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Type I seesaw
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Figure 4: The seesaw mass insertion diagram responsible for the light e↵ective LH Majorana neutrino mass m⌫ =
�mDM�1

R (mD)T where the Dirac neutrino mass is mD = Y ⌫
hHui = Y ⌫vu.

where we write Hu rather than H in anticipation of a two Higgs doublet extension of the SM, with
mD = vuY ⌫ where vu = hHui.

Collecting together Eqs.34,35 (assuming Eq.33 terms to be absent) we have the seesaw mass matrix,

�
⌫L ⌫c

R

� ✓
0 mD

(mD)T MR

◆ ✓
⌫c

L

⌫R

◆
. (37)

Since the RH neutrinos are electroweak singlets the Majorana masses of the RH neutrinos MR may be
orders of magnitude larger than the electroweak scale. In the approximation that MR � mD the matrix
in Eq.37 may be diagonalised to yield e↵ective Majorana masses of the type in Eq.33,

m⌫ = �mDM�1
R

(mD)T . (38)

The seesaw mechanism formula is represented by the mass insertion diagram in Fig.4. This formula
is valid below the EW scale. Above the EW scale, but below the scale MR, the seesaw mechanism is
represented by the Weinberg operator in Eq.2, whose coe�cient has the same structure as the seesaw
formula in Eq.38.

The light e↵ective LH neutrino Majorana mass m⌫ is naturally suppressed by the heavy scale MR,
but its precise value depends on the Dirac neutrino mass mD. Suppose we fix the desired physical
neutrino mass to be m⌫ = 0.1 eV, then the seesaw formula in Eq.38 relates the possible values of mD

to MR as shown in Fig.5. This illustrates the huge range of allowed values of mD and MR consistent
with an observed neutrino mass of 0.1 eV, with MR ranging from 1 eV up to the GUT scale, leading to
many di↵erent types of seesaw models and phenomenology, including eV mass LSND sterile neutrinos,
keV mass sterile neutrinos suitable for warm dark matter (WDM), GeV mass sterile neutrinos suitable
for resonant leptogenesis and TeV mass sterile neutrinos possibly observable at the LHC (for a review
see e.g. [61] and references therein). In this review we shall focus on the case of Dirac neutrino masses
identified with charged quark and lepton masses, leading to a wide range of RH neutrino (or sterile
neutrino) masses from the TeV scale to the GUT scale, which we refer to as the classic seesaw model.
For example, if we take mD to be 1 GeV (roughly equal to the charm quark mass) then a neutrino mass
of 0.1 eV requires a RH (sterile) neutrino mass of 1010 GeV.
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4 real input parameters

3 neutrino masses (m1=0),  
3 mixing angles, 
1 Dirac CP phase, 
2 Majorana phases (1 zero) 
1 BAU parameter YB 
= 10 observables 
of which 7 are constrained

Describes:

From a neutrino mass matrix as given in Eqs. (8) and (9), one immediately obtains normal
ordering with m1 = 0. Furthermore, these scenarios only provide one physical Majorana
phase �. As discussed above, we choose to start in a flavour basis, where the right-
handed neutrino mass matrix MR and the charged-lepton mass matrix Ml are diagonal.
Consequently, the PMNS matrix is given by UPMNS = U

†
⌫L. We use the standard PDG

parametrisation for the mixing angles, and the CP-violating phase �. Within our LS
scenario, the standard PDG Majorana phase '1 vanishes and �'2/2 = �.

The low-energy phenomenology of Case A has been studied in detail both numeri-
cally [28, 32] and analytically [35], where it has been found that the best fit to experi-
mental data of neutrino oscillations is obtained for n = 3 for a particular choice of phase
⌘ ⇡ 2⇡/3, while for Case B the preferred choice is for n = 3 and ⌘ ⇡ �2⇡/3 [28,36]. Due
to the degeneracy of Cases A, C and Cases B, D at tree level, the preferred choice for
n and ⌘ carries over, respectively.

The prediction for the baryon number asymmetry in our Universe via leptogenesis within
Case A has been studied [34], where it was shown that Case C for positive BAU
predicts the CP-violating phase to be � ⇡ 90o which is disfavoured by current global fits
to neutrino oscillation data. It is straightforward to show that Case B is disfavoured
for a similar reason. Therefore, taking into account the positive sign of the BAU, and
the present experimentally favoured prediction of � ⇡ �90o, one is left with two cases
of interest, namely Case A with ⌘ = 2⇡/3 and Case D with ⌘ = �2⇡/3, respectively,
where n = 3 for both cases.

These successful cases, which define the two cases of the LS model as discussed in the
Introduction, are summarised below:

Case A : �
A
⌫ =

0

@
0 be

i⇡/3

a 3bei⇡/3

a be
i⇡/3

1

A with MR = diag(Matm,Msol) (11)

Case D : �D
⌫ =

0

@
be

�i⇡/3 0
be

�i⇡/3
a

3be�i⇡/3
a

1

A with MR = diag(Msol,Matm) (12)

where in both cases the columns are ordered so that the lighter right-handed neutrino of
mass M1 is in the first column and the heavier right-handed neutrino of mass M2 is in
the second column, with M1 < M2. In both cases a normal hierarchy is predicted with
m1 = 0 and the physical atmospheric neutrino mass m3 is dominantly controlled by the
combination ma = a

2
v
2
/Matm, while the solar neutrino mass m2 is dominantly controlled

by the combination mb = b
2
v
2
/Msol, which is the reason for the notation of the RHN

masses used above. These two cases of the LS model will form the focus of the numerical
studies in this paper.

5

MR =

✓
Matm 0
0 Msol

◆
mD =
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6.4 Future Tests of the Littlest Seesaw

Given the constantly evolving nature of particle physics and the rapid technological ad-
vances being made in neutrino experiments, it is to be expected that the precision of
PMNS parameter measurements will improve considerably in the coming years. With
this in mind, it seems pertinent to discuss the range of values of each observable for
which this analysis method of the Littlest Seesaw model remains a relevant and viable
test of neutrino masses and properties.

Table 4 below shows 1 �, 2 � and 3 � ranges for each of the observables predicted by the
Littlest Seesaw model in our analysis of Case A2.

1 � range 2 � range 3 � range

✓12/
� 34.254 ! 34.350 34.236 ! 34.365 34.217 ! 34.383

✓13/
� 8.370 ! 8.803 8.300 ! 8.878 8.218 ! 8.959

✓23/
� 45.405 ! 45.834 45.343 ! 45.910 45.269 ! 45.996

�m12
2
/10�5eV2 7.030 ! 7.673 6.930 ! 7.805 6.788 ! 7.952

�m31
2
/10�3eV2 2.434 ! 2.561 2.407 ! 2.587 2.377 ! 2.616

�/
�

�88.284 ! �86.568 �88.546 ! �86.287 �88.864 ! �85.966

YB/10�10 0.839 ! 0.881 0.831 ! 0.889 0.822 ! 0.898

Table 4: Ranges of observables for Case A2.

The same ranges are shown for Case D2 in Table 5. It is interesting to note that for
Case D, the values of ✓23 favoured by the model are slightly lower than in Case A, as
are the predicted values of �.

1 � range 2 � range 3 � range

✓12/
� 34.291 ! 34.379 34.278 ! 34.391 34.264 ! 34.404

✓13/
� 8.384 ! 8.784 8.329 ! 8.838 8.268 ! 8.902

✓23/
� 44.044 ! 44.434 43.991 ! 44.484 43.925 ! 44.539

�m12
2
/10�5eV2 7.058 ! 7.615 6.966 ! 7.688 6.875 ! 7.787

�m31
2
/10�3eV2 2.435 ! 2.562 2.407 ! 2.590 2.373 ! 2.624

�/
�

�93.708 ! �92.180 �93.919 ! �91.964 �94.160 ! �91.730

YB/10�10 0.838 ! 0.881 0.827 ! 0.893 0.820 ! 0.899

Table 5: Case D2 ranges for observables
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Dirac texture zero 6.3 Perturbations around Best Fit Points

It is useful to show the best fit points we obtain with this analysis visually (see Table 2
for their numerical values). In this section, we vary our input parameters around these
benchmark points in both one and two dimensions, and we see that such perturbations
in parameter space yield variations around smooth, stable minima. Figure 4 shows
heat maps representing increases in �

2 as one moves away from the benchmark points, for
variations in a, b or Matm,Msol parameter space, respectively. Note the resulting shape
is never an exact circle, as the analysis is not sensitive to all parameters equally.

Figure 4: Perturbations around Case A2 benchmark point shown on the left, those for Case
D2 on the right. In each case, two parameters are varied at a time while the other two are

kept fixed. Di↵erently coloured circles represent approximate 1, 2 and 3 sigma deviations from

the best fit in each parameter, and the green cross marks the benchmark point.

We now vary each parameter individually around the best fit points given in Cases A2
and D2, whilst keeping the other three parameters fixed - Figure 5 shows such pertur-
bations. On the vertical axes, ��

2 is the deviation from minimum �
2; the stationary

point thus shows a vanishing ��
2 corresponding to the benchmark point itself.
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these forms are more than simple ansatze, since they may be enforced by discrete
non-Abelian family symmetry, as discussed in section 4. For example, TM2 mixing
can be realised by A4 or S4 symmetry [14], while TM1 mixing can be realised by S4

symmetry [15]. A general group theory analysis of semi-direct symmetries was given
in [16].

TM1 implies three equivalent relations:

tan ✓12 =
1p
2

q
1 � 3s2

13 or sin ✓12 =
1p
3

q
1 � 3s2

13

c13
or cos ✓12 =

s
2

3

1

c13
(6)

leading to a prediction ✓12 ⇡ 34�, in excellent agreement with current global fits,
assuming ✓13 ⇡ 8.5�. By contrast, the corresponding TM2 relations imply ✓12 ⇡ 36�

[13], which is on the edge of the three sigma region, and hence disfavoured by current
data. TM1 mixing also leads to an exact sum rule relation relation for cos � in terms
of the other lepton mixing angles [13],

cos � = �cot 2✓23(1 � 5s2
13)

2
p

2s13

q
1 � 3s2

13

, (7)

which, for approximately maximal atmospheric mixing, predicts cos � ⇡ 0, � ⇡ ±90�. ‡

Such atmospheric mixing sum rules may be tested in future experiments [17].
For example, the Littlest Seesaw (LS) model [18] leads to TM1 mixing, for two

cases of light Majorana neutrino mass matrix (in the diagonal charged lepton basis):

Case I : MI
⌫ = !ma

0

B@
0 0 0
0 1 1
0 1 1

1

CA + ms

0

B@
1 3 1
3 9 3
1 3 1

1

CA (8)

Case II : MII
⌫ = !

2ma

0

B@
0 0 0
0 1 1
0 1 1

1

CA + ms

0

B@
1 1 3
1 1 3
3 3 9

1

CA (9)

where ! = e
i2⇡/3. The LS is very predictive since there are only two free (real) input

parameters, where ma ⇡ 26 meV and ms ⇡ 2.6 meV gives the best fit to neutrino
masses with m1 = 0 and PMNS parameters including ✓23 ⇡ 45�, � ⇡ �90� (the latter
two predictions explained by an approximate mu-tau symmetry as discussed later).

‡Incidentally the reason why cos � (not sin �) is predicted is because such predictions follow from
|Uij | being predicted, where Uij = a + be

i�, where a, b are real functions of angles in Eq.1 (hence
|Uij |2 = a

2 + b
2 + 2ab cos �, which involves cos �).
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Special case ma/ms=11 gives Littlest mu-tau seesaw

The layout of the remainder of the paper is as follows. In section 2, we briefly review

the µ⌧ -LSS model and its prediction of oscillation parameters. In section 3, we consider

how these parameters are modified after including radiative corrections. The concrete

model is given in section 4, where all flavon vacuum alignments are realised explicitly.

Section 5 is devoted to conclusions. In the appendices, we list the basis of S4 used for

model building and discuss the vacuum degeneracy of flavons.

2 The µ⌧-LSS mass matrix

There are two cases of the LSS neutrino mass matrix [29] (after the seesaw mechanism

has been implemented) namely,

Case I: M⌫ = !ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 3 1

3 9 3

1 3 1

1

CA ,

Case II: M⌫ = !
2
ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (1)

where ! = e
i2⇡/3. As observed in [31], if ma,s satisfy the special ratio ma

ms
= 11 then this

results in maximal atmospheric mixing and CP violation, as can be checked explicitly

using the analytic formulas in Refs. [26, 29]. Inserting this ratio of masses, the neutrino

mass matrix takes one of the two forms

Case I: M⌫ = ms

0

B@
1 3 1

3 9 + 11! 3 + 11!

1 3 + 11! 1 + 11!

1

CA ,

Case II: M⌫ = ms

0

B@
1 1 3

1 1 + 11!2 3 + 11!2

3 3 + 11!2 9 + 11!2

1

CA . (2)

We refer to them as the µ⌧ -LSS mass matrices. With the µ⌧ conjugation [31],

⌫e ! ⌫
⇤
e
, ⌫µ ! ⌫

⇤
⌧
, ⌫⌧ ! ⌫

⇤
µ
, (3)

one transforms the mass matrix from one case to the other. Both cases predict the same

mixing angles (✓13, ✓12, ✓23), the same Dirac-type CP-violating phase (�)

✓13 = arcsin

✓
c�
p
6

◆
⇡ 7.807� ,

✓12 = arctan
⇣
c+

2

⌘
⇡ 34.50� ,

2

Maximal atmospheric
Maximal CPV 

Fits neutrino 
data with      
ma/ms=10

Mν = mDM−1
R mT

D

SFK, Molina Sedgwick, 
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Seesaw formula (Mν)ijνc
iLνc

jL = (M*ν )ijνiLνjL



The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2

⎛

⎝
1 −1 − 2i

√
3 1− 2i

√
3

−1 + 2i
√
3 19 17 + 4i

√
3

1 + 2i
√
3 17− 4i

√
3 19

⎞

⎠ , (39)

does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that
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The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,
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⎛
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Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
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does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain
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Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.
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The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)
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does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain
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for case I and case II, respectively. They satisfy the following structure

(H⌫)12 = �(H⌫)
⇤
13 , (H⌫)22 = (H⌫)33 , (8)

from which one can directly prove ✓23 = 45� and � = 270�. The di↵erence of H⌫ between two cases can

be rotated away by redefinition of the unphysical phases in the charged lepton sector. Therefore, all

oscillation parameters, including ✓13, ✓13, �, as well as mass parameters �m2
21 and �m2

31, are predicted

to be exactly the same, as have been obtained in Eqs. (3) and (4). Without respecting the Majorana

phase and unphysical phases, the PMNS matrix in both cases takes the same form as

U =

0

BB@

2p
6

c+p
6

c�p
6

1p
6
�

c+p
6
� i c�2 �

c�p
6
+ i c+2

1p
6
�

c+p
6
+ i c�2 �

c�p
6
� i c+2

1

CCA . (9)

The mixing is a special case of the TM1 mixing.

This model is not fully consistent with the oscillation data since both the predicted ✓13 and ratio of

mass square di↵erences ↵ are smaller than the current global data of neutrino oscillation in 3� ranges.

As a comparison, current data give ✓13 ⇠ (8.09�, 8.98�) and ↵ ⇠ (0.0262, 0.0334) in 3� ranges.

2 Radiative corrections to the model

The explicit flavour texture of the µ⌧ -LSS model is corrected due to radiative corrections. We wonder

if the µ⌧ -LSS model can be compatible with current data after the RG running e↵ect is included.

We assume the flavour structure of the µ⌧ -LSS model is preserved at a new scale ⇤µ⌧ . This scale is

su�ciently higher than the electroweak scale ⇤EW for relatively large RG running e↵ect, but low than

the seesaw scale ⇤0, thus heave degrees of freedom do not need to be considered in the RG running. At

such a scale, the neutrino mass and flavour mixing is governed by the dimension-5 Weinberg operator

L � `H̃  `cH̃ + h.c. (10)

where  is a 3⇥ 3 coupling matrix. After the electroweak symmetry breaking, the Higgs gains the VEV

hHi = vH , the neutrino mass is given by M⌫ = v2
H
. In our following discussion, we will always use

M⌫ = v2
H

no matter at the scale lower or higher than the electroweak scale. For scale higher than the

electroweak scale, M⌫ should not be understood as neutrino masses, but just the coupling matrix with

its unit normalised by v2
H
.

