\mathcal{A} 9$	W1, C9	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$		1, 3, 1	1	-	
	$\mathcal{A 1 0}$	W1, C10	1, $1^{\prime \prime}, 1^{\prime}$		1,1,1	1	-	
Type I see-saw	$\mathcal{B} 1(\mathcal{C} 1)[\mathcal{D} 1]$	S1(S2)[S3], C1	1, 1, 1	0(3)[1]	1], 2(5)[3], 4(7)[5]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 2(\mathcal{C} 2)[\mathcal{D} 2]$	S1(S2)[S3], C2	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime}$	$0(3)[1]$	1], 2(5)[3], 4(7)[5]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 3(\mathcal{C} 3)[\mathcal{D} 3]$	S1(S2)[S3], C3	$1^{\prime \prime}, 1^{\prime \prime}, 1^{\prime \prime}$	$0(3)[1]$	1], 2(5)[3], 4(7)[5]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 4(\mathcal{C} 4)[\mathcal{D} 4]$	S1(S2)[S3], C4	1, 1, 1^{\prime}	$0(3)[1]$	1], 2(5)[3], 0(3)[1]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 5(\mathcal{C} 5)[\mathcal{D} 5]$	S1(S2)[S3], $C 5$	1, 1, $1^{\prime \prime}$	$0(3)[1]$	1], 2(5)[3], $0(3)[1]$	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B 6}(\mathcal{C} 6)[\mathcal{D} 6]$	S1(S2)[S3], C6	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, 1$	0(3)[1]	1], 2(5)[3], 0(3)[1]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 7(\mathcal{C} 7)[\mathcal{D} 7]$	S1(S2)[S3], C7	$1^{\prime}, 1^{\prime}, 1^{\prime \prime}$	$0(3)[1$	1], 2(5)[3], $0(3)[1]$	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 8(\mathcal{C} 8)[\mathcal{D} 8]$	S1(S2)[S3], C8	$1^{\prime \prime}, 1^{\prime \prime}, 1$	$0(3)[1$	1], 2(5)[3], 0(3)[1]	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 9(\mathcal{C} 9)[\mathcal{D} 9]$	S1(S2)[S3], $C 9$	$\mathbf{1}^{\prime \prime}, 1^{\prime \prime}, 1^{\prime}$	$0(3)[1$	$1], 2(5)[3], 0(3)[1]$	$2(-1)[1]$	$0(1)[1]$	
	$\mathcal{B} 10(\mathcal{C} 10)[\mathcal{D} 10]$	S1(S2)[S3], C10	1, $\mathbf{1}^{\prime \prime}, 1^{\prime}$	0(3)[1]	$1], 0(3)[1], 0(3)[1]$	$2(-1)[1]$	$0(1)[1]$	

Comprehensive study of 40 simplest cases without flavons

Models	Ordering										
	NO	IO									
$\mathcal{A} 1$	X	X	$\mathcal{B} 1$	\checkmark	\checkmark	C1	X	X	D1	\checkmark	\checkmark
$\mathcal{A} 2$	x	X	$\mathcal{B} 2$	\checkmark	\checkmark	C2	x	X	D2	\checkmark	\checkmark
$\mathcal{A} 3$	x	X	$\mathcal{B} 3$	\checkmark	\checkmark	C3	x	X	D3	\checkmark	\checkmark
$\mathcal{A} 4$	x	X	$\mathcal{B 4}$	x	x	C4	x	x	D4	x	\checkmark
$\mathcal{A} 5$	x	X	$\mathcal{B} 5$	x	X	$\mathcal{C} 5$	X	X	D 5	\checkmark	x
$\mathcal{A} 6$	x	X	$\mathcal{B 6}$	x	\checkmark	C6	x	x	D6	\checkmark	x
$\mathcal{A} 7$	X	X	$\mathcal{B} 7$	X	X	C7	X	X	07	\checkmark	\checkmark
$\mathcal{A} 8$	x	X	$\mathcal{B} 8$	x	x	C8	X	x	D8	\checkmark	\checkmark
$\mathcal{A} 9$	x	X	B9	\checkmark		C9	x	X	D9	\checkmark	\checkmark
$\mathcal{A 1 0}$	x	x	$\mathcal{B} 10$	\checkmark		C10	X	x	P10	\checkmark	\checkmark

