

Michael Ratz

FLASY 19

Based on:

- M.–C. Chen, M. Fallbacher, K.T. Mahanthappa, M.R. & A. Trautner Nucl. Phys. B883, 267–305 (2014)
- H.P. Nilles, A. Trautner, M.R. & P. Vaudrevange, Phys. Lett. **B786**, 283–287 (2018)

string theory is the arguably most promising candidate for a unified description of Nature

Overview

- string theory is the arguably most promising candidate for a unified description of Nature
- it has been notoriously hard to establish CP violationg in string theory
 e.g. Dine, Leigh & MacIntire (1992)

Overview

- string theory is the arguably most promising candidate for a unified description of Nature
- it has been notoriously hard to establish CP violationg in string theory
 e.g. Dine, Leigh & MacIntire (1992)

however, string compactifications give rise to non–Abelian discrete flavor symmetries

e.g. Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

Overview

- string theory is the arguably most promising candidate for a unified B description of Nature
- it has been notoriously hard to establish CP violationg in string B theory

e.g. Dine, Leigh & MacIntire (1992)

R however, string compactifications give rise to non-Abelian discrete flavor symmetries

e.g. Kobavashi, Nilles, Plöger, Raby & M.R. (2007)

B already the very first stringy standard models turn out to have a $\Delta(54)$ flavor symmetry

Ibáñez, Kim, Nilles & Quevedo (1987)

Overview

- string theory is the arguably most promising candidate for a unified description of Nature
- it has been notoriously hard to establish CP violationg in string theory
 e.g. Dine, Leigh & MacIntire (1992)

however, string compactifications give rise to non-Abelian discrete flavor symmetries

e.g. Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

already the very first stringy standard models turn out to have a $\Delta(54)$ flavor symmetry
Ibáñez, Kim, Nilles & Quevedo (1987)

some of these flavor symmetries clash with CP

Chen & Mahanthappa (2009) , Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)

Overview

- string theory is the arguably most promising candidate for a unified description of Nature
- it has been notoriously hard to establish CP violationg in string theory
 e.g. Dine, Leigh & MacIntire (1992)
- however, string compactifications give rise to non-Abelian discrete flavor symmetries

e.g. Kobayashi, Nilles, Plöger, Raby & M.R. (2007)

already the very first stringy standard models turn out to have a $\Delta(54)$ flavor symmetry

some of these flavor symmetries clash with CP

Chen & Mahanthappa (2009) , Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)

purpose of this talk:

show that $C\mathcal{P}$ is violated in many potentially realistic string compactifications without further ado

CP violation from finite groups

CP violation in Nature

☞ Ø so far only observed in flavor sector

$C\mathcal{P}$ violation in Nature

- \sim \gg so far only observed in flavor sector
- ➡ it appears natural to seek connection between flavor physics & ✗

$C\mathcal{P}$ violation in Nature

- $rightarrow rac{\partial \mathcal{R}}{\partial \mathcal{R}}$ so far only observed in flavor sector
- ➡ it appears natural to seek connection between flavor physics & 𝔅
- flavor structure may be partially explained by (non–Abelian discrete) flavor symmetries

huge literature

$C\mathcal{P}$ violation in Nature

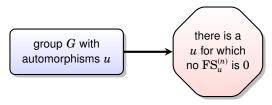
- $rightarrow rac{\partial \mathcal{R}}{\partial \mathcal{R}}$ so far only observed in flavor sector
- 🗢 it appears natural to seek connection between flavor physics & 🎉
- flavor structure may be partially explained by (non–Abelian discrete) flavor symmetries

huge literature

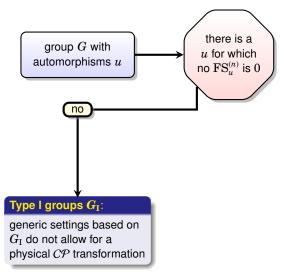
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)

group G with automorphisms u

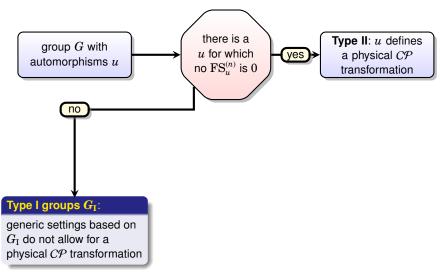
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