The RG equation of the coupling matrix  is given in []. M⌫ at two scales due to the radiative

correction can be written as an integrated from as [?]

M⌫(⇤EW) = I↵

0

B@
Ie 0 0

0 Iµ 0

0 0 I⌧

1

CAM⌫(⇤µ⌧ )

0
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0 Iµ 0

0 0 I⌧

1

CA , (11)

where

I↵ = exp


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16⇡2

Z ln⇤µ⌧

ln⇤EW

↵(t)dt

�
,

Il = exp


�

C

16⇡2
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ln⇤EW

y2
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(t)dt

�
, (12)
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The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms
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1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2
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does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that

Hν → 11|ms|2
⎛
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for case I and case II, respectively. They satisfy the following structure

(H⌫)12 = �(H⌫)
⇤
13 , (H⌫)22 = (H⌫)33 , (8)

from which one can directly prove ✓23 = 45� and � = 270�. The di↵erence of H⌫ between two cases can

be rotated away by redefinition of the unphysical phases in the charged lepton sector. Therefore, all

oscillation parameters, including ✓13, ✓13, �, as well as mass parameters �m2
21 and �m2

31, are predicted
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The mixing is a special case of the TM1 mixing.

This model is not fully consistent with the oscillation data since both the predicted ✓13 and ratio of

mass square di↵erences ↵ are smaller than the current global data of neutrino oscillation in 3� ranges.

As a comparison, current data give ✓13 ⇠ (8.09�, 8.98�) and ↵ ⇠ (0.0262, 0.0334) in 3� ranges.

2 Radiative corrections to the model

The explicit flavour texture of the µ⌧ -LSS model is corrected due to radiative corrections. We wonder

if the µ⌧ -LSS model can be compatible with current data after the RG running e↵ect is included.

We assume the flavour structure of the µ⌧ -LSS model is preserved at a new scale ⇤µ⌧ . This scale is

su�ciently higher than the electroweak scale ⇤EW for relatively large RG running e↵ect, but low than

the seesaw scale ⇤0, thus heave degrees of freedom do not need to be considered in the RG running. At

such a scale, the neutrino mass and flavour mixing is governed by the dimension-5 Weinberg operator

L � `H̃  `cH̃ + h.c. (10)

where  is a 3⇥ 3 coupling matrix. After the electroweak symmetry breaking, the Higgs gains the VEV

hHi = vH , the neutrino mass is given by M⌫ = v2
H
. In our following discussion, we will always use

M⌫ = v2
H

no matter at the scale lower or higher than the electroweak scale. For scale higher than the

electroweak scale, M⌫ should not be understood as neutrino masses, but just the coupling matrix with

its unit normalised by v2
H
.

The RG equation of the coupling matrix  is given in []. M⌫ at two scales due to the radiative
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Renormalisation 
Group Corrections

for case I and case II, respectively. On the right hand side of Eq. (??), only one parameter ✏ appears.

The RG running e↵ect specifies the ⌧ sector, which breaks the µ⌧ -U symmetry. As a result, two cases

in Eq. (??) gain totally di↵erent corrections.

By perturbatively diagonalising H⌫ , we obtain corrections to both ✓13 and the ratio of mass square

di↵erences ↵, which are determined by ✏. Including the other parameters, the corrected oscillation

parameters are approximatively given by

✓13 ⇡ 7.807� � 8.000�✏ ,

✓12 ⇡ 34.50� � 12.30�✏ ,

✓23 ⇡ 45.00� � 31.64�✏ ,

� ⇡ 270.00� + 3.23�✏ ,

↵ ⇡ 0.0247� 0.0147✏ (18)

in case I, and

✓13 ⇡ 7.807� + 0.345�✏ ,

✓12 ⇡ 34.50� � 13.96�✏ ,

✓23 ⇡ 45.00� � 30.50�✏ ,

� ⇡ 270.00� + 2.33�✏ ,

↵ ⇡ 0.0247� 0.0249✏ (19)

in case II. Here again, I↵ gives only an overall enhancement or suppression to masses and thus does not

contribute to the above formulas.

Let us first have a look at case II. We can see that ✓13 gains a very small correction from ✏. In order

to enhance ✓13 by 0.2�, ✏ should be positive and not smaller than 0.5, in spite of validity of perturbation

calculation. MSSM always gives negative correction and thus, does not satisfy the requirement. SM

gives positive correction, but the correction is too small. Another reason forbidding us to consider

RG running is that ✓13 and �m2
21/�m2

31 gain corrections in opposite directions. If one parameters

runs closer to the experimental allowed range, the other runs farther away for the experimental allowed

range.

Then, we turn back to case I. In this case, both ✓13 and � are corrected in the same direction. To

increase their values, ✏ has to be negative with value �✏ ⇠ O(0.1). Such a value can be obtained in

MSSM with large tan� with value of order 10.

We perform the numerical illustration for RG corrections in the MSSM.

3 A µ⌧-LSS model in S4 ⇥ S4

In this section, we present a flavour model to realise the µ⌧ -LSS flavour structure. We assume the

flavour symmetry to be S4L ⇥ S4R ⇥ Zn in the SUSY framework. How lepton gain flavoured masses

based on specified flavon vacuum will be discussed in section ?? and how flavons gain the specified

VEVs will be given in section ??.
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for case I and case II, respectively. On the right hand side of Eq. (16), only one parameter ✏ appears.

The RG running e↵ect specifies the ⌧ sector, which breaks the µ⌧ -U symmetry. As a result, two cases

in Eq. (15) gain totally di↵erent corrections.

By perturbatively diagonalising H⌫ , we obtain corrections to both ✓13 and the ratio of mass square

di↵erences ↵, which are determined by ✏. Including the other parameters, the corrected oscillation

parameters are approximatively given by

✓13 ⇡ 7.807� � 8.000�✏ ,

✓12 ⇡ 34.50� � 12.30�✏ ,

✓23 ⇡ 45.00� � 31.64�✏ ,

� ⇡ 270.00� + 3.23�✏ ,

↵ ⇡ 0.0247� 0.0147✏ (18)

in case I, and

✓13 ⇡ 7.807� + 0.345�✏ ,

✓12 ⇡ 34.50� � 13.96�✏ ,

✓23 ⇡ 45.00� � 30.50�✏ ,

� ⇡ 270.00� + 2.33�✏ ,

↵ ⇡ 0.0247� 0.0249✏ (19)

in case II. Here again, I↵ gives only an overall enhancement or suppression to masses and thus does not

contribute to the above formulas.

Let us first have a look at case II. We can see that ✓13 gains a very small correction from ✏. In order

to enhance ✓13 by 0.2�, ✏ should be positive and not smaller than 0.5, in spite of validity of perturbation

calculation. MSSM always gives negative correction and thus, does not satisfy the requirement. SM

gives positive correction, but the correction is too small. Another reason forbidding us to consider

RG running is that ✓13 and �m2
21/�m2

31 gain corrections in opposite directions. If one parameters

runs closer to the experimental allowed range, the other runs farther away for the experimental allowed

range.

Then, we turn back to case I. In this case, both ✓13 and � are corrected in the same direction. To

increase their values, ✏ has to be negative with value �✏ ⇠ O(0.1). Such a value can be obtained in

MSSM with large tan� with value of order 10.

We perform the numerical illustration for RG corrections in the MSSM.

3 A µ⌧-LSS model in S4 ⇥ S4

In this section, we present a flavour model to realise the µ⌧ -LSS flavour structure. We assume the

flavour symmetry to be S4L ⇥ S4R ⇥ Zn in the SUSY framework. How lepton gain flavoured masses

based on specified flavon vacuum will be discussed in section 3.1 and how flavons gain the specified

VEVs will be given in section 3.2.
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Figure 1: A sketch of the tri-direct CP approach for two right-handed neutrino models, where the high

energy family and CP symmetry Gf oHCP is spontaneously broken down to Gatm oH
atm
CP in the sector of

one of the right-handed neutrinos, and Gsol o H
sol
CP in the sector of the other right-handed neutrino, with

the charged lepton sector having a di↵erent residual flavour symmetry Gl.

was understood that the LSS model may arise from a semi-direct symmetry approach corre-
sponding to a di↵erent residual flavour symmetry for each charge sector, where a particular
residual flavour symmetry may be assumed in each of the neutrino and charged lepton sec-
tors. To be precise, in the semi-direct symmetry approach, it was shown that there is an
SU subgroup of S4 in the neutrino sector and the T subgroup of S4 in the charged lepton
sector, leading to a constrained form of TM1 mixing [24] in which the first column of the
tri-bimaximal mixing matrix is preserved, but with the reactor angle and CP phases fixed
by the same two parameters which fix the neutrino masses.

The LSS model is a general and predictive framework for explaining neutrino masses and
lepton mixing, and it is not confined to TM1. For instance, the golden LSS is an another
viable class of LSS models [30], the flavor symmetry group is A5 and it is spontaneously
broken to di↵erent residual subgroups in the charged lepton, atmospheric neutrino and solar
neutrino sectors. The golden LSS predicts the lepton mixing is of GR1 form where the first
column of the golden ratio mixing matrix is preserved [30]. In both the original LSS and
golden LSS models, it was always assumed that there is a high energy CP symmetry which
is completely broken in each of the sectors, with no residual CP symmetry.

In this paper we propose a new tri-direct CP approach for two right-handed neutrino
models based on the idea of spontaneously broken family and CP symmetry, leaving a
di↵erent residual flavour symmetry, together with a di↵erent residual CP symmetry, in each
of the two right-handed neutrino sectors. In other words, the high energy family and CP
symmetry Gf oHCP is spontaneously broken down to GatmoHatm

CP in the sector of one of the
right-handed neutrinos, and GsoloHsol

CP in the sector of the other right-handed neutrino, with
the charged lepton sector having a di↵erent residual flavour symmetry Gl, as schematically
illustrated in figure 1. The tri-direct CP approach is a hybrid of the direct and indirect
approaches. The common residual symmetry of the neutrino sector in the direct model is
splitted into two branches: the residual symmetries associated with the atmospheric and
solar neutrinos. In comparison with the indirect model, the alignments associated with each
right-handed neutrino are enforced by residual symmetry. In such a tri-direct CP approach

3

Tri-direct CP with S4NO for x, ⌘, ma and r ⌘ ms/ma being free parameters

(Gl, Gatm, Gsol) Xsol �2
min sin2 ✓13 sin

2 ✓12 sin
2 ✓23 �CP /⇡ �/⇡ m2(meV)m3(meV)mee(meV)

N1 (ZT
3 , Z

U
2 , ZSU

2 )
1 0.383 0.0224 0.318 0.580 �0.386 0.335 8.597 50.249 3.100
U 0.383 0.0224 0.318 0.580 �0.386 0.910 8.597 50.249 3.725

N2 (ZT
3 , Z

ST
3 , ZSU

2 )
1 0.383 0.0224 0.318 0.580 �0.386 0.754 8.596 50.249 3.798
U 0.383 0.0224 0.318 0.580 �0.386 0.996 8.596 50.249 3.604

N3 (ZT
3 , Z

S
2 , Z

SU
2 ) U 4.321 0.0225 0.318 0.538 �0.447 0.444 8.603 50.242 3.064

N4 (ZT
3 , Z

TST 2

2 , ZU
2 ) 1 5.081 0.0225 0.337 0.563 �0.407 0.284 8.601 50.244 2.950

N5 (K(S,U)
4 , ZTU

2 , ZTU
2 ) U 20.461 0.0225 0.256 0.582 0 �0.265 8.597 50.249 3.026

N6 (ZTSU
4 , ZT

3 , Z
SU
2 ) U 8.698 0.0226 0.345 0.554 �0.419 0.202 8.605 50.239 2.638

N7 (K(S,TST 2)
4 , ZT

3 , Z
SU
2 )

1 12.254 0.0224 0.328 0.513 �0.482 0.502 8.600 50.245 3.099
U 11.621 0.0224 0.327 0.514 0 0 8.601 50.244 3.877

N8 (K(S,TST 2)
4 , ZU

2 , ZTU
2 ) U 5.768 0.0228 0.298 0.537 �0.451 0.365 8.539 50.326 2.615

IO for x, ⌘, ma and r ⌘ ms/ma being free parameters

(Gl, Gatm, Gsol) Xsol �2
min sin2 ✓13 sin

2 ✓12 sin
2 ✓23 �CP /⇡ �/⇡ m1(meV)m2(meV)mee(meV)

I1 (ZT
3 , Z

ST
3 , ZU

2 ) 1 17.640 0.0226 0.310 0.5 �0.928 0.306 49.377 50.120 43.792

I2 (ZT
3 , Z

SU
2 , ZTU

2 ) U 17.640 0.0226 0.310 0.5 �0.682 0.843 49.377 50.120 21.168

I3 (K(S,U)
4 , ZTST 2

2 , ZU
2 )

1 17.640 0.0226 0.310 0.5 �0.495 0.102 49.377 50.120 47.946
S 17.640 0.0226 0.310 0.5 �0.495 0.102 49.377 50.120 47.946

I4 (K(S,U)
4 , ZTU

2 , ZTU
2 ) U 20.419 0.0227 0.256 0.582 0 1 49.377 50.120 23.384

I5 (ZT
3 , Z

SU
2 , ZSU

2 ) U 18.008 0.0227 0.318 0.5 �0.5 0.743 49.377 50.120 24.840

I6 (ZT
3 , Z

TST 2

2 , ZU
2 ) 1 17.640 0.0226 0.310 0.5 0.913 �0.389 49.377 50.120 41.048

I7 (ZT
3 , Z

U
2 , ZTU

2 ) U 17.640 0.0226 0.310 0.5 0.975 �0.175 49.377 50.120 46.918

I8 (ZT
3 , Z

U
2 , ZSTSU

2 ) U 17.640 0.0226 0.310 0.5 �0.761 0.759 49.377 50.119 24.569

I9 (ZT
3 , Z

SU
2 , ZSTSU

2 ) U 17.640 0.0226 0.310 0.5 �0.954 0.249 49.377 50.120 45.347

I10 (ZTSU
4 , ZS

2 , Z
TU
2 )

U 17.640 0.0226 0.310 0.5 �0.00465�0.102 49.377 50.120 47.946
STS 17.640 0.0226 0.310 0.5 �0.00465�0.102 49.377 50.120 47.946

I11 (ZTSU
4 , ZS

2 , Z
T 2U
2 )

U 17.640 0.0226 0.310 0.5 �0.128 �0.548 49.377 50.120 34.480
ST 2S 17.640 0.0226 0.310 0.5 �0.372 0.548 49.377 50.120 34.480

I12 (ZTSU
4 , ZU

2 , ZTU
2 ) U 17.640 0.0226 0.310 0.5 �0.772 0.729 49.377 50.120 25.920

I13 (ZTSU
4 , ZTU

2 , ZU
2 ) 1 17.640 0.0226 0.310 0.5 0.834 �0.636 49.377 50.120 30.323

I14 (K(S,TST 2)
4 , ZT

3 , Z
SU
2 )

1 17.640 0.0226 0.310 0.5 �0.104 �0.448 49.377 50.120 38.772
U 2.046 0.0225 0.310 0.607 �0.604 �0.448 49.377 50.120 38.778

I15 (K(S,TST 2)
4 , ZU

2 , ZTU
2 ) U 17.640 0.0226 0.310 0.5 �0.666 �0.636 49.377 50.120 30.323

I16 (K(S,U)
4 , ZTST 2

2 , ZTU
2 ) STS 17.640 0.0226 0.310 0.5 �0.872 0.548 49.377 50.120 34.480

I17 (K(S,U)
4 , ZTU

2 , ZU
2 ) S 28.676 0.0225 0.310 0.477 0.915 �0.548 49.377 50.120 34.486

I18 (K(S,U)
4 , ZTU

2 , ZT 2U
2 ) ST 2S 9.241 0.0227 0.310 0.523 �0.743 0.510 49.377 50.120 36.178

Table 3: The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the e↵ective Majorana
mass mee in neutrinoless double beta decay for all viable residual symmetries, where the parameters x, ⌘, ma and
r ⌘ ms/ma are treated as free parameters. The residual CP transformation associated with atmospheric neutrino
can be read out from table 2. We only show one representative residual CP transformation of the solar neutrino
sector since the other residual CP transformations can be obtained by multiplying the residual flavor symmetry Gsol

with the given CP transformation from the left-hand side.
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comprehensive analysis of lepton mixing patterns which can be obtained from the flavour group
S4 and CP symmetry in the tri-direct CP approach in a model independent fashion [56]. The
model construction along the tri-direct CP approach was also illustrated [55, 56]. In the minimal
seesaw model, a phenomenologically viable pattern of lepton mixing and neutrino masses can also
be obtained from the breaking of A5 flavour symmetry into three di↵erent subgroups in the charged
lepton, atmospheric neutrino and solar neutrino sectors [57].