$\mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{D}_{5} \sim \mathcal{D}_{10}$
8 inputs forl2 observables (6 lepton masses, 6 PMNS) \rightarrow Large nu mass, deltaCP
G.J.Ding, S.F.K. and X.-G.Liu, 1903.12588

See also talk by Titov
 A5 Modular Symmetry

Models		mass matrices	assignment	weight			
		$\left(\rho_{E^{c}}, \rho_{L}, \rho_{N^{c}}\right)$	$k_{E_{1,2,3}}$	k_{L}	$k_{N^{c}}$		
With flavons	$\mathcal{A} 1$		W1	$(1,3,-)$	-	1	-
	$\mathcal{A} 2$	W2	$\left(1,3^{\prime},-\right)$	-	1	-	
	$\mathcal{A} 3$	S1	$(1,3,3)$	-	2	0	
	$\mathcal{A} 4$	S2	$(1,3,3)$	-	-1	1	
	$\mathcal{A} 5$	S3	$\left(1,3^{\prime}, 3\right)$	-	2	0	
	$\mathcal{A} 6$	S4	$\left(1,3,3^{\prime}\right)$	-	2	0	
	$\mathcal{A} 7$	S5	$\left(1,3^{\prime}, 3^{\prime}\right)$	-	2	0	
	$\mathcal{A} 8$	S6	$\left(1,3^{\prime}, 3^{\prime}\right)$	-	-1	1	
Without flavons	$\mathcal{B} 1$	C1, W1	$(1,3,-)$	1,3,5	1	-	
	$\mathcal{B} 2$	C2, W2	$\left(1,3{ }^{\prime},-\right)$	1,3,5	1	-	
	$\mathcal{B} 3$	$C 1, ~ S 1$	$(1,3,3)$	0,2,4	2	0	
	$\mathcal{B} 4$	$C 1, ~ S 2$	$(1,3,3)$	3,5,7	-1	1	
	$\mathcal{B} 5$	C2, S3	$\left(1,3^{\prime}, 3\right)$	0,2,4	2	0	
	$\mathcal{B} 6$	C1 , S4	$\left(1,3,3^{\prime}\right)$	0, 2, 4	2	0	
	$\mathcal{B} 7$	C2, S5	$\left(1,3^{\prime}, 3^{\prime}\right)$	0,2,4	2	0	
	$\mathcal{B} 8$	C2 , S6	$\left(1,3^{\prime}, 3^{\prime}\right)$	3,5,7	-1	1	