It is remarkable that the original Littlest Seesaw model for CSD(3) can be reproduced from the
tri-direct CP approach [55, 56], if the S4 flavour symmetry and CP symmetry are broken to the
remnant symmetries ZT

3 , Z
U
2 ⇥H

atm
CP and Z

SU
2 ⇥H

sol
CP in the charged lepton sector, the atmospheric

sector and the solar neutrino sector, respectively, corresponding to theN1 case. In this case, one row
of the neutrino Dirac mass matrix is proportional to (0,�1, 1) and the other row is proportional
to (1, 2 � x, x), where x is enforced to be a real parameter by the residual symmetry, thereby
overcoming the previous problem where it could be complex in general. Then the light neutrino
mass matrix is determined to be1 [56]

m⌫ = ma

0

@
0 0 0
0 1 �1
0 � 1 1

1

A+mse
i⌘

0

@
1 2� x x

2� x (x� 2)2 (2� x)x
x (2� x)x x

2

1

A , (1)

where an overall phase has been neglected, ma, ms, ⌘ and x are four real free parameters. In a
concrete model, the parameters x and ⌘ could be fixed to certain values through the technique
of vacuum alignment [55, 56]. For example, CSD(3) corresponding to x = 3 and ⌘ = 2⇡/3, can
be achieved within the N1 case. Then all three mixing angles, two CP phases and three neutrino
masses only depend on two real parameters ma and ms which can be determined by the mass
squared di↵erences �m

2
21 ⌘ m

2
2 � m

2
1 and �m

2
31 ⌘ m

2
3 � m

2
1 precisely measured in neutrino

oscillation experiments. Then one can extract the predictions for all others mixing parameters.
Obviously this kind of model is highly predictive.

In this paper, we shall focus on a particularly interesting example of the N1 case with x = �1/2
and ⌘ = �⇡/2, henceforth referred to as the new Littlest Seesaw, which was one of the best fit points
found in [56] where the lepton mixing parameters and neutrino masses are predicted to lie in rather
narrow regions, with an atmospheric angle in the second octant as preferred by the latest global fits.
Motivated by the excellent agreement of this case with experimental data, in this work we develop
further this new Littlest Seesaw model in two di↵erent ways: we discuss leptogenesis and we also
construct a concrete model to demonstrate how it could arise from a realistic theory. We emphasise
that the model involves a particularly simple and “maximal” phase ⌘ = �⇡/2 which is the unique
source of CP violation for both neutrino oscillations and leptogenesis. It is noteworthy that the
observed value of the baryon asymmetry YB of our Universe will be obtained through flavoured
thermal leptogenesis in both the Standard Model and the Minimal Supersymmetric Standard Model
(MSSM). We will propose an explicit supersymmetric (SUSY) model in the framework of minimal
seesaw mechanism with 2RHN based on S4 o HCP and show that the mass hierarchies of the
charged lepton and the light neutrino mass matrix in Eq. (1) with x = �1/2 and ⌘ = �⇡/2 may
be naturally derived in such a model.

The rest of this paper is organized as follows. In section 2, we revisit the N1 case of tri-direct CP
models with the alignments h�atmi / (0, 1,�1)T , h�soli / (1, x, 2� x)T which can be derived from
the S4 flavour symmetry in combination with CP symmetry, assuming the N1 residual symmetry.
We show that the new Littlest Seesaw model, which corresponds to a benchmark point in the N1

case with x = �1/2 and ⌘ = �⇡/2, provides an excellent fit to the experimental data of lepton
mixing angles and neutrino masses. We study the predictions of the new Littlest Seesaw model

1
Note that the seesaw mechanism results in a light e↵ective Majorana mass matrix was defined in the convention

Le↵ = � 1
2⌫

c
Lm⌫⌫L+h.c. Also note that here the second entries of the vacuum alignments which enter the Dirac mass

matrix are multiplied by minus one as compared to the usual Littlest Seesaw convention.
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Figure 1: Variation of �2
with respect to the phase ⌘ for the typical values of x = 3, 4,�1/2,�3/4,�3/5, for the

N1 case of tri-direct CP models.

which give rise to the following values of observables

sin2 ✓13 = 0.02241, sin2 ✓12 = 0.318, sin2 ✓23 = 0.582, �CP = �0.382⇡, ' = 0.333⇡ ,

m1 = 0meV, m2 = 8.597meV, m3 = 50.249meV, mee = 3.112meV , (10)

where mee refers to the e↵ective Majorana mass in neutrinoless double beta decay, and ' is the
Majorana phase. These predictions for lepton mixing angles agree with the experimental data quite
well, and the global minimum of the �2 function is �2

min = 0.384. Note that the �2 function includes
the contributions of three mixing angles and two squared mass di↵erences as usual. Because the
indication of a preferred value of the Dirac phase �CP from global data analyses is rather weak [60],
we do not include any information on �CP in the �

2 function. We emphasise that the values of
the parameter x, ⌘, r and ma are not fixed by the residual symmetry, and can only be fixed by
explicit model construction. This task is easier for the simpler the values of x and ⌘ where the solar
vacuum alignment h�soli is easier to achieve, therefore we are interested in the simplest values of
these parameters.

We report the results of �2 analysis for some representative values of x and ⌘ in table 1. Once
the values of x and ⌘ are fixed, all the mixing parameters and neutrino masses only depend on
the input parameters ma and r whose values of them can be determined by the mass squared
di↵erences �m

2
21 and �m

2
31. Then the three lepton mixing angles, two CP violation phases and

the absolute neutrino mass scale are uniquely predicted by the theory. We notice that the e↵ective
Majorana mass mee lies in the range of 1 to 4 meV, consequently it is impossible to be measured
in foreseeable future.

The original Littlest Seesaw model [15–18] corresponds to the cases of (x, ⌘) = (3, 2⇡/3),
(�1,�2⇡/3), and the CSD(4) model [19, 20] can be exactly reproduced for (x, ⌘) = (4, 4⇡/5).
From table 1, we see that the values (x, ⌘) = (�1/2,±⇡/2), (�3/4,±3⇡/5) and (�4/5,±3⇡/5)
can give rise to a smaller �2

min than the original Littlest Seesaw model and CSD(4) model [15–20].
We have shown �

2
min as a function of ⌘ for x = 3, 4,�1/2,�3/4,�3/5 in figure 1. Moreover, we

plot the contour regions for the 3� intervals of mixing angles ✓13 and ✓23 and mass ratio m2/m3

in the plane r versus ⌘/⇡ in figure 2. The result for ✓12 is not displayed here, because it is re-
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Original Littlest Seesaw

New  Littlest Seesaw

The model is based on the flavour symmetry S4⇥Z4⇥Z9 in which the desired alignments and the
phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
focussed on the N1 case where the flavour symmetry S4 and CP are broken to Z

T
3 in the charged

lepton sector, ZU
2 ⇥ H

atm
CP in the atmospheric sector and Z

SU
2 ⇥ H

sol
CP in the solar neutrino sector

with H
atm
CP = {1, U} and H

sol
CP = {1, SU}, the vacuum alignment of �atm and �sol would be fixed

to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m

2
21 and �m

2
31. The comprehensive numerical analysis shows

that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.
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TM1Tri-direct CP with S4 gives the structure

2.1 The new Littlest Seesaw: x = �1/2, ⌘ = �⇡/2

Before getting into too many technicalities of model construction, we analyze the predictions for
lepton mixing parameters and neutrino masses for x = �1/2, ⌘ = �⇡/2. In this case, the light
neutrino mass matrix in Eq. (1) becomes

m⌫ = ma

0

@
0 0 0
0 1 �1
0 � 1 1

1

A� ims

4

0

@
4 10 � 2
10 25 � 5
�2 � 5 1

1

A . (11)

We note that all lepton mixing parameters and mass ratio m2/m3 are determined by only a single
parameter r = ms/ma. The expressions for the three lepton mixing angles and the CP invariants
are given by

sin2 ✓13 =
1

6

✓
1� 45r2 + 16

Cr

◆
, sin2 ✓12 = 1� 4Cr

5Cr + 45r2 + 16
,

sin2 ✓23 =
1

2
+

540r2

5Cr + 45r2 + 16
, JCP = � 4r

Cr
, I1 = �6r2

Cr
, (12)

with

Cr = 4
p
B |x=�1/2,⌘=�⇡/2 =

q
(225r2 + 16)2 � 2304r2 . (13)

Notice that ✓23 is predicted to lie in the second octant, it is preferred by the present neutrino
oscillation data [60]. As both ✓13 and ✓23 depend on a single parameter r, a sum rule between them
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The model is based on the flavour symmetry S4⇥Z4⇥Z9 in which the desired alignments and the
phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
focussed on the N1 case where the flavour symmetry S4 and CP are broken to Z

T
3 in the charged

lepton sector, ZU
2 ⇥ H

atm
CP in the atmospheric sector and Z

SU
2 ⇥ H

sol
CP in the solar neutrino sector

with H
atm
CP = {1, U} and H

sol
CP = {1, SU}, the vacuum alignment of �atm and �sol would be fixed

to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m

2
21 and �m

2
31. The comprehensive numerical analysis shows

that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.

19

sin2 θ23 ≈ 0.5 δCP ≈ − π/2

NO
m1=0

UO

Littlest Seesaw from S4 
P.T.Chen, G.J.Ding, S.F.K. and C.C.Li, 1906.11414



New  Littlest Seesaw

The model is based on the flavour symmetry S4⇥Z4⇥Z9 in which the desired alignments and the
phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
focussed on the N1 case where the flavour symmetry S4 and CP are broken to Z

T
3 in the charged

lepton sector, ZU
2 ⇥ H

atm
CP in the atmospheric sector and Z

SU
2 ⇥ H

sol
CP in the solar neutrino sector

with H
atm
CP = {1, U} and H

sol
CP = {1, SU}, the vacuum alignment of �atm and �sol would be fixed

to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
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The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
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Figure 3: The predictions of the new Littlest Seesaw model with x = �1/2, ⌘ = �⇡/2 for the mixing parameters

and mass ratio m2/m3. The shaded regions represent the 1� and 3� ranges of each mixing parameter and mass

ratio [60]. On the left panel, the values of mixing parameters and mass ratio are predicted with respect to r and

the black vertical line denotes the best fit value rbf = 0.145. On the right panel, we show the predictions for mixing

parameters and mass ratio as functions of sin ✓13.

3 Predictions for leptogenesis in the new Littlest Seesaw model

It is well-known fact that there is a predominance of matter over antimatter present in the observ-
able Universe. The value of baryon asymmetry of the Universe normalised to the entropy density
is [61],

YB = (0.870300± 0.011288)⇥ 10�10 (95%CL) . (18)

Apart from elegantly explaining the tiny neutrino masses, the seesaw mechanism provides a sim-
ple and attractive mechanism for understanding the matter-antimatter asymmetry of the Universe
via leptogenesis [62]. The out-of-equilibrium decays of right-handed neutrinos in the early Uni-
verse generates a lepton asymmetry because of the CP violating Yukawa couplings. The lepton
asymmetry is subsequently converted into a baryon asymmetry via sphaleron processes in the SM.

In our concerned model, the phase ⌘ is the unique source of CP violation, and it controls CP
violation in both neutrino oscillations and leptogenesis. Therefore the measurable CP violation in
future neutrino oscillation experiments are closely related to the baryon asymmetry of the Universe.
In the present work, we shall focus on the simplest version of the leptogenesis in which the lepton
asymmetry is dominantly generated by the interactions and decay of the lightest right-handed
neutrino. The phase ⌘ is fixed to ⌘ = �⇡/2 in the new Littlest Seesaw model, and it yields a Dirac
CP violation phase �CP ' 1.646⇡. In this section, we shall study the prediction for leptogenesis
within the framework of SM and MSSM. The condition of successful baryogenesis will allow us to
determine the mass of the lightest right-handed neutrino in the new Littlest Seesaw model.

3.1 Leptogenesis for the new Littlest Seesaw model in the SM

In the SM, the final baryon asymmetry is given by [63]

YB =
12

37

X

↵

Y�↵ , (19)
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Figure 4: The correlation between YB and �CP for the new Littlest Seesaw model in SM whereM1 = 1.176⇥10
11
GeV.

The Planck result for the baryon asymmetry YB at 95% CL is represented by the horizontal band [61]. The red star

denotes the best fitting point at which the �2
function reaches a global minimum.

3.2 Leptogenesis for the new Littlest Seesaw model in the MSSM

In the MSSM, the final baryon asymmetry can be computed from the following formula [72]

YB =
10

31

X

↵

Ŷ�↵ . (37)

In the MSSM, the contributions of eN1 and eL↵ should be considered, which are the supersymmetric
partners of the lightest right-handed neutrino N1 and the lepton doublet L↵ respectively. In
other words, the densities Y eN1

and Ye↵ should be included in the Boltzmann equations. Then the
Boltzmann equations in MSSM are given by [66]
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where the total (particle and sparticle) B/3� L↵ asymmetries denoted as Ŷ�↵ and
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Ŷ�↵ . (37)

In the MSSM, the contributions of eN1 and eL↵ should be considered, which are the supersymmetric
partners of the lightest right-handed neutrino N1 and the lepton doublet L↵ respectively. In
other words, the densities Y eN1

and Ye↵ should be included in the Boltzmann equations. Then the
Boltzmann equations in MSSM are given by [66]

dYNatm

dz
=2K(Y eq

Natm
� YNatm)

zf1(z)K1(z)

K2(z)
,

dY eNatm

dz
=2K(Y eq

eNatm
� Y eNatm

)
zf1(z)K1(z)

K2(z)
,

dŶ�↵
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⇤

, (39)
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Littlest Inverse Seesaw
2

involves two right-handed neutrinos plus two additional singlets, is given by:
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where 0n⇥m are n⇥m dimensional submatrices consisting of all zeroes and the other submatrices in the flavour basis
have the structure:

mD ⇠

0

@
0 b

a 3b
a b

1

A , M ⇠

✓
1 0
0 1

◆
, µ ⇠

✓
1 0
0 !

◆
, ! = e

2⇡i
3 . (2)

The light active neutrino mass matrix arising from the inverse seesaw formula m⌫ = �mD(MT )�1
µM

�1
m

T

D
takes

the same form as the usual LS model [17–24]:

m⌫ = m⌫a

0

@
0 0 0
0 1 1
0 1 1

1

A+m⌫b!

0

@
1 3 1
3 9 3
1 3 1

1

A (3)

The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.

The flavour puzzle of the SM indicates that New Physics has to be advocated to explain the observed SM fermion mass
and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
presented in Appendix A. The superpotential that determines the vacuum configuration for the S4 doublet and triplet
scalars of our model is presented in Appendix B.

II. THE MODEL

We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.

1 An example of a dynamical explanation for the smallness of the µ parameter of the inverse seesaw and its connection with Dark matter
is provided in Ref. [128]
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mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.
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and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
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We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
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Type 1b seesaw

⌫L ⌫L

Y ⌫ Y ⌫

MR

hHui hHui

⌫R ⌫R

Figure 4: The seesaw mass insertion diagram responsible for the light e↵ective LH Majorana neutrino mass m⌫ =
�mDM�1

R (mD)T where the Dirac neutrino mass is mD = Y ⌫
hHui = Y ⌫vu.

where we write Hu rather than H in anticipation of a two Higgs doublet extension of the SM, with
mD = vuY ⌫ where vu = hHui.

Collecting together Eqs.34,35 (assuming Eq.33 terms to be absent) we have the seesaw mass matrix,

�
⌫L ⌫c

R

� ✓
0 mD

(mD)T MR

◆ ✓
⌫c

L

⌫R

◆
. (37)

Since the RH neutrinos are electroweak singlets the Majorana masses of the RH neutrinos MR may be
orders of magnitude larger than the electroweak scale. In the approximation that MR � mD the matrix
in Eq.37 may be diagonalised to yield e↵ective Majorana masses of the type in Eq.33,

m⌫ = �mDM�1
R

(mD)T . (38)

The seesaw mechanism formula is represented by the mass insertion diagram in Fig.4. This formula
is valid below the EW scale. Above the EW scale, but below the scale MR, the seesaw mechanism is
represented by the Weinberg operator in Eq.2, whose coe�cient has the same structure as the seesaw
formula in Eq.38.

The light e↵ective LH neutrino Majorana mass m⌫ is naturally suppressed by the heavy scale MR,
but its precise value depends on the Dirac neutrino mass mD. Suppose we fix the desired physical
neutrino mass to be m⌫ = 0.1 eV, then the seesaw formula in Eq.38 relates the possible values of mD

to MR as shown in Fig.5. This illustrates the huge range of allowed values of mD and MR consistent
with an observed neutrino mass of 0.1 eV, with MR ranging from 1 eV up to the GUT scale, leading to
many di↵erent types of seesaw models and phenomenology, including eV mass LSND sterile neutrinos,
keV mass sterile neutrinos suitable for warm dark matter (WDM), GeV mass sterile neutrinos suitable
for resonant leptogenesis and TeV mass sterile neutrinos possibly observable at the LHC (for a review
see e.g. [61] and references therein). In this review we shall focus on the case of Dirac neutrino masses
identified with charged quark and lepton masses, leading to a wide range of RH neutrino (or sterile
neutrino) masses from the TeV scale to the GUT scale, which we refer to as the classic seesaw model.
For example, if we take mD to be 1 GeV (roughly equal to the charm quark mass) then a neutrino mass
of 0.1 eV requires a RH (sterile) neutrino mass of 1010 GeV.
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mD1 mD2

mν = mD1M−1
R mT

D2

⟨H̃d⟩

I. INTRODUCTION

The origin of neutrino mass is one of the major unresolved problems of particle physics.
The smallness of Majorana neutrino mass may arise from an e�ective operator of the form
HHLiLj first proposed by Weinberg [1], where H is the Higgs doublet of the Standard Model
(SM) taken to have opposite hypercharge to that of the lepton doublets Li, where i = 1, 2, 3 is
a family index. The operator is non-renormalisable and has a coe�cient fij/� suppressed by
some mass scale �. In ultraviolet complete theories, the origin of the Weinberg operator may
arise from three types of tree-level seesaw mechanism: type I [2–5] involving the exchange
of right-handed neutrinos; type II [6–10] with scalar triplet exchange; and type III [11–18]
with fermion triplet exchange. In fact the type I seesaw mechanism may be implemented
in di�erent ways known as the inverse [19, 20] and linear [21] seesaw mechanisms which
involve more than three right-handed neutrinos. There are also various loop mechanisms for
achieving the Weinberg operator known as type IV, V, VI [22].

The Weinberg operator discussed above can be straightforwardly generalised to the case of
multi-Higgs doublet models [23], to the operators of the form HaHbLiLj, for Higgs doublets
Ha,b, where a, b = 1, · · · , N can be taken to have the same hypercharge, opposite to that
of Li. The question of which Weinberg operators arise will depend on the details of the
particular multi-Higgs doublet model, such as the symmetries controlling the Higgs and
fermion sectors, the seesaw origin of the Weinberg operators and so on 1.

In this paper we shall consider a new Weinberg operator for neutrino mass of the form
HuH̃dLiLj involving two di�erent Higgs doublets Hu, Hd with opposite hypercharge, where
the charge conjugated doublet H̃d = ≠i‡2H

ú
d , and H

ú
d is the complex conjugate of Hd. This

operator may be relevant in models where the usual Weinberg operator HuHuLiLj is not
generated by the seesaw mechanism but HuH̃dLiLj is. The reason for this depends on the
details of the underlying seesaw mechanism, for example, there may be some new symmetry
at work that acts on the Higgs doublets and the heavy states of mass � that prevents the
usual Weinberg operator from being generated but allows the new one. We shall introduce
a gauged U(1)Õ, broken near the TeV scale by a new SM singlet scalar „, under which the
two Higgs doublets are charged such that the usual Weinberg operator is forbidden but the
new one is allowed.

We also propose a version of the type I seesaw model, which allows HuH̃dLiLj, referred
to as type Ib to distinguish it from the usual type Ia seesaw mechanism which yields the
usual Weinberg operator HuHuLiLj. The minimal version of the type Ib seesaw mechanism
involves the addition of two right-handed neutrinos, written here as left-handed spinors ‹

c
, ‹c,

which carry opposite charges under the gauged U(1)Õ, which allows a pseudo-Dirac mass term
M‹

c
‹c between them, but prevents Majorana masses. The type Ib seesaw mechanism then

leads to the new Weinberg-type operator via their couplings to the Higgs doublets HuLi‹
c

and H̃dLi‹
c, which are allowed by U(1)Õ. Figure (1) shows the diagram that induces the

new Weinberg-type operator mediated by the right-handed neutrinos.
The above model does not allow renormalisable Yukawa couplings for the charged

fermions, since both Higgs doublets are charged under U(1)Õ, and so must be extended
somehow. In order to do this we identify the two right-handed neutrinos as originating from
1 We remark that the Weinberg operator may be generalised still further, see e.g. [24]. However in [24] the

authors do not explicitly mention the multi-Higgs doublet generalisation in [23] which is relevant here.
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Field SU(3)c SU(2)L U(1)Y U(1)Õ

Qi 3 2 1/6 0

u
c
i 3 1 ≠2/3 0

d
c
i 3 1 1/3 0

Li 1 2 ≠1/2 0

e
c
i 1 1 1 0

‹
c 1 1 0 1

‹c 1 1 0 ≠1

„ 1 1 0 1

Hu 1 2 1/2 ≠1

Hd 1 2 ≠1/2 ≠1

TABLE I. The minimal model consists of three left-handed families Âi = Qi, Li and its CP conju-
gated right-handed fields Â

c
i = u

c
i , d

c
i , e

c
i (i = 1, 2, 3), and two CP conjugated right-handed neutrinos

‹
c
, ‹c which carry opposite charge under the U(1)Õ gauge group, together with the U(1)Õ-breaking

scalar field „ and the two Higgs scalar doublets Hu and Hd which are charged under U(1)Õ. No-
tice that all the fermions of this table are left-handed spinors and the bars indicate conjugate
representations under the SM gauge group.

At dimension 6, the only e�ective operator that is generated at tree level is [52]

”Ld=6 = c
d=6
ij

11
L

†
iHu

2
i /̂

1
H

†
uLj

2
+

1
L

†
iH̃d

2
i /̂

1
H̃

†
dLj

22
. (2)

When the Higgs doublets acquire VEVs, ”Ld=6 leads to corrections to the light neutrino
kinetic terms, which become non-diagonal. The necessary rotation and normalisation to
bring the neutrino kinetic terms to its canonical form induces deviations of unitarity in the
leptonic mixing matrix that appears in the charged current (CC) interactions.

In the full theory, the renormalisable Yukawa and mass Lagrangians of this minimal
model contain the following terms

LMS
Yuk = y

‹
i HuLi‹

c + ‘1y
‹Õ
i H̃dLi‹

c + h.c. , (3)

and

LMS
mass = M

‹
‹

c
‹c + h.c. , (4)

where the transposes in the leptons have been omitted to shorten notation. We assume
that the Yukawa couplings between the left-handed neutrinos ‹i, the vector-like neutrino

4
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In terms of the Yukawa couplings, the light neutrino mass matrix of Eq. (11) built up
from the Dirac and Majorana mass matrices of Eq. (6) reads

m̂ij = ‘1vv
Õ

M ‹

1
y

‹
i y

‹Õ
j + y

‹Õ
i y

‹
j

2
, (14)

where it can be seen that the smallness of the light neutrino masses stem not only from the
suppression of M

‹ , but also from the small size of ‘1
4. On the other hand, the deviations of

unitarity will be

÷ij = 1
2M ‹2

1
v

2
y

‹ú
i y

‹
j + ‘

2
1v

Õ2
y

‹Õú
i y

‹Õ
j

2
ƒ v

2

2M ‹2 y
‹ú
i y

‹
j , (15)

where the second term can be safely neglected since it would be of the order of the neutrino
mass scale squared over v

2. Therefore, in this model the deviations of unitarity of the
PMNS matrix are not suppressed by ‘1, and could be arbitrarily large. At leading order,
the deviations of unitarity are thus determined only by the first row of mD containing the
3 complex Yukawa couplings y

‹
i , and the mass scale of the vector-like neutrino M

‹ .

However, since both ÷ and m̂ are built from mD and MN , they may not be fully indepen-
dent. This implies that in determinate cases, ÷ could be partially reconstructed from m̂, and
therefore, from the observed pattern of neutrino masses and mixings in neutrino oscillation
experiments. In the particular case of this minimal scenario, the Yukawa couplings y

‹
i4 (y‹Õ

i4)
of Eq. (6) will be determined [60] up to an overall factor y (yÕ) from the elements of the
PMNS mixing matrix, and the two mass squared splittings, �m

2
sol and �m

2
atm. Notice that

in this minimal scenario just two light neutrinos get masses, and that therefore, the lightest
neutrino is strictly massless5. On the other hand, since the hierarchy of the neutrinos is not
determined yet, there will be two possible relations for the Yukawa couplings. For a normal
hierarchy (NH), m1 = 0 and the Yukawa couplings read

y
‹
i = yÔ

2
1Ô

1 + fl (Uú
PMNS)i3 +

Ô
1 ≠ fl (Uú

PMNS)i2

2
, (16)

y
‹Õ
i = y

Õ
Ô

2
1Ô

1 + fl (Uú
PMNS)i3 ≠

Ô
1 ≠ fl (Uú

PMNS)i2

2
,

where y and y
Õ are real numbers, and where fl = (1≠

Ô
r)/(1+

Ô
r) with r © |�m

2
sol|/|�m

2
atm| =

�m
2
21/�m

2
31. While for an inverted hierarchy (IH), m3 = 0 and the Yukawa couplings are

given by

y
‹
i = yÔ

2
1Ô

1 + fl (Uú
PMNS)i2 +

Ô
1 ≠ fl (Uú

PMNS)i1

2
, (17)

y
‹Õ
i = y

Õ
Ô

2
1Ô

1 + fl (Uú
PMNS)i2 ≠

Ô
1 ≠ fl (Uú

PMNS)i1

2
,

where now fl = (1 ≠
Ô

1 + r)/(1 +
Ô

1 + r) with r = �m
2
21/�m

2
32. As a result, all the

neutrino phenomenology of this minimal scenario is described by five free parameters: two

4 A suppression from v
Õ is not considered since it must give rise to the down-type quark masses, and in

particular to the bottom quark mass, in the general model [29].
5 The lightest neutrino is still massless when the 1-loop neutrino mass corrections that arise from the

neutrino self-energy are considered [61].
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In terms of the Yukawa couplings, the light neutrino mass matrix of Eq. (11) built up
from the Dirac and Majorana mass matrices of Eq. (6) reads

m̂ij = ‘1vv
Õ

M ‹

1
y

‹
i y

‹Õ
j + y

‹Õ
i y

‹
j

2
, (14)

where it can be seen that the smallness of the light neutrino masses stem not only from the
suppression of M

‹ , but also from the small size of ‘1
4. On the other hand, the deviations of

unitarity will be

÷ij = 1
2M ‹2

1
v

2
y

‹ú
i y

‹
j + ‘

2
1v

Õ2
y

‹Õú
i y

‹Õ
j

2
ƒ v

2

2M ‹2 y
‹ú
i y

‹
j , (15)

where the second term can be safely neglected since it would be of the order of the neutrino
mass scale squared over v

2. Therefore, in this model the deviations of unitarity of the
PMNS matrix are not suppressed by ‘1, and could be arbitrarily large. At leading order,
the deviations of unitarity are thus determined only by the first row of mD containing the
3 complex Yukawa couplings y

‹
i , and the mass scale of the vector-like neutrino M

‹ .

However, since both ÷ and m̂ are built from mD and MN , they may not be fully indepen-
dent. This implies that in determinate cases, ÷ could be partially reconstructed from m̂, and
therefore, from the observed pattern of neutrino masses and mixings in neutrino oscillation
experiments. In the particular case of this minimal scenario, the Yukawa couplings y

‹
i4 (y‹Õ

i4)
of Eq. (6) will be determined [60] up to an overall factor y (yÕ) from the elements of the
PMNS mixing matrix, and the two mass squared splittings, �m

2
sol and �m

2
atm. Notice that

in this minimal scenario just two light neutrinos get masses, and that therefore, the lightest
neutrino is strictly massless5. On the other hand, since the hierarchy of the neutrinos is not
determined yet, there will be two possible relations for the Yukawa couplings. For a normal
hierarchy (NH), m1 = 0 and the Yukawa couplings read

y
‹
i = yÔ

2
1Ô

1 + fl (Uú
PMNS)i3 +

Ô
1 ≠ fl (Uú

PMNS)i2

2
, (16)

y
‹Õ
i = y

Õ
Ô

2
1Ô

1 + fl (Uú
PMNS)i3 ≠

Ô
1 ≠ fl (Uú

PMNS)i2

2
,

where y and y
Õ are real numbers, and where fl = (1≠

Ô
r)/(1+

Ô
r) with r © |�m

2
sol|/|�m

2
atm| =

�m
2
21/�m

2
31. While for an inverted hierarchy (IH), m3 = 0 and the Yukawa couplings are

given by

y
‹
i = yÔ

2
1Ô

1 + fl (Uú
PMNS)i2 +

Ô
1 ≠ fl (Uú

PMNS)i1

2
, (17)

y
‹Õ
i = y

Õ
Ô

2
1Ô

1 + fl (Uú
PMNS)i2 ≠

Ô
1 ≠ fl (Uú

PMNS)i1

2
,

where now fl = (1 ≠
Ô

1 + r)/(1 +
Ô

1 + r) with r = �m
2
21/�m

2
32. As a result, all the

neutrino phenomenology of this minimal scenario is described by five free parameters: two

4 A suppression from v
Õ is not considered since it must give rise to the down-type quark masses, and in

particular to the bottom quark mass, in the general model [29].
5 The lightest neutrino is still massless when the 1-loop neutrino mass corrections that arise from the

neutrino self-energy are considered [61].

7

Light effective neutrino matrix

Unitarity violation due to large y

Assume
Hd 
couplings 
small

‹
c
4 and H̃d in Eq. (3) are suppressed by ‘1. This assumption allows the Yukawa couplings

between the left-handed neutrinos ‹i, the vector-like neutrino ‹
c
4 and Hu in Eq. (3) to be

large, leading to possibly observable violations of unitarity. The key point here is that the
e�ective Weinberg-like operator for neutrino mass involves both the Higgs doublets and
hence the Yukawa coupling to Hu may be large if that to H̃d is small, for a given neutrino
mass. This is not possible for the usual Weinberg operator arising from the conventional
seesaw mechanism, which makes the novel seesaw mechanism discussed here interesting.