Comprehensive study of simplest cases with and without flavons

Results very dependent on free modulus

Models		free input parameters p_{i}	overall factors
$\begin{gathered} \text { With } \\ \text { flavons } \end{gathered}$	$\mathcal{A} 1, \mathcal{A} 2$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	v_{u}^{2} / Λ
	$\mathcal{A} 4, \mathcal{A} 5, \mathcal{A} 6, \mathcal{A} 8$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	$g^{2} v_{u}^{2} / \Lambda$
	$\mathcal{A} 3, \mathcal{A} 7$	$\left\{\operatorname{Re} \tau, \operatorname{Im} \tau,\left\|g_{1} / g_{2}\right\|, \operatorname{Arg}\left(g_{1} / g_{2}\right)\right\}$	$g_{2}^{2} v_{u}^{2} / \Lambda$
Without flavons	$\mathcal{B} 1, \mathcal{B} 2$	$\left\{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta / \alpha, \gamma_{1} / \alpha,\left\|\gamma_{2} / \alpha\right\|, \operatorname{Arg}\left(\gamma_{2} / \alpha\right)\right\}$	$\alpha v_{d}, v_{u}^{2} / \Lambda$
	$\mathcal{B} 4, \mathcal{B} 5, \mathcal{B} 6, \mathcal{B} 8$	$\left\{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta / \alpha, \gamma_{1} / \alpha,\left\|\gamma_{2} / \alpha\right\|, \operatorname{Arg}\left(\gamma_{2} / \alpha\right)\right\}$	$\alpha v_{d}, g^{2} v_{u}^{2} / \Lambda$
	$\mathcal{B} 3, \mathcal{B} 7$	$\begin{aligned} & \left\{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta / \alpha, \gamma_{1} / \alpha,\left\|\gamma_{2} / \alpha\right\|\right. \\ & \left.\operatorname{Arg}\left(\gamma_{2} / \alpha\right),\left\|g_{1} / g_{2}\right\|, \operatorname{Arg}\left(g_{1} / g_{2}\right)\right\} \end{aligned}$	$\alpha v_{d}, g_{2}^{2} v_{u}^{2} / \Lambda$

$\tau=\frac{\omega_{2}}{\omega_{1}}$

Modular Symmetry and orbifolds

Consider a finite modular symmetry

$$
\bar{\Gamma}_{M} \simeq\left\{S, T \mid S^{2}=(S T)^{3}=T^{M}=\mathbb{I}\right\} /\{ \pm 1\}
$$

Represented by the modular transformations (level $M>2$)

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T_{(M)}=\left(\begin{array}{cc}
e^{-2 i \pi / M} & 0 \\
1 & e^{2 i \pi / M}
\end{array}\right)
$$

We show that for the orbifold T^{2} / \mathbb{Z}_{2} the fixed points are only invariant for a particular level $\mathrm{M}=3$ and fixed modulus $\omega=e^{i 2 \pi / 3}$

$$
\bar{\Gamma}_{3}=A_{4} \text { with } \tau=\omega \text { or } \tau=\omega+1
$$

F. De Anda, S.F.K., E.Perdomo,1812.05620

The orbifold T^{2} / \mathbb{Z}_{2} with $\omega=e^{i 2 \pi / 3}$ and modular A_{4} symmetry
$\omega_{1}=1$ and $\omega_{2}=e^{i 2 \pi / 3}$

$$
\begin{aligned}
& z=z+1, ~ T^{2} / \mathbb{Z}_{2} \\
& z=z+\omega, \\
& z=-z,
\end{aligned}
$$

Orbifold
xed Points $\left\{0, \frac{1}{2}, \frac{\omega}{2}, \frac{1+\omega}{2}\right\} \begin{aligned} & \text { Invariant under A4 modular } \\ & \text { and A4 remnant symmetry: }\end{aligned}$

A4 remnant (linear):

$$
\mathcal{S}:\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{4}, z_{3}, z_{2}, z_{1}\right)
$$

$$
\mathcal{T}:\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{2}, z_{3}, z_{1}, z_{4}\right)
$$

$$
\mathcal{S}^{2}=\mathcal{T}^{3}=(\mathcal{S T})^{3}=1
$$

(A4 modular="passive", and A4 remnant= "active")
F. De Anda, S.F.K., E.Perdomo, 1812.05620

The orbifold T^{2} / \mathbb{Z}_{2} with $\omega=e^{i 2 \pi / 3}$ and modular A_{4} symmetry
Brane fields have an enhanced Z_{2} mu-tau reflection symmetry (arising from remnant $S_{4} \simeq A_{4} \ltimes \mathbb{Z}_{2}$)