In the following basis, the full neutrino mass matrix reads

M
‹ =

‹1 ‹2 ‹3 ‹
c

‹c

Q

ccccccccccca

R

dddddddddddb

‹1 0 0 0 y
‹
1v ‘1y

‹Õ
1 v

Õ

‹2 0 0 0 y
‹
2v ‘1y

‹Õ
2 v

Õ

‹3 0 0 0 y
‹
3v ‘1y

‹Õ
3 v

Õ

‹
c

y
‹
1v y

‹
2v y

‹
3v 0 M

‹

‹c ‘1y
‹Õ
1 v

Õ
‘1y

‹Õ
2 v

Õ
‘1y

‹Õ
3 v

Õ
M

‹ 0

©

Q

ca
0 m

T
D

mD MN

R

db , (5)

where v = vEW/
Ô

2 ƒ 174 GeV and v
Õ are the VEVs of the Higgs Hu and Hd, respectively,

and where the Dirac and Majorana mass matrices are defined as

mD =

‹1 ‹2 ‹3
Q

a

R

b
‹

c
y

‹
1v y

‹
2v y

‹
3v

‹c ‘1y
‹Õ
1 v

Õ
‘1y

‹Õ
2 v

Õ
‘1y

‹Õ
3 v

Õ
and MN =

‹
c

‹c

Q

a

R

b
‹

c 0 M
‹

‹c M
‹ 0

. (6)

The neutrino mass matrix of Eq. (5) is diagonalised by the full unitary matrix U

U
T

Q

ca
0 m

T
D

mD MN

R

db U =

Q

ca
m

diag 0

0 M
diag

R

db , (7)

where m
diag and M

diag are the diagonal matrices containing the masses of the light and heavy
sectors, respectively. In all generality, this diagonalisation can be done as the product of two
consecutive rotations. This first rotation is a block-diagonalisation, while the second matrix
contains the two unitary rotations V and V

Õ that diagonalise the masses of the light and
heavy neutrinos, respectively. Since the rotation between the two heavy states is unphysical,
V

Õ = I can be used, and thus, the full unitary neutrino mixing matrix U is given by

U =

Q

ca
A11 A12

A21 A22

R

db

Q

ca
V 0

0 I

R

db , (8)

where the block-diagonalisation can be parametrise as the exponential of a block o�-diagonal

5

Field SU(3)c SU(2)L U(1)Y U(1)Õ

Qi 3 2 1/6 0

u
c
i 3 1 ≠2/3 0

d
c
i 3 1 1/3 0

Li 1 2 ≠1/2 0

e
c
i 1 1 1 0

‹
c 1 1 0 1

‹c 1 1 0 ≠1

„ 1 1 0 1

Hu 1 2 1/2 ≠1

Hd 1 2 ≠1/2 ≠1

TABLE I. The minimal model consists of three left-handed families Âi = Qi, Li and its CP conju-
gated right-handed fields Â

c
i = u

c
i , d

c
i , e

c
i (i = 1, 2, 3), and two CP conjugated right-handed neutrinos

‹
c
, ‹c which carry opposite charge under the U(1)Õ gauge group, together with the U(1)Õ-breaking

scalar field „ and the two Higgs scalar doublets Hu and Hd which are charged under U(1)Õ. No-
tice that all the fermions of this table are left-handed spinors and the bars indicate conjugate
representations under the SM gauge group.

At dimension 6, the only e�ective operator that is generated at tree level is [52]

”Ld=6 = c
d=6
ij

11
L

†
iHu

2
i /̂

1
H

†
uLj

2
+

1
L

†
iH̃d

2
i /̂

1
H̃

†
dLj

22
. (2)

When the Higgs doublets acquire VEVs, ”Ld=6 leads to corrections to the light neutrino
kinetic terms, which become non-diagonal. The necessary rotation and normalisation to
bring the neutrino kinetic terms to its canonical form induces deviations of unitarity in the
leptonic mixing matrix that appears in the charged current (CC) interactions.

In the full theory, the renormalisable Yukawa and mass Lagrangians of this minimal
model contain the following terms

LMS
Yuk = y

‹
i HuLi‹

c + ‘1y
‹Õ
i H̃dLi‹

c + h.c. , (3)

and

LMS
mass = M

‹
‹

c
‹c + h.c. , (4)

where the transposes in the leptons have been omitted to shorten notation. We assume
that the Yukawa couplings between the left-handed neutrinos ‹i, the vector-like neutrino

4
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FIG. 3. Allowed region of the free parameters y and M
‹ in the minimal scenario when the present

bound [63] on µ æ e“ is considered. For each hierarchy, the boundary ranges from the solid to the
dashed line depending on the values of the phases ” and –. The pink region corresponds to NH
while the blue region corresponds to IH.

constrain on ÷12 of Eq. (21) and a NH (IH) in the light neutrino sector is considered. The
allowed region depends on the CP-violating phase ” and the Majorana phase – of the PMNS
matrix. The boundaries of the allowed regions depend on the values of the free phases ”

and –. For a NH (IH), the solid line correspond to ” = – = 0 (” ƒ fi/2, – ƒ 9fi/10) and
can be relaxed until the dashed line which corresponds to ” = 0 and – = 2fi (” = – = 0).
For the numerical analysis, the central values of the ◊ij mixing angles of the PMNS matrix,
the solar and the atmospheric mass splittings of the NuFIT 4.0 [64] have been adopted.

III. RENORMALISABLE TYPE IB (PLUS TYPE IA) SEESAW MODEL

The model of the previous Section does not allow renormalisable Yukawa couplings for
the charged fermions and so must be extended somehow. Here we identify the two right-
handed neutrinos as originating from a fourth vector-like family, whose presence also allows
for the generation of e�ective Yukawa couplings. Notice that the vector-like structure makes
the model anomaly-free since the anomalies cancel between conjugate representations in the
fourth family [27].

The particle content of the general model that we consider here consists in three left-
handed families Âi = Qi, Li, the CP conjugated right handed families Â

c
i = u

c
i , d

c
i , e

c
i

(excluding the right-handed neutrinos) and a fourth vector-like left-handed family consist-
ing in Â4 = Q4, L4, and Â

c
4 = u

c
4, d

c
4, e

c
4, ‹

c
4 and the conjugate representations Â4 = Q4, L4,

and Â
c
4 = u

c
4, d

c
4, e

c
4, ‹

c
4. Here we identify ‹

c
4 and ‹

c
4 with ‹

c and ‹c of the minimal type Ib
seesaw model of the previous Section. So far we have not included any genuine right-handed
neutrino N

c (neutral under U(1)Õ). However, later in this Section we shall consider the
additional e�ect of including (in addition to the fourth family states) one CP conjugated
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Li

Hu

�c
4

M �
4

�c
4

�

N c

Li

�

L4

ML
4

L4

Hu

N c

• Heavy neutrino contribution to µ � e�

µ

W�, ��

�n

W�, ��

�

e

FIG. 2. Diagram showing the extra neutrino contributions to µ æ e“. Here ‹n refers to the
neutrinos in the mass basis, and „

≠ represents the Goldstone boson.

real numbers y and y
Õ, two phases ” and –, and one mass scale M

‹
4 . But only four of them

will enter in the description of the deviations of unitarity through Eq. (15).

Since the presence of the extra heavy vector-like neutrinos induces deviation of unitarity
in the PMNS matrix, the GIM cancellation [62] that suppresses flavour-changing processes is
lost. As a result, the present limits on LFV processes will set a strong constrain on the non-
unitarity of the leptonic mixing matrix, and therefore on the free parameters of the minimal
scenario y, ” and – through Eq. (15). In particular, the nowadays strongest constrain on
the elements of the ÷ matrix comes from µ æ e“. Figure (2) shows the extra contribution
to the radiative decay µ æ e“ in presence of the vector-like neutrinos of the model.

The contribution to the branching ratio from both the heavy vector-like neutrinos and
the light neutrinos ‹i is given by

� (µ æ e“)
� (µ æ e‹µ‹e)

= 3–

32fi

|
5ÿ

n=1
U2nU

†
n1F (xn)|2

(UU †)11 (UU †)22
, (18)

where xn = M
2
n/M

2
W , and where F (xn) reads

F (xn) = 10 ≠ 43xn + 78x
2
n ≠ (49 ≠ 18 log xn) x

3
n + 4x

4
n

3 (xn ≠ 1)4 , (19)

For masses of the vector-like neutrinos M
‹ ∫ MW , the sum in Eq. (18) can be separated

in light and heavy sectors factorizing the corresponding F (xn) function. In particular, for
heavy neutrinos with masses M

‹ & 1 TeV

� (µ æ e“)
� (µ æ e‹µ‹e)

ƒ 3–

8fi
|÷21|2

1
F (xn) ≠ F (0)

22 . 3–

2fi
|÷21|2 , (20)

where can be seen that the loss of the GIM cancellation comes from the di�erence of the two
mass scales involved, and the non-unitarity of the leptonic mixing matrix. When comparing
with the existing present experimental limit [63] of the radiative decay, the following upper
bound at 1‡ is derived [50]

|÷21| Æ 8.4 · 10≠6
. (21)

In Figure 3 the allowed region of the free parameters of the minimal scenario is shown.
The pink (blue) regions correspond to the allowed values of y and M

‹ when the present
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6d 
models

(a) Torus T 2
defined in terms of a lat-

tice on the complex plane by the lat-

tice vectors !1 and !2. In our model,

!1 = 1, !2 = ! = ei2⇡/3
.

(b) The lattice is left invariant un-

der the S-transformation in Eq. 24.

The S-transformed lattice vectors are

!0
1 = ! and !0

2 = �1, see Eq. 25.

(c) The lattice is left invariant un-

der the T -transformation in Eq. 24.

The T -transformed lattice vectors

are !0
1 = �1 � ! and !0

2 = �!, see
Eq. 25.

Figure 1: Visualization of the lattice invariant transformations, S and T .

di↵erences of the present paper as compared to recent works with modular symmetries
which regard the modulus ⌧ as a free phenomenological parameter [15, 16]. In our work,
we assume a specific orbifold T

2
/Z2, for which we have shown that one consistent choice

for a surviving modular symmetry is A4 with fixed modulus ⌧ = ! = e
i2⇡/3, although we

shall not address the problem of moduli stabilisation.

2.4 Remnant brane symmetry for T
2
/Z2 with ! = e

i2⇡/3

So far we have shown that the choice of orbifold T
2
/Z2 is consistent with the finite

modular symmetry A4 for a modulus ⌧ = ! = e
i2⇡/3 (with no other choice of finite

modular symmetry and only two values of modulus being consistent). Now we will take
a step back, and forget about modular symmetry for a while, and just consider the
symmetries of the branes with a twist angle ! = e

i2⇡/3. We will discover an A4 symmetry
that is apparently nothing to do with modular symmetry, which we refer to as “remnant
A4 symmetry”. (In the next subsection we shall show how “remnant A4 symmetry” is
related to the previous A4 finite modular symmetry.)

In this section, then, we shall study the orbifold T
2
/Z2 with the twist angle ! = e

i2⇡/3

independently of any modular symmetry considerations. We will find that the branes are
invariant under an A4 symmetry which can be identified as a remnant symmetry of the
spacetime symmetry after it is broken down to the 4d Poincaré symmetry through orbifold
compactification. Here, we assume that the spacetime symmetry before compactification
is a 6d Poincaré symmetry. The compactification breaks part of this symmetry. However,
due to the geometry of our orbifold with twist angle ! = e

i2⇡/3, a discrete subgroup is
left unbroken. This group may be generated by the spacetime transformations (which
belong to the extra dimensional part of the 6d Poincaré)

S : z ! z + 1/2 or z ! z + !/2,

T : z ! !
2
z,

U : z ! z
⇤ or z ! �z

⇤
,

(27)

which permute the branes and leave invariant the set of 4 branes in Eq. 23. These
transformations satisfy

S
2 = T

3 = (ST )3 = 1,

U
2 = (SU)2 = (TU)2 = (STU)4 = 1,

(28)
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Level 3 Weight 2
acts as A4 triplet:

that there are three linearly independent such forms, which we call Yi(⌧). Three linearly
independent weight 2 and level-3 forms are constructed in the Appendix C. They read:

Y1(⌧) =
i

2⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� +
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� +
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

� � 27⌘0(3⌧)

⌘(3⌧)

#

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !2 ⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

(28)

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !2 ⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

.

where ⌘(⌧) is the Dedekind eta-function, defined in the upper complex plane:

⌘(⌧) = q1/24
1Y

n=1

(1� qn) q ⌘ ei2⇡⌧ . (29)

They transform in the three-dimensional representation of A4. In a vector notation where
Y T = (Y1, Y2, Y3) we have

Y (�1/⌧) = ⌧ 2 ⇢(S)Y (⌧) , Y (⌧ + 1) = ⇢(T )Y (⌧) ,

with unitary matrices ⇢(S) and ⇢(T )

⇢(S) =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , ⇢(T ) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A , ! = �1

2
+

p
3

2
i .

The q-expansion of Yi(⌧) reads:

Y1(⌧) = 1 + 12q + 36q2 + 12q3 + ...

Y2(⌧) = �6q1/3(1 + 7q + 8q2 + ...)

Y3(⌧) = �18q2/3(1 + 2q + 5q2 + ...) .

From the q-expansion we see that the functions Yi(⌧) are regular at the cusps. Moreover
Yi(⌧) satisfy the constraint:

Y 2
2 + 2Y1Y3 = 0 . (30)

As discussed explicitly in Appendix D, the constraint (30) is essential to recover the correct
dimension of the linear space M2k(�(3)). On the one side from table 1 we see that this
space has dimension 2k + 1. On the other hand the number of independent homogeneous
polynomial Yi1Yi2 · · · Yik of degree k that we can form with Yi is (k + 1)(k + 2)/2. These
polynomials are modular forms of weight 2k and, to match the correct dimension, k(k�1)/2
among them should vanish. Indeed this happens as a consequence of eq. (30). Therefore
the ring M(�(3)) is generated by the modular forms Yi(⌧) (i = 1, 2, 3).
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kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the
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Weinberg 
operator

kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the
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Figure 1: Fundamental domain for �(3).

be constructed by fundamental domain F = {⌧ 2 H|� 1/2  Re ⌧  1/2 and |⌧ | � 1} of
SL(2,Z) [39].

The modular forms of weight 2k and level N = 3 form a linear space M2k(�(3)), and
its dimension turns out to be 2k + 1 [25, 40]. For the lowest nontrivial weight 2k = 2,
the dimension is equal to 3. The modular space M2k(�(3)) can be constructed from the
Dedekind eta-function.

3 Modular forms of weight 2, 4, 6 at level N = 3

The modular form of modular weight 2 at level N = 3 have been given in ref []:

Y1(⌧) =
i

2⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

◆
,

Y2(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !2⌘

0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
,

Y3(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !2⌘

0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
(10)

where ! = e2⇡i/3 , and ⌘(⌧) is the Dedekind eta-function, which is written by

⌘(⌧) = q1/24
1Y

n=1

(1� qn) (11)

where q = e2⇡i⌧ . The q�expansion of Yi reads:

Y =

0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .
�6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )
�18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

1

A (12)

4 τ =
ω2

ω1

Modular Forms
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Models mass matrices
assignment weight

⇢Ec
1,2,3

kEc
1,2,3

kL kNc

A1 W1, C1 1,1,1 1, 3, 5 1 �

A2 W1, C2 10,10,10 1, 3, 5 1 �

A3 W1, C3 100,100,100 1, 3, 5 1 �

Weinberg A4 W1, C4 1,1,10 1, 3, 1 1 �

A5 W1, C5 1,1,100 1, 3, 1 1 �

operator A6 W1, C6 10,10,1 1, 3, 1 1 �

A7 W1, C7 100,100,1; 1, 3, 1 1 �

A8 W1, C8 100,100,10 1, 3, 1 1 �

A9 W1, C9 10,10,100 1, 3, 1 1 �

A10 W1, C10 1,100,10 1, 1, 1 1 �

B1(C1)[D1] S1(S2)[S3], C1 1,1,1 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]
B2(C2)[D2] S1(S2)[S3], C2 10,10,10 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]
B3(C3)[D3] S1(S2)[S3], C3 100,100,100 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]

Type I B4(C4)[D4] S1(S2)[S3], C4 1,1,10 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B5(C5)[D5] S1(S2)[S3], C5 1,1,100 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]

see-saw B6(C6)[D6] S1(S2)[S3], C6 10,10,1 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B7(C7)[D7] S1(S2)[S3], C7 10,10,100 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B8(C8)[D8] S1(S2)[S3], C8 100,100,1 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B9(C9)[D9] S1(S2)[S3], C9 100,100,10 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]

B10(C10)[D10] S1(S2)[S3], C10 1,100,10 0(3)[1], 0(3)[1], 0(3)[1] 2(�1)[1] 0(1)[1]

Table 4: The summary of models. notice that parentheses and brackets respresent other two classes that
they are only di↵erent in neutrino sector.

5 Numerical Analysis

In this section we will discuss the numerical results for our models that have listed
in previous section. Since some phases can be absorbed through field redefinition, some
coupling constants of the models can be taken to be real. We first count the number of
independent real free parameters of each model. For instance, we can rephase the charged
lepton superfields Ec

1, E
c
2, E

c
3 to make the parameters ↵, �, �, �1 real while the phase of �2

can not be removed. Thus the charged lepton mass matrix depends on the independent
real parameters �/↵, �/↵, �1/↵, |�2/↵|,Arg(�2/↵) except the overall scale factor ↵vd. If the
neutrino masses originate from the Weinberg operator, the e↵ective neutrino mass matrix
would be expressed in terms of modular forms as functions of the modulus ⌧ besides the
overall factor v2u/⇤. If the neutrino masses are generated through the seesaw mechanism,
the light neutrino mass matrix has two independent real parameters |g2/g1|,Arg(g2/g1) and
the overall scale factor is g21v

2
u/⇤ which controls the absolute scale of neutrino masses, as can

seen from table 3. In this way, we can easily read out the independent real input parameters
of our models and the results are collected in table 6.

It’s convenience for us to fit them by choosing the corresponding dimensionless observable
quantities. In this paper we uniformly choose six accurately known dimensionless observable
quantities:

Qi = {sin2 ✓12, sin
2 ✓13, sin

2 ✓23, r, me/mµ, mµ/m⌧} (57)

The Best-fit values and 1� errors have listed in the Table 5.
There are many popular approach to exploring the parameter space, for instance, �2

optimization by a grid or random sample , the advantage of pre-determining the ranges and
step size for each parameter and thus of being able to control exactly which points in the
parameter space will be probed, but it also has obvious limitations, Firstly, the number of
points required scales as kN , where N is the dimentions of the parameter space and k is
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By scanning the parameter space, we find the minimum �2 values, then the free dimensionless
parameters has been determined by the way. Finally, to determine the overall factors, we
need to use the quantities which have absolute magnitude, i.e me, mµ, m⌧ , �m2

21 and �m2
31.

2 We restrict the free parameter space in the following way:

�/↵, �/↵, �1/↵, |�2/↵|, |g2/g1| 2 [0, 104], (59)

Arg(�2/↵) Arg(g2/g1) 2 [0, 2⇡] (60)

and ⌧ is taken from the fundamental domain F3 (see the Fig. 1). Due to the underlying theory
enjoys the modular symmetry �̄, namely the vacua related by modular transformations are
physically equivalent [33], moreover the theory enjoys a ”conjugation symmetry”, namely
when

⌧ ! �⌧ ?, gi ! g?i , (61)

this transformation leaves lepton masses and mixing angles unchanged while the signs of
both Dirac and Majorana CP phases would be flipped. Hence it is su�cient to limit in the
range Re⌧ > 0 during the numerical analysis. So in practice, we can restrict ⌧ in this way:
Re ⌧ 2 [0, 0.5], |⌧ | > 1. The predictions of the mixing parameters in the conjugate region
Re⌧ 2 [�0.5, 0] can be easily obtained by only shifting the overall signs of the Dirac as well
as Majorana CP phases. Hence all the numerical results given in the following come in pair
with opposite CP violation phases. We listed the final numerical results in the following.

5.1 Numerical results of the models

We have extensively scanned over the parameter space of for each model. The basic
situation of numerical analysis is shown in the table 7

Models
Ordering

Models
Ordering

Models
Ordering

Models
Ordering

NO IO NO IO NO IO NO IO
A1 8 8 B1 4 4 C1 8 8 D1 4 4
A2 8 8 B2 4 4 C2 8 8 D2 4 4
A3 8 8 B3 4 4 C3 8 8 D3 4 4
A4 8 8 B4 8 8 C4 8 8 D4 8 4
A5 8 8 B5 8 8 C5 8 8 D5 4 8
A6 8 8 B6 8 4 C6 8 8 D6 4 8
A7 8 8 B7 8 8 C7 8 8 D7 4 4
A8 8 8 B8 8 8 C8 8 8 D8 4 4
A9 8 8 B9 4 4 C9 8 8 D9 4 4
A10 8 8 B10 4 4 C10 8 8 D10 4 4

Table 7: The summary of numerical results of all models for NO and IO ordering. 8 represents the best-fit
value of the model fall in the 3� range of the experimental. In contrast, 4 represents the best-fit value of
the model exceed the 3� range of the experimental. It can be seen that the modelA1 ⇠ A10 and C1 ⇠ C10
are not consistent with the experimental.

Next we report the details of numerical results of the some of these ”4” models. Our
main interest is the case of NO ordering, moreover as few parameters as possible in the
models. Thus we select the models B9, B10, D5 ⇠ D10 with NO ordering as the our main
numerical analysis objects, and for the case of IO ordering, we give a good example: model
D10. The results of the numerical analysis are summarized in tables 8-12. Then we display

2In this paper, we only use the �m
2
21 to determine the overall factors.
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5 Conclusion

In this paper we have provided a comprehensive analysis of lepton masses and mixing in
theories with �3

⇠= A4 modular symmetry, where the single modulus field ⌧ is the unique
source of flavour symmetry breaking, with no flavons allowed, and all masses and Yukawa
couplings are modular forms. Similar to previous analyses, we have discussed all the simplest
neutrino sectors arising from both the Weinberg operator and the type I seesaw mechanism,
with lepton doublets and right-handed neutrinos assumed to be triplets of A4. Unlike previ-
ous analyses, we have allowed right-handed charged leptons to transform as all combinations
of 1, 10 and 100 representations of A4, using the simplest di↵erent modular weights to break
the degeneracy, leading to ten di↵erent charged lepton Yukawa matrices, instead of the usual
one.

The above considerations imply ten di↵erent Weinberg models, labelled as A1-A10, and
thirty di↵erent type I seesaw models, labelled as B1-B10, C1-C10, D1-D10, which we have anal-
ysed in detail, in the form of extensive sets of figures and tables. The results of the numerical
analysis are summarised in table 6, where we see that fourteen models for both NO and IO
can accommodate the data, indicated by “4”, where the original model corresponds to the
case of D10 and all the other successful models are new. Interestingly, most of the successful
patterns B9, B10, D5 ⇠ D10 (apart from D5 ⇠ D6) predict tightly constrained values for
the mixing parameters and large neutrino mass observables |mee| and mmin, together with
approximately maximal Dirac phase. There are also other interesting correlations among
the mixing parameters for these models.

The most successful models B9, B10, D5 ⇠ D10 all contain six real free parameters and two
overall mass scales, describing the entire lepton sector (three charged lepton masses, three
neutrino masses, three lepton mixing angles and three CP violating phases). These are the
minimal models of �3 modular-invariant supersymmetry theories allowed by experiment. The
results presented here provide new opportunities for A4 modular symmetry model building,
including possible extensions to the quark sector.
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Models mass matrices
assignment weight

( ⇢Ec , ⇢L , ⇢Nc ) kE1,2,3 kL kNc

A1 W1 (1,3 ,�) � 1 �
A2 W2 (1,30 ,�) � 1 �
A3 S1 (1,3 ,3) � 2 0

With A4 S2 (1,3 ,3) � �1 1
flavons A5 S3 (1,30 ,3) � 2 0

A6 S4 (1,3 ,30) � 2 0
A7 S5 (1,30 ,30) � 2 0
A8 S6 (1,30 ,30) � �1 1

B1 C1 , W1 (1 ,3 ,�) 1 , 3 , 5 1 �
B2 C2 , W2 (1 ,30 ,�) 1 , 3 , 5 1 �
B3 C1 , S1 (1 ,3 ,3) 0 , 2 , 4 2 0

Without B4 C1 , S2 (1 ,3 ,3) 3 , 5 , 7 �1 1
flavons B5 C2 , S3 (1 ,30 ,3) 0 , 2 , 4 2 0

B6 C1 , S4 (1 ,3 ,30) 0 , 2 , 4 2 0
B7 C2 , S5 (1 ,30 ,30) 0 , 2 , 4 2 0
B8 C2 , S6 (1 ,30 ,30) 3 , 5 , 7 �1 1

Table 4: The summary of models and the corresponding predictions for neutrino and charged lepton mass
matrices. For the models with flavons in the charged lepton sector, the weights of the right-handed charged
leptons should satisfy the constraint in Eq. (B.4a), i.e. kE1 = 5kE3 + 4kL and kE2 = 4kE3 + 3kL.

Models free input parameters pi overall factors

A1, A2 {Re ⌧, Im ⌧} v2u/⇤
With A4, A5, A6, A8 {Re ⌧, Im ⌧} g2v2u/⇤

flavons A3, A7 {Re ⌧, Im ⌧, |g1/g2|, Arg(g1/g2)} g22v
2
u/⇤

B1, B2 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|, Arg(�2/↵)} ↵vd, v2u/⇤
Without B4, B5, B6, B8 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|, Arg(�2/↵)} ↵vd, g2v2u/⇤

flavons B3, B7 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|,
Arg(�2/↵), |g1/g2|, Arg(g1/g2)}

↵vd, g22v
2
u/⇤

Table 5: The input parameters of each model, where the freedom of field redefinition has been used to absorb
the physically irrelevant phases. Notice that the values of the input parameters are real.
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◆
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1
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0

◆
, where ⌧

0 =
!
0
2

!
0
1

=
a⌧ + b

c⌧ + d
. (4)

A SL(2,Z) transformation on the modulus parameter ⌧ and its negative are equivalent,
as can be seen from equations 2 and 4. Therefore, we can use the infinite discrete group
PSL(2,Z) = SL(2,Z)/Z2, generated by

S : ⌧ ! �1/⌧ and T : ⌧ ! ⌧ + 1, (5)

to describe the transformations that relates equivalent tori. This is also called the modular
group �̄ satisfying �̄ = �/{±1}5. The generators of the infinite dimensional modular
group can be also written as

S =

✓
0 1
�1 0

◆
, T =

✓
1 0
1 1

◆
. (6)

They satisfy the presentation

� ' {S, T |S2 = (ST )3 = I}/{±1}, (7)

where S, T 2 SL(2,Z).

We will be considering the finite dimensional discrete subgroups by imposing an additional
constraint on T

N , where N is a positive integer,

�N ' {S, T |S2 = (ST )3 = T
N = I}, (8)

where S, T 2 SL(2,ZN). These groups, with small N are isomorphic to the known
discrete groups as �2 ' S3, �3 ' A4, �4 ' S4,�5 ' A5.

The physical action of the discrete modular transformations �̄M = SL(2,ZN)/{±1} [14]
fulfill the presentation

�̄M ' {S, T |S2 = (ST )3 = T
M = I}/{±1}, (9)

since any model built with modular symmetries is invariant under the change of sign.

We now introduce a convenient (if non-unique) representation for the modular transfor-
mations consistent with the presentation in Eq.9,

S =

✓
0 1
�1 0

◆
, T(M) =

✓
e
�2i⇡/M 0
1 e

2i⇡/M

◆
, (10)

which satisfies the presentation of the �̄M group, for any integer M > 2. This represen-
tation will be useful in the following discussion.

5The modular group � refers to SL(2,Z), while �̄ is used for PSL(2,Z) and takes into account the
equivalence of an SL(2,Z) matrix and its negative.
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2.2 Why the orbifold T
2
/Z2 suggests modular A4 symmetry with

fixed modulus ⌧ = ! = e
i2⇡/3

or ⌧ = ! + 1

In this subsection we present an argument which shows that a particular T 2
/Z2 orbifold

(as assumed in this paper) suggests an underlying modular A4 symmetry with fixed
modulus parameter ⌧ = ! = e

i2⇡/3 or ⌧ = ! + 1. More precisely, we shall show that
this is the only possible finite modular symmetry and modulus value consistent with the

orbifold T
2
/Z2.

We begin by defining the orbifold T
2
/Z2 in terms of two arbitrary lattice vectors !1 and

!2,

z = z + !1,

z = z + !2,

z = �z.

(11)

The action of the orbifold in equation 11 leaves 4 invariant 4d branes given by 6

z̄ =

⇢
0,

!1

2
,
!2

2
,
!1 + !2

2

�
. (12)

After compactification, the symmetries of the branes remain unbroken, therefore it is
relevant to study any possible symmetry among the branes which will a↵ect the fields
allocated on them. At this stage the modulus ⌧ = !2/!1 can apparently take any value.
However we shortly present a proof that, by considering the e↵ect of modular symmetry
on the branes, the only consistent surviving finite modular subgroup is A4 with fixed
⌧ = !2/!1 = e

i2⇡/3 or ⌧ = ! + 1.

The proof will determine for which values of !1 and !2 (corresponding to the orbifold in
Eq. 11) the branes are left invariant under the finite modular transformations in Eq. 10.
In order to do this, we will apply the convenient representation of the finite modular
transformations in Eq. 10 on the general set of branes in Eq. 12 and see if there is any
solution (i.e. any value of !1,!2 and M) for which the branes are left invariant. The
result will be that the only consistent choice is �̄3 = A4 with ⌧ = ! or ⌧ = ! + 1.

Proof

Applying the finite modular transformation in Eq. 10 on the lattice vectors gives,

S

✓
!1

!2

◆
=

✓
!2

�!1

◆
, T(M)

✓
!1

!2

◆
=

✓
e
�2i⇡/M

!1

!1 + e
2i⇡/M

!2

◆
. (13)

The S-transformed branes are then

z̄
0
S =

⇢
0,

!2

2
,
�!1

2
,
!2 � !1

2

�
. (14)

Using the orbifold transformations from Eq. 11, we can add !1 to the second and fourth
branes, and obtain the original set. Therefore the brane set is always invariant under the
S transformation, for any value of !1 and !2.

6The notation for the lattice vectors !1,2 should not be confused with the twist angle ! = ei2⇡/3.

4

Modular Symmetry and orbifolds

We show that for the orbifold

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main
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30 Chapter 1 Introduction

is a regular tetrahedron with vertices at the four fixed points. If one assumes that the

space-time symmetry, before compactification, consisted of the 6D translations and 6D

proper Lorentz transformations, then the orbifold has broken it to the 4D space-time

symmetry times the discrete group of rotations and translations A4. This group can be

generated by two transformations

S : z ! z +
1

2

T : z ! !z, where ! ⌘ �2.
(1.71)

Figure 1.3: Orbifold T2/Z2 with fixed points (z1, z2, z3, z4) and fundamental domain outlined
in bold. The segments with same label are identified one with each other such that the orbifold
is exactly a regular tetrahedron with edges a, b, c, d, e, f and vertices given by the four fixed
points of the orbifold.

These two transformations induce even permutations of the four fixed points, such that

S : (z1, z2, z3, z4) ! (z4, z3, z2, z1)

T : (z1, z2, z3, z4) ! (z2, z3, z1, z4).
(1.72)

These two generators satisfy the presentation of A4
8, i.e. S2 = T 3 = (ST )3 = 1. Other

discrete symmetry groups can arise from di↵erent orbifold compactifications. For a list

of T2/ZN orbifolds with their associated discrete symmetry, we refer to [90].

It is possible to build a model in the 6D space-time M4 ⇥ T2/Z2, with fields either

living at the fixed points, known as 4D ‘brane’ fields, or ‘bulk’ fields, depending on both

the uncompactified coordinates xµ and the complex coordinate z. In Chapterref, a 6-

dimensional supersymmetric SU(5) GUT model has been constructed along these lines,

with a family symmetry arising from orbifolding the extra dimensions.

8An additional transformation z ! z⇤ also permutes the fixed points. This transformation belongs
to the full 6D Poincaré group, which includes not only 6D translations and proper Lorentz transfor-
mations, but also discrete symmetries. In this case, if one assumes the 6D Poincaré symmetry before
compactification, the orbifold leads to the product of 4D Poincaré times the discrete group S4 (instead
of A4).
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Invariant under A4 modular 
and A4 remnant symmetry:

(A4 modular=“passive”,  and A4 remnant= “active”) 

A4 remnant (linear):

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2
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Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main
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(a) Torus T 2
defined in terms of a lat-

tice on the complex plane by the lat-

tice vectors !1 and !2. In our model,

!1 = 1, !2 = ! = ei2⇡/3
.

(b) The lattice is left invariant un-

der the S-transformation in Eq. 24.

The S-transformed lattice vectors are

!0
1 = ! and !0

2 = �1, see Eq. 25.

(c) The lattice is left invariant un-

der the T -transformation in Eq. 24.

The T -transformed lattice vectors

are !0
1 = �1 � ! and !0

2 = �!, see
Eq. 25.

Figure 1: Visualization of the lattice invariant transformations, S and T .

di↵erences of the present paper as compared to recent works with modular symmetries
which regard the modulus ⌧ as a free phenomenological parameter [15, 16]. In our work,
we assume a specific orbifold T

2
/Z2, for which we have shown that one consistent choice

for a surviving modular symmetry is A4 with fixed modulus ⌧ = ! = e
i2⇡/3, although we

shall not address the problem of moduli stabilisation.

2.4 Remnant brane symmetry for T
2
/Z2 with ! = e

i2⇡/3

So far we have shown that the choice of orbifold T
2
/Z2 is consistent with the finite

modular symmetry A4 for a modulus ⌧ = ! = e
i2⇡/3 (with no other choice of finite

modular symmetry and only two values of modulus being consistent). Now we will take
a step back, and forget about modular symmetry for a while, and just consider the
symmetries of the branes with a twist angle ! = e

i2⇡/3. We will discover an A4 symmetry
that is apparently nothing to do with modular symmetry, which we refer to as “remnant
A4 symmetry”. (In the next subsection we shall show how “remnant A4 symmetry” is
related to the previous A4 finite modular symmetry.)