SU(5) GUT Model

F. De Anda, S.F.K., E.Perdomo, 1812.05620

The orbifold T^{2} / \mathbb{Z}_{2} with $\omega=e^{i 2 \pi / 3}$ and modular A_{4} symmetry
BC's $\quad P_{0}=\mathbb{I}_{3} \times \mathbb{I}_{5}$,
$P_{1 / 2}=T_{1} \times \operatorname{diag}(-1,-1,-1,1,1)$,
$P_{\omega / 2} \not{ }^{-} T_{2} \times \operatorname{diag}(-1,-1,-1,1,1)$,
$T_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right), \quad T_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)=U$,

$$
\left\langle\phi_{1}\right\rangle=v_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left\langle\phi_{2}\right\rangle=v_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

$$
\mathcal{W}_{Y}=y_{s}^{N} \xi N_{s}^{c} N_{s}^{c}+y_{a}^{N} \xi \frac{\xi^{3}}{\Lambda^{3}} N_{a}^{c} N_{a}^{c}
$$

$$
+y_{s}^{\nu} \frac{\xi}{\Lambda} F H_{5} N_{s}^{c}+y_{a}^{\nu} \frac{\phi_{2} \xi}{\Lambda^{2}} F H_{5} N_{a}^{c}
$$

$$
+y_{3}^{e} \frac{\phi_{1}}{\Lambda} F H_{\overline{5}} T_{3}^{+}+y_{2}^{e} \frac{\phi_{1} \xi}{\Lambda^{2}} F H_{\overline{5}} T_{2}^{+}+y_{1}^{e} \frac{\phi_{1} \xi^{2}}{\Lambda^{3}} F H_{\overline{5}} T_{1}^{+}
$$

$$
+y_{3}^{d} \frac{\phi_{1}}{\Lambda} F H_{\overline{5}} T_{3}^{-}+y_{2}^{d} \frac{\phi_{1} \xi}{\Lambda^{2}} F H_{\overline{5}} T_{2}^{-}+y_{1}^{d} \frac{\phi_{1} \xi^{2}}{\Lambda^{3}} F H_{\overline{5}} T_{1}^{-}
$$

$$
+y_{i j}^{u} H_{5} T_{i}^{+} T_{j}^{-} \frac{\xi^{6-i-j}}{\Lambda^{6-i-j}},
$$

Breaks A4 and SU(5) with

 doublet-triplet splitting| Field | Representation | | |
| :---: | :---: | :---: | :---: |
| | $A_{4} \ltimes \mathbb{Z}_{2}$ | $S U(5)$ | $U(1)$ |
| | $\mathbf{3}$ | $\overline{\mathbf{5}}$ | $a+2 c$ |
| N_{s}^{c} | $\mathbf{1}$ | $\mathbf{1}$ | a |
| N_{a}^{c} | $\mathbf{1}$ | $\mathbf{1}$ | $4 a$ |
| ξ | $\mathbf{1}$ | $\mathbf{1}$ | $-2 a$ |

Bulk fields

Representation

	Representation				Localization		
Field	A_{4}	$S U(5)$	$U(1)$	Weight	P_{0}	$P_{1 / 2}$	$P_{\omega / 2}$
$T_{1}^{ \pm}$	$\mathbf{1}^{\prime \prime}$	$\mathbf{1 0}$	$c+4 a$	$-\gamma$	+1	± 1	± 1
$T_{2}^{ \pm}$	$\mathbf{1}^{\prime}$	$\mathbf{1 0}$	$c+2 a$	$-\gamma$	+1	± 1	± 1
$T_{3}^{ \pm}$	$\mathbf{1}$	$\mathbf{1 0}$	c	$-\gamma$	+1	± 1	± 1
H_{5}	$\mathbf{1}$	$\mathbf{5}$	$-2 c$	$-\alpha$	+1	+1	+1
$H_{\overline{5}}$	$\mathbf{1}^{\prime}$	$\overline{5}$	b	$\alpha+\gamma$	+1	+1	+1
ϕ_{1}	$\mathbf{3}$	$\mathbf{1}$	$-b-a-3 c$	$-\alpha$	+1	+1	-1
ϕ_{2}	$\mathbf{3}$	$\mathbf{1}$	$-3 a$	$\alpha-\beta$	+1	-1	+1