In this section, then, we shall study the orbifold T
2
/Z2 with the twist angle ! = e

i2⇡/3

independently of any modular symmetry considerations. We will find that the branes are
invariant under an A4 symmetry which can be identified as a remnant symmetry of the
spacetime symmetry after it is broken down to the 4d Poincaré symmetry through orbifold
compactification. Here, we assume that the spacetime symmetry before compactification
is a 6d Poincaré symmetry. The compactification breaks part of this symmetry. However,
due to the geometry of our orbifold with twist angle ! = e

i2⇡/3, a discrete subgroup is
left unbroken. This group may be generated by the spacetime transformations (which
belong to the extra dimensional part of the 6d Poincaré)

S : z ! z + 1/2 or z ! z + !/2,

T : z ! !
2
z,

U : z ! z
⇤ or z ! �z

⇤
,

(27)

which permute the branes and leave invariant the set of 4 branes in Eq. 23. These
transformations satisfy

S
2 = T

3 = (ST )3 = 1,

U
2 = (SU)2 = (TU)2 = (STU)4 = 1,

(28)

7

x5

x6

τ =
ω2

ω1
= ω

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main
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Brane fields have an enhanced Z2 mu-tau reflection 
symmetry (arising from remnant                          )

Field
Representation

A4 n Z2 SU(5) U(1)

F 3 5 a+ 2c
N c

s 1 1 a
N c

a 1 1 4a
⇠ 1 1 �2a

Table 1: Fields on the branes, including including matter and right handed neutrino super-
fields. A working set of charges is {a, b, c} = {2, 0, 1}. Note that the 3 representations on the
brane transform under A4 n Z2 as shown in Table 5 and Eq. 38.

Field
Representation Localization

A4 SU(5) U(1) Weight P0 P1/2 P!/2

T±
1

1
00

10 c+ 4a �� +1 ±1 ±1
T±
2

1
0

10 c+ 2a �� +1 ±1 ±1
T±
3

1 10 c �� +1 ±1 ±1

H5 1 5 �2c �↵ +1 +1 +1
H

5
1
0

5 b ↵ + � +1 +1 +1

�1 3 1 �b� a� 3c �↵ +1 +1 -1
�2 3 1 �3a ↵� � +1 -1 +1

Table 2: Fields on the bulk used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. The complete theory must also
contain three T i, being the complex conjugate representation of Ti so that it is anomaly free.

3 SU(5) GUT with A4 modular symmetry

3.1 The model

In this section we construct a supersymmetric SU(5) GUT model on a 6d orbifold T 2/Z2

with twist ! = ei2⇡/3, with an A4 modular symmetry as a flavour symmetry, extended
by the Z2 symmetry on the branes. Furthermore we impose a global U(1) as a shaping
symmetry. We impose di↵erent boundary conditions at each invariant brane. These
conditions break the original symmetry into the MSSM.

All the fields in the bulk  will transform under the modular transformations

⌧ !
a⌧ + b

c⌧ + d
,  ! (c⌧ + d)�k⇢ , (13)

where ⇢ is the usual matrix representation of the corresponding A4 transformation. Each
field has an arbitrary weight �k. The fields are not modular forms and can have any
weight ki. The superfields that are located on the brane do not depend on the extra
dimensions and therefore they must have weight zero [14].

6

Brane fields

Bulk fields

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main

6

SU(5) GUT Model

Field
Representation

A4 n Z2 SU(5) U(1)

F 3 5̄ a+ 2c
N

c
s 1 1 a

N
c
a 1 1 4a
⇠ 1 1 �2a

Table 1: Fields on the branes, including matter and right handed neutrino superfields. A
working set of charges is {a, b, c} = {2, 0, 1}. Note that the 3 representations on the brane
transform under A4 n Z2 as shown in table 5 and Eq. 58.

Field
Representation Localization

A4 SU(5) U(1) Weight P0 P1/2 P!/2

T
±
1

1
00

10 c+ 4a �� +1 ±1 ±1
T

±
2

1
0

10 c+ 2a �� +1 ±1 ±1
T

±
3

1 10 c �� +1 ±1 ±1

H5 1 5 �2c �↵ +1 +1 +1
H

5
1
0

5 b ↵ + � +1 +1 +1

�1 3 1 �b� a� 3c �↵ +1 +1 +1
�2 3 1 �3a ↵� � +1 �1 +1

Table 2: Fields on the bulk used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. The complete theory must also
contain three T i, being the complex conjugate representation of Ti so that it is anomaly free.

symmetry. We impose di↵erent boundary conditions at each invariant brane. These
conditions break the original symmetry into the MSSM.

All the fields in the bulk  will transform under the modular transformations

⌧ ! a⌧ + b

c⌧ + d
,  ! (c⌧ + d)�k

⇢ , (29)

where ⇢ is the usual matrix representation of the corresponding A4 transformation. Each
field has an arbitrary weight �k. The fields are not modular forms and can have any
weight ki. The superfields that are located on the brane do not depend on the extra
dimensions and therefore they must have weight zero [15].

The whole field content is listed in tables 1 and 2. The fields that do not have weight nor
parity under the boundary conditions are located on the branes and feel the symmetry
A4nZ2, see table 1. The transformations of the fields under this symmetry are discussed
in Appendix A. However the 3 representations on the brane transform under A4 n Z2 as
shown in table 5 and Eq. 58.

The field F contains the MSSM fields L and dR and is a flavour triplet. It is located on
the brane. The fields T±

i contain the MSSM uR, eR, Q, they are 3 flavour singlets. There
are two copies of each T with di↵erent parities under the boundary conditions, as we

11

2.5 The connection between remnant A4 symmetry and finite

modular A4 symmetry

We have shown that the set of branes is invariant under a remnant A4 or S4 subgroup
of the extra dimensional Poincaré symmetry. We now show that the case of “remnant
A4 symmetry” can be identified with the finite modular A4 symmetry discussed earlier.
We shall return to the S4 case in the next subsection. Essentially, from the point of
view of the branes, the “remnant A4 symmetry” is an active transformation while the
finite modular A4 symmetry is an equivalent passive transformation. The e↵ect on the
branes of each type of transformation is identical, it is just a choice of “picture” (active
or passive) which we choose.

Modular symmetry in the branes behave as a “normal” symmetry (i.e. modular forms
are not relevant) since fields located in the brane do not depend on the extra dimensional
coordinate. Modular symmetry can be therefore be imposed as any usual symmetry. In
the orbifold T2/Z2, the branes can only be consistent with the modular group �̄3, as
shown above. For any theory in this orbifold, with fields only in the brane, will only be
consistent with the �̄3 i↵ ⌧ = ! or ⌧ = !+1 and no other. In such a setup the branes see
the finite modular symmetry as simply equivalent to a remnant symmetry, a subgroup of
the extra dimensional Poincaré group.

We can see in Eq. 24, that the S, T transformations (and therefore the �̄3 modular
transformations) correspond to specific passive reflections, rotations and translations. In
this way the A4 must be a subgroup of the 6d Poincaré group. All modular groups are.
However not all modular groups are consistent with the invariant branes, as we have
shown.

On the other hand, fields in the bulk, which feel the extra dimensions, will also transform
under some representation of the 6d Poincaré, however in this case they will transform
under a non-linear realisation of this �̄3 symmetry, and this is precisely what are referred
to as the modular forms [15].

We conclude that the modular symmetry �̄3 acts either as a linear or non-linear realisation
of the remnant symmetry A4, depending on whether we are concerned with brane fields
or bulk fields.

2.6 Enhanced A4 n Z2 symmetry of the branes

We now recall that, in our set-up, the brane fields enjoy a larger symmetry than the
remnant A4 symmetry (which we have just seen to be equivalent to a linear realisation of
the finite modular symmetry A4). However this larger symmetry is not related to finite
modular symmetry and is not enjoyed by the fields in the bulk.

In section 2.4, we have seen that the orbifold has a remnant symmetry S4 on the branes.
We note here that S4 ' A4 n Z2. We have also discussed in section 2.5, that if we
impose a modular symmetry A4 on the whole space, its action on the branes is the
same action as the remnant spacetime symmetry, i.e. it permutes the branes but leaves
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Field
Representation

A4 n Z2 SU(5) U(1)

F 3 5 a+ 2c
N c

s 1 1 a
N c

a 1 1 4a
⇠ 1 1 �2a

Table 1: Fields on the branes, including including matter and right handed neutrino super-
fields. A working set of charges is {a, b, c} = {2, 0, 1}. Note that the 3 representations on the
brane transform under A4 n Z2 as shown in Table 5 and Eq. 38.

Field
Representation Localization

A4 SU(5) U(1) Weight P0 P1/2 P!/2

T±
1

1
00

10 c+ 4a �� +1 ±1 ±1
T±
2

1
0

10 c+ 2a �� +1 ±1 ±1
T±
3

1 10 c �� +1 ±1 ±1

H5 1 5 �2c �↵ +1 +1 +1
H

5
1
0

5 b ↵ + � +1 +1 +1

�1 3 1 �b� a� 3c �↵ +1 +1 -1
�2 3 1 �3a ↵� � +1 -1 +1

Table 2: Fields on the bulk used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. The complete theory must also
contain three T i, being the complex conjugate representation of Ti so that it is anomaly free.

3 SU(5) GUT with A4 modular symmetry

3.1 The model

In this section we construct a supersymmetric SU(5) GUT model on a 6d orbifold T 2/Z2

with twist ! = ei2⇡/3, with an A4 modular symmetry as a flavour symmetry, extended
by the Z2 symmetry on the branes. Furthermore we impose a global U(1) as a shaping
symmetry. We impose di↵erent boundary conditions at each invariant brane. These
conditions break the original symmetry into the MSSM.

All the fields in the bulk  will transform under the modular transformations

⌧ !
a⌧ + b

c⌧ + d
,  ! (c⌧ + d)�k⇢ , (13)

where ⇢ is the usual matrix representation of the corresponding A4 transformation. Each
field has an arbitrary weight �k. The fields are not modular forms and can have any
weight ki. The superfields that are located on the brane do not depend on the extra
dimensions and therefore they must have weight zero [14].

6

Brane fields

Bulk fields

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main

6

shall see in the next section, this allows di↵erent masses for down quarks and charged
leptons. There are only two right handed neutrinos N

c
a,s. The MSSM Higgs fields hu,d

are inside the H
5,5 respectively. We have two flavons �1,2 that help to give structure to

the fermion masses. Finally, the field ⇠ generates the hierarchy between the masses à la
Froggat-Nielsen [20].

3.2 GUT and flavour breaking by orbifolding

Since the orbifold has the symmetry transformations of Eq. 22, the fields must comply
also with them. However since we are in a gauge theory, the equations need not be
fulfilled exactly but only up to a gauge transformation, so any field complies with

�(x, z) = G �(x,�z),

�(x, z) = G5 �(x, z + 1),

�(x, z) = G6 �(x, z + !),

(30)

where the G
0
s are gauge transformations that must fulfill

G
2 = 1, G5G6 = G6G5, GG5,6G = G

�1

5,6, (31)

where the first equation comes from the fact that it belongs to the parity operator, the
second is due to the fact of the commutativity of the translations and the third one
denotes the relation between parity and translations.

Since the branes z̄i are invariant under the orbifold symmetry transformations of Eq. 22,
they act as boundaries which, due to the G0

s gauge transformations, impose the boundary
conditions

�(x, z + z̄i) = Pz̄i�(x,�z + z̄i), (32)

which corresponds to a reflection at each of the branes. These boundary conditions are
related to the gauge transformations as

P0 = G, P1/2 = G5G, P!/2 = G6G, P(1+!)/2 = G5G6G. (33)

By choosing all G0
s to commute, all boundary conditions become matrices of order 2.

The boundary conditions must belong to the symmetry group A4 ⇥ SU(5) of the SUSY
model, and are chosen to break the symmetry in a particular way as follows

P0 = I3 ⇥ I5,
P1/2 = T1 ⇥ diag(�1,�1,�1, 1, 1),

P!/2 = T2 ⇥ diag(�1,�1,�1, 1, 1),

(34)

where

T1 =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , T2 =

0

@
1 0 0
0 0 1
0 1 0

1

A = U, (35)

and the last boundary condition is fixed and defined by the other boundary conditions
as P(1+!)/2 = P0P1/2P0P!/2P0 = T1T2 ⇥ I5 .
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The boundary condition P0 breaks the e↵ective extended N = 2 ! N = 1 SUSY. The
boundary conditions P1/2,!/2 break A4 completely and SU(5) ! SU(3)⇥ SU(2)⇥ U(1).

The fields F,N c
a,s, ⇠ lie on the brane and are una↵ected by the boundary conditions. The

fields T± are A4 singlets and do not feel the A4 breaking conditions. They have di↵erent
parities and feel the SU(5) breaking condition. The fields T

+ contain the light MSSM
uR, eR fields, while T

� contains the light field Q. This allows for independent masses for
charged leptons and down quarks since they come from di↵erent fields. The Higgs fields
feel the SU(5) breaking condition leaving only the light doublets, solving the doublet
triplet splitting problem [7] (for a recent discussion see for example [11]).

The flavons �1,2 feel the A4 breaking conditions. They have di↵erent parities under the
conditions and this fixes their alignments to be

h�1i = v1

0

@
1
0
0

1

A , h�2i = v2

0

@
0
1
1

1

A . (36)

We may remark that these flavon VEV alignments do not break the Z2 symmetry gener-
ated by U , even though they are in the bulk.

We see that the orbifolding breaks the symmetry SU(5)⇥A4 n Z2 ! SU(3)⇥ SU(2)⇥
U(1)⇥Z2 while solving the doublet triplet splitting, separating charged lepton and down
quark masses and completely aligning flavon VEVs.

We do not show an explicit driving mechanism for the VEVs v1,2,⇠. We assume that they
are driven radiatively [21].

3.3 Yukawa structure

In 6d, the superpotential has dimension 5 while each superfield has dimension 2. A 6d
interacting superpotential is inherently nonrenormalizable. We work with the e↵ective 4d
superpotential, which happens after compactification. We assume the compactification
scale is close to the original cuto↵ scale. We use ⇤ to denote both the compactification
scale and the GUT scale, which is taken to be the cut-o↵ of the e↵ective theory.

With the fields in tables 1 and 2, we can write the e↵ective 4d Yukawa terms

WY = y
N
s ⇠N

c
sN

c
s + y

N
a ⇠

⇠
3

⇤3
N

c
aN

c
a

+ y
⌫
s

⇠

⇤
FH5N

c
s + y

⌫
a

�2⇠

⇤2
FH5N

c
a

+ y
e
3

�1

⇤
FH

5
T

+

3
+ y

e
2

�1⇠

⇤2
FH

5
T

+

2
+ y

e
1

�1⇠
2

⇤3
FH

5
T

+

1

+ y
d
3

�1

⇤
FH

5
T

�
3
+ y

d
2

�1⇠

⇤2
FH

5
T

�
2
+ y

d
1

�1⇠
2

⇤3
FH

5
T

�
1

+ y
u
ijH5T

+

i T
�
j

⇠
6�i�j

⇤6�i�j
,

(37)
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Breaks A4 and SU(5) with 
doublet-triplet splitting

Vacuum 
alignment 
from bc’s

BC’s

Field
Representation

A4 n Z2 SU(5) U(1)

F 3 5̄ a+ 2c
N

c
s 1 1 a

N
c
a 1 1 4a
⇠ 1 1 �2a

Table 1: Fields on the branes, including matter and right handed neutrino superfields. A
working set of charges is {a, b, c} = {2, 0, 1}. Note that the 3 representations on the brane
transform under A4 n Z2 as shown in table 5 and Eq. 58.

Field
Representation Localization

A4 SU(5) U(1) Weight P0 P1/2 P!/2

T
±
1

1
00

10 c+ 4a �� +1 ±1 ±1
T

±
2

1
0

10 c+ 2a �� +1 ±1 ±1
T

±
3

1 10 c �� +1 ±1 ±1

H5 1 5 �2c �↵ +1 +1 +1
H

5
1
0

5 b ↵ + � +1 +1 +1

�1 3 1 �b� a� 3c �↵ +1 +1 +1
�2 3 1 �3a ↵� � +1 �1 +1

Table 2: Fields on the bulk used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. The complete theory must also
contain three T i, being the complex conjugate representation of Ti so that it is anomaly free.

symmetry. We impose di↵erent boundary conditions at each invariant brane. These
conditions break the original symmetry into the MSSM.