F. De Anda, S.F.K., E.Perdomo, 1812.05620

The orbifold T^{2} / \mathbb{Z}_{2} with $\omega=e^{i 2 \pi / 3}$ and modular A_{4} symmetry

$$
M^{d}=v_{d}\left(\begin{array}{ccc}
y_{1}^{d} \tilde{\xi}^{2} & 0 & 0 \\
0 & y_{2}^{d} \tilde{\xi} & 0 \\
0 & 0 & y_{3}^{d}
\end{array}\right) \tilde{v}_{1}
$$

α	$\left(y_{s}^{\nu}\right)_{3}$
0	0 2 2
	$y\binom{2 \omega}{-\omega^{2}}$
4	$y\left(\begin{array}{c}2 \\ -\omega \\ 2 \omega^{2}\end{array}\right)$

Modular Forms
$\tau=\omega=e^{i 2 \pi / 3}$
Select
$\alpha=\beta=6, \quad \gamma=7$

Dirac

$$
\alpha_{6}=y\left(\begin{array}{c}
-1 \\
2 \omega^{2} \\
2 \omega
\end{array}\right), \stackrel{\beta_{6}=\left(\begin{array}{c}
2 y_{2}+y_{3}\left(2 \omega^{2}-2 \omega\right) \\
y_{1}+y_{2}(4 \omega+1)-y_{3} \\
y_{1}+y_{2}\left(4 \omega^{2}+1\right)+y_{3}
\end{array}\right), ~ \text {, }}{ }
$$

Majorana

$$
M_{R}=\langle\xi\rangle\left(\begin{array}{cc}
y_{a}^{N} \tilde{\xi}^{\tilde{z}_{3}} & 0 \\
0 & y_{s}^{N}
\end{array}\right)
$$

Seesaw

β	$\left(y_{a}^{\nu}\left\langle\phi_{2}\right\rangle\right)_{3} / v_{2}$
0	$y_{1}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
2	$y_{1}\left(\begin{array}{c}\omega^{2}-2 \omega \\ -2 \omega-2 \\ 4 \omega-2\end{array}\right)+y_{2}\left(\begin{array}{c}-\omega^{2}-2 \omega \\ -2 \\ 2\end{array}\right)$
4	$y_{1} \omega\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+y_{2}\left(\begin{array}{c}-2 \omega^{2}+\omega \\ 2 \omega^{2}-2 \\ -2 \omega^{2}-2\end{array}\right)+y_{3}\left(\begin{array}{c}2 \omega^{2}+\omega \\ -2 \\ 2\end{array}\right)$
6	$y_{1}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+y_{2}\left(\begin{array}{c}2 \\ 4 \omega^{2}+1 \\ 4 \omega+1\end{array}\right)+y_{3}\left(\begin{array}{c}2 \omega^{2}-2 \omega \\ 1 \\ -1\end{array}\right)$

$$
m_{\nu}=\left(\frac{v_{u}^{2}}{\langle\xi\rangle} \frac{\tilde{\xi}^{2}}{y_{s}^{N}}\right) \alpha_{6}\left(\alpha_{6}\right)^{T}+\left(\frac{v_{u}^{2}}{\langle\xi\rangle} \frac{\tilde{v}_{2}^{2}}{\tilde{\xi} y_{a}^{N}}\right) \beta_{6}\left(\beta_{6}\right)^{T}
$$

Summary

ㄴ Littlest seesaw fit with RG corrections fixes M_{R} 's

- Littlest mu-tau seesaw...one parameter...wow
- New Littlest seesaw from tri-direct CP symmetry

ㅁ Type 1b and Inverse seesaw possibilities
6d models

- A4 and A5 results sensitive to free modulus tau

ㅁ Orbifold T2/Z2 suggests A4 with fixed tau = omega

- Explicit $\mathrm{A} 4 x S U(5)$ model with mu-tau symmetry