All the fields in the bulk  will transform under the modular transformations

⌧ ! a⌧ + b

c⌧ + d
,  ! (c⌧ + d)�k

⇢ , (29)

where ⇢ is the usual matrix representation of the corresponding A4 transformation. Each
field has an arbitrary weight �k. The fields are not modular forms and can have any
weight ki. The superfields that are located on the brane do not depend on the extra
dimensions and therefore they must have weight zero [15].

The whole field content is listed in tables 1 and 2. The fields that do not have weight nor
parity under the boundary conditions are located on the branes and feel the symmetry
A4nZ2, see table 1. The transformations of the fields under this symmetry are discussed
in Appendix A. However the 3 representations on the brane transform under A4 n Z2 as
shown in table 5 and Eq. 58.

The field F contains the MSSM fields L and dR and is a flavour triplet. It is located on
the brane. The fields T±

i contain the MSSM uR, eR, Q, they are 3 flavour singlets. There
are two copies of each T with di↵erent parities under the boundary conditions, as we
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The boundary condition P0 breaks the e↵ective extended N = 2 ! N = 1 SUSY. The
boundary conditions P1/2,!/2 break A4 completely and SU(5) ! SU(3)⇥ SU(2)⇥ U(1).

The fields F,N c
a,s, ⇠ lie on the brane and are una↵ected by the boundary conditions. The

fields T± are A4 singlets and do not feel the A4 breaking conditions. They have di↵erent
parities and feel the SU(5) breaking condition. The fields T

+ contain the light MSSM
uR, eR fields, while T

� contains the light field Q. This allows for independent masses for
charged leptons and down quarks since they come from di↵erent fields. The Higgs fields
feel the SU(5) breaking condition leaving only the light doublets, solving the doublet
triplet splitting problem [7] (for a recent discussion see for example [11]).

The flavons �1,2 feel the A4 breaking conditions. They have di↵erent parities under the
conditions and this fixes their alignments to be

h�1i = v1

0

@
1
0
0

1

A , h�2i = v2

0

@
0
1
1

1

A . (36)

We may remark that these flavon VEV alignments do not break the Z2 symmetry gener-
ated by U , even though they are in the bulk.

We see that the orbifolding breaks the symmetry SU(5)⇥A4 n Z2 ! SU(3)⇥ SU(2)⇥
U(1)⇥Z2 while solving the doublet triplet splitting, separating charged lepton and down
quark masses and completely aligning flavon VEVs.

We do not show an explicit driving mechanism for the VEVs v1,2,⇠. We assume that they
are driven radiatively [21].

3.3 Yukawa structure

In 6d, the superpotential has dimension 5 while each superfield has dimension 2. A 6d
interacting superpotential is inherently nonrenormalizable. We work with the e↵ective 4d
superpotential, which happens after compactification. We assume the compactification
scale is close to the original cuto↵ scale. We use ⇤ to denote both the compactification
scale and the GUT scale, which is taken to be the cut-o↵ of the e↵ective theory.

With the fields in tables 1 and 2, we can write the e↵ective 4d Yukawa terms
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⇠
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⇠
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⇤2
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⇤3
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�
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j

⇠
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(37)
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Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main

6

with the extended symmetry A4nZ2. The U generator only transforms non trivially the
triplet field F which is contracted to a triplet modular form. An U transformation of the
field F can be reabsorbed by transforming the modular form by

C

0

@
1 0 0
0 0 1
0 1 0

1

A (40)

where the C stands for complex conjugation. Invariant terms under the full symmetry
must involve modular forms that are also invariant under the Z2 transformation. From
table 3, the only invariant case is when ↵ = 6 with a real y. From table 4, the only
invariant cases happen when � = 0 with real y1 or � = 6 with y1,2 real and y3 imaginary.

The triplet field F is not only taking part in the Dirac neutrino mass terms but also in
the down quark and charged leptons mass terms, therefore they also must be invariant
under the enhanced symmetry A4 n Z2. In this case, the field F is contracted with the
flavon field �1 and it is easy to check that the transformation in Eq. 40 leaves the VEV
invariant when real and therefore the charged lepton and down quark mass terms when
the parameters ydi and y

e
i involved are real.

Finally, the modular form y
u
ij must have weight ↵+2� to build an invariant. All the fields

in the corresponding terms are singlets, so these modular forms must be singlets also and
won’t change the structure. Depending on i, j, the modular form y

u
ij must be a di↵erent

type of singlet. The weight ↵ + 2� has to be large enough so that the space contains
the three types of singlets. This modular form does not add anything to the structure of
the up quark matrix but allows to build the A4 invariants for all TiTj combinations. The
smallest weight that allows modular forms of all 3 types of singlets is 20, as discussed in
appendix C. These modular forms yuij are in general complex.

The case � = 0 has not enough freedom to fit the neutrino data.We conclude that the
smallest phenomenologically viable choice for weights is

↵ = � = 6, � = 7. (41)

3.5 Mass matrix structure

We are now able to express the mass matrices following Eq. 37 and the e↵ective alignments
given in Sec. 3.4. First, we define the dimensionless parameters

h⇠i /⇤ = ⇠̃ and vi/⇤ = ṽi, (42)

where ⇤ is the original cuto↵ scale. The down quark and charged lepton mass matrices
are diagonal

M
d =vd

0

@
y
d
1
⇠̃
2 0 0

0 y
d
2
⇠̃ 0

0 0 y
d
3

1

A ṽ1,

M
e =vd

0

@
y
e
1
⇠̃
2 0 0

0 y
e
2
⇠̃ 0

0 0 y
e
3

1

A ṽ1,

(43)
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We are now able to express the mass matrices following Eq. 37 and the e↵ective alignments
given in Sec. 3.4. First, we define the dimensionless parameters

h⇠i /⇤ = ⇠̃ and vi/⇤ = ṽi, (42)

where ⇤ is the original cuto↵ scale. The down quark and charged lepton mass matrices
are diagonal
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while the up quark mass matrix can be written as

Mu = vu

0

@
y
u
11
⇠̃
4

y
u
12
⇠̃
3

y
u
13
⇠̃
2

y
u
21
⇠̃
3

y
u
22
⇠̃
2

y23⇠̃

y
u
31
⇠̃
2

y
u
32
⇠̃ y

u
33

1

A ṽ2, (44)

where the parameters y
d
i and y

d
i are real due to the enhanced symmetry on the branes

A4 n Z2 while y
u
ij are in general complex.

The down quark and charged lepton mass matrices in Eq. 43 are diagonal so the fit
to the observed masses is straightforward. The hierarchy between the masses of the
di↵erent families is understood through the powers of ⇠̃ and can be achieved assuming
the dimensionless couplings to be of order O(1). All the contributions to quark mixing
is coming from the up sector. The complex parameters in the up-type mass matrix, see
Eq. 44, fix the up, charm and top quark masses as well as the observed CKM mixing
angles. We can obtain a perfect fit for weight � = 7. Di↵erent values of ṽ1, ṽ2 and ⇠̃ can
fit the observed masses using di↵erent dimensionless couplings still of order O(1).

The form of the Dirac neutrino mass matrix depends on the weights ↵ and �. All the
possible alignments are given in Tab. 3 and 4. The Z2 symmetry restricts ourselves to the
case ↵ = 6 and � = 0 or � = 6. In the case of � = 0, we only have two free parameters
{y, y1} and we can not find a good fit. Therefore, the only phenomenologically viable
case is for ↵ = � = 6 and we restrict ourselves to this case in the following.

As shown in the Appendix A, we have to take into account the Clebsch-Gordan coe�cients
when contracting the modular form (y⌫sF )1 and (y⌫a h�2iF )1 into singlets, i.e. 3⇥3 ! 1,
given by

(' )1 = '1 1 + '2 3 + '3 2, (45)

after which the e↵ective alignments for ↵ = 6 and � = 6 look like

↵6 = y

0

@
�1
2!2

2!

1

A , �6 =

0

@
2y2 + y3(2!2 � 2!)
y1 + y2(4! + 1)� y3

y1 + y2(4!2 + 1) + y3

1

A , (46)

respectively. The Dirac neutrino mass matrix is then given by

M
⌫
D = vu

0

@
(2y2 + y3(2!2 � 2!)) ṽ2 �y

(y1 + y2(4! + 1)� y3) ṽ2 2!2
y

(y1 + y2(4!2 + 1) + y3) ṽ2 2!y

1

A ⇠̃. (47)

The RH neutrino Majorana mass matrix is diagonal

MR = h⇠i
✓
y
N
a ⇠̃

3 0
0 y

N
s

◆
, (48)

with hierarchical RH neutrino masses given by the di↵erent powers of the field ⇠. Fur-
thermore, we have very heavy RH neutrino Majorana masses such that the left handed
neutrinos get a very small Majorana mass through type I seesaw [24]

m
⌫
L = M

D
⌫ M

�1

R (MD
⌫ )T . (49)
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respectively. The Dirac neutrino mass matrix is then given by
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with hierarchical RH neutrino masses given by the di↵erent powers of the field ⇠. Fur-
thermore, we have very heavy RH neutrino Majorana masses such that the left handed
neutrinos get a very small Majorana mass through type I seesaw [24]
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Table 3: The e↵ective alignments of the modular form y⌫s as a triplet, depending on its weight
↵. The parameter y is an arbitrary real constant.

alignment is an arbitrary linear combination of all possibilities and can be found in table
4. For � = 0 the only modular form is a singlet, so the only triplet that can be built is
h�2i. For � = 2, the only modular form is the triplet Y (2)

3 shown in the appendix C. The
e↵ective triplet is the linear combination of the symmetric and antisymmetric product of
the modular form with the flavon VEV, h�2i ⇥ Y

(2)

3 ! 3a + 3s. For � = 4, 6 the modular

form can be the singlet Y
(4)

10 , Y
(6)

1 respectively and the corresponding triplets Y
(4)

3 , Y
(6)

3,2 ,
so that the actual alignment comes from the linear combination of h�2i ⇥ Y1,10 ! 3 and
h�2i ⇥ Y3 ! 3a + 3s.
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Table 4: The e↵ective alignments of the modular form y⌫a contracted with h�2i into a triplet,
depending on its weight �. The parameters yi are dimensionless constants constrained by the
A4 n Z2 symmetry.

By choosing the weights ↵, �, the structure of the neutrino mass matrix is completely
defined. The y in table 3 and y1, y2, y3 in table 4 correspond to general complex numbers
that comply with the non trivial CP symmetry of the model.

We have obtained all the possibleA4 invariant modular forms. However we have to comply
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where the parameters y
d
i and y

d
i are real due to the enhanced symmetry on the branes

A4 n Z2 while y
u
ij are in general complex.

The down quark and charged lepton mass matrices in Eq. 43 are diagonal so the fit
to the observed masses is straightforward. The hierarchy between the masses of the
di↵erent families is understood through the powers of ⇠̃ and can be achieved assuming
the dimensionless couplings to be of order O(1). All the contributions to quark mixing
is coming from the up sector. The complex parameters in the up-type mass matrix, see
Eq. 44, fix the up, charm and top quark masses as well as the observed CKM mixing
angles. We can obtain a perfect fit for weight � = 7. Di↵erent values of ṽ1, ṽ2 and ⇠̃ can
fit the observed masses using di↵erent dimensionless couplings still of order O(1).

The form of the Dirac neutrino mass matrix depends on the weights ↵ and �. All the
possible alignments are given in Tab. 3 and 4. The Z2 symmetry restricts ourselves to the
case ↵ = 6 and � = 0 or � = 6. In the case of � = 0, we only have two free parameters
{y, y1} and we can not find a good fit. Therefore, the only phenomenologically viable
case is for ↵ = � = 6 and we restrict ourselves to this case in the following.

As shown in the Appendix A, we have to take into account the Clebsch-Gordan coe�cients
when contracting the modular form (y⌫sF )1 and (y⌫a h�2iF )1 into singlets, i.e. 3⇥3 ! 1,
given by

(' )1 = '1 1 + '2 3 + '3 2, (45)

after which the e↵ective alignments for ↵ = 6 and � = 6 look like
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respectively. The Dirac neutrino mass matrix is then given by
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The RH neutrino Majorana mass matrix is diagonal

MR = h⇠i
✓
y
N
a ⇠̃

3 0
0 y

N
s

◆
, (48)

with hierarchical RH neutrino masses given by the di↵erent powers of the field ⇠. Fur-
thermore, we have very heavy RH neutrino Majorana masses such that the left handed
neutrinos get a very small Majorana mass through type I seesaw [24]

m
⌫
L = M

D
⌫ M

�1

R (MD
⌫ )T . (49)

17

Majorana

Dirac

The neutrino mass matrix looks like

m⌫ =
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h⇠i
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T +
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u
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◆
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T
, (50)

where ↵6 and �6 are the alignments defined in Eq. 46. The e↵ective parameters at low
energy are {y, y1, y2, y3}, previously defined in Tab. 3 and 4. The Z2 symmetry fixes the
parameters {y, y1, y2} to be real while y3 is purely imaginary.

Finally we remark that this structure, with the expected hierarchy between the RH neu-
trinos can give the correct Baryon Asymmetry of the Universe (BAU) through Leptoge-
nesis naturally. Leptogenesis is achieved through the CP violation in the neutrino Dirac
mass matrix. The correct order of the BAU happens when the RH neutrino masses are
M1 ⇠ 1010 GeV and M2 ⇠ 1013 GeV [25]. In this model, these are the natural expected
masses as we can see from Eq. 48 and the sample fit in the Appendix D. The contribu-
tions from the entries of the neutrino Dirac mass matrix and the expected BAU will fix
the precise value of M1. We conclude that the CP violation in the neutrino sector and
the RH neutrino mass hierarchy of the model ensures us that the BAU can be generated
naturally [11].

3.6 µ � ⌧ reflection symmetry

The neutrino mass matrix in Eq. 50 is µ � ⌧ reflection symmetric (µ⌧ -R symmetric).
This corresponds to the interchange symmetry between the muon neutrino ⌫µ and the
tau neutrino ⌫⌧ combined with CP symmetry, namely

⌫e ! ⌫
⇤
e , ⌫µ ! ⌫

⇤
⌧ , ⌫⌧ ! ⌫

⇤
µ, (51)

where the star superscript denotes the charge conjugation of the neutrino field. This can
be easily seen from the alignments in Eq. 46 which construct the neutrino mass matrix
in Eq. 50. The Z2 symmetry fixes the parameters {y, y1, y2} to be real while y3 is purely
imaginary, therefore the transformation in Eq. 51 leaves the alignments invariant and
accordingly the neutrino mass matrix. For a review of µ⌧ symmetry see e.g. [26] and
references therein, also see the recent discussion [27].

It is known that having a neutrino mass matrix µ⌧ -R symmetric in the flavour basis
(which is our case) is equivalent to µ� ⌧ universal (µ⌧ -U) mixing in the PMNS matrix,
see Ref. [28]. The consequences of having µ� ⌧ symmetry is that it leads to having non
zero reactor angle, ✓13, together with maximal atmospheric mixing angle and maximal
Dirac CP phase:

✓13 6= 0, ✓23 = 45�, �
l = ±90� (52)

We remark that this is a prediction of the model, due to having A4 n Z2 symmetry on
the branes.

The parameters {y, y1, y2, y3} in the neutrino mass matrix 50 will fit the rest of the
PMNS observables, namely {✓l

12
, ✓

l
13
,�m

2

21
,�m

2

31
} together with the prediction of the

µ � ⌧ symmetry, ✓23 = 45� and �
l = �90�. The contribution to a �

2 test function
comes only from these predictions and we use the recent global fit values of neutrino
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mu-tau symmetry

τ = ω = ei2π/3
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Summary
Littlest seesaw fit with RG corrections fixes MR’s 

Littlest mu-tau seesaw…one parameter…wow 

New Littlest seesaw from tri-direct CP symmetry 

Type 1b and Inverse seesaw possibilities

4d models

6d models
A4 and A5 results sensitive to free modulus tau 

Orbifold T2/Z2 suggests A4 with fixed tau = omega 

Explicit A4xSU(5) model with mu-tau symmetry



Thank You!