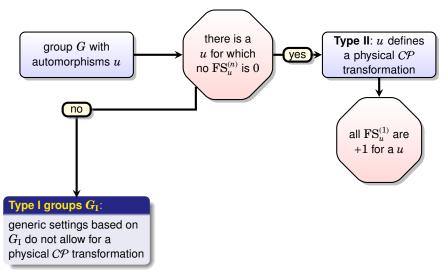
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



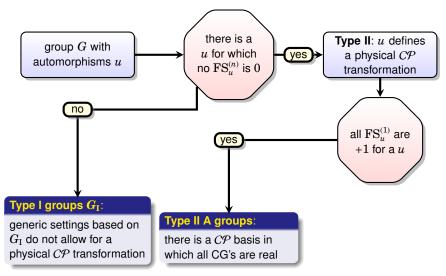
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



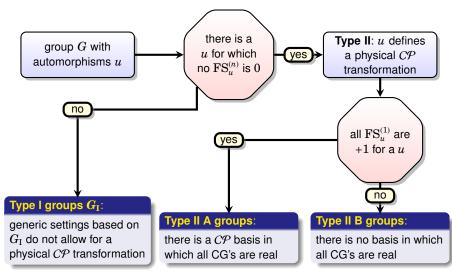
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



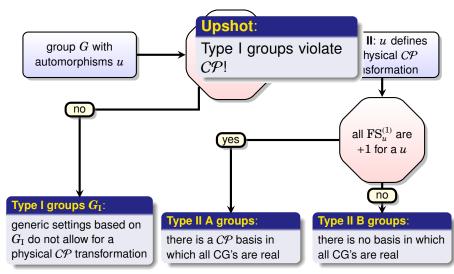
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



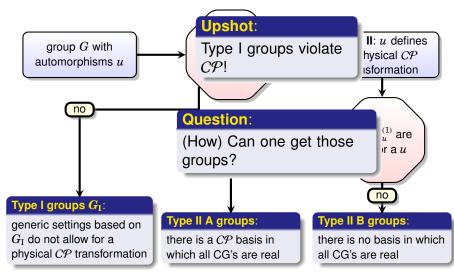
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



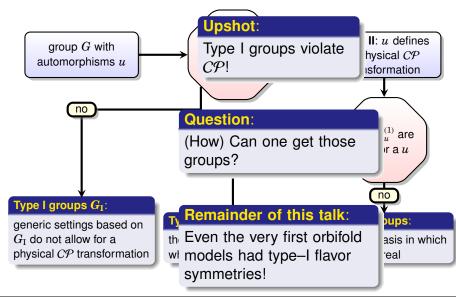
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



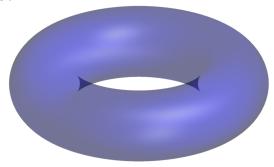
Chen, Fallbacher, Mahanthappa, M.R. & Trautner (2014)



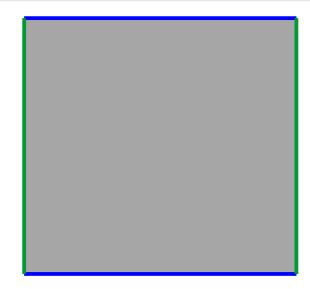
heterotic orbifolds Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow

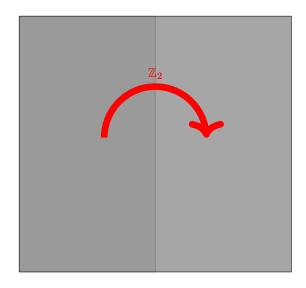
Starting point: torus



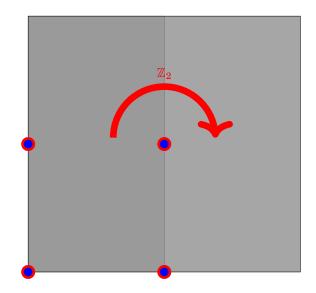
Heterotic orbifolds



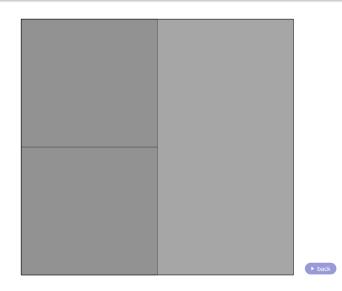
Heterotic orbifolds



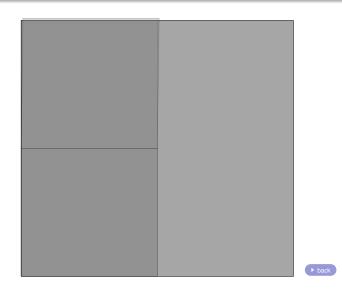
Heterotic orbifolds



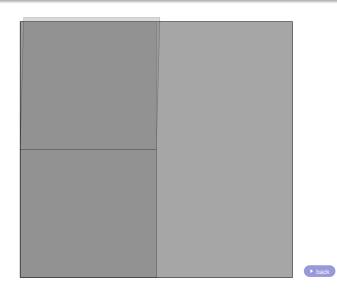
Heterotic orbifolds



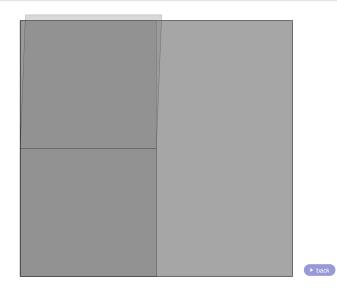
Heterotic orbifolds



Heterotic orbifolds



Heterotic orbifolds



Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow

	► back

Michael Ratz, UC Irvine

Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow

	► back

Michael Ratz, UC Irvine

Heterotic orbifolds

	▶ back

Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow

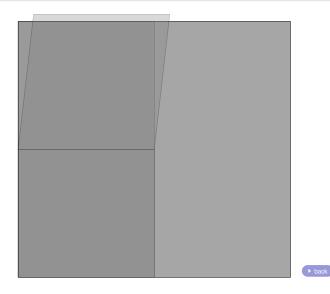
	▶ back

Michael Ratz, UC Irvine

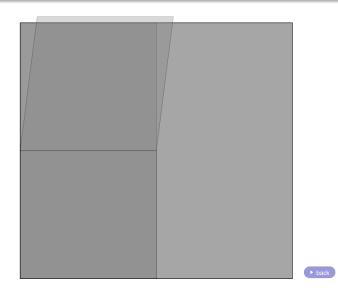
Heterotic orbifolds

	► back

Heterotic orbifolds



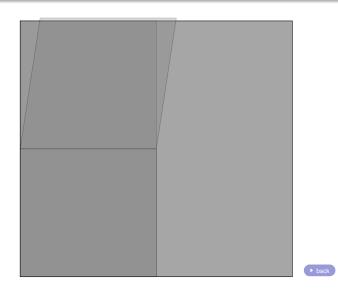
Heterotic orbifolds



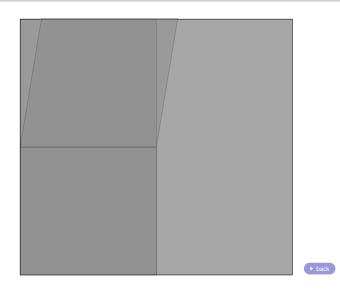
Heterotic orbifolds

	► back

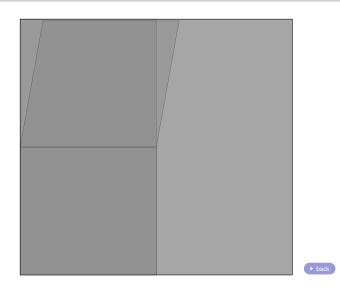
Heterotic orbifolds



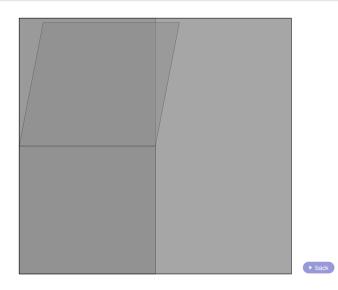
Heterotic orbifolds



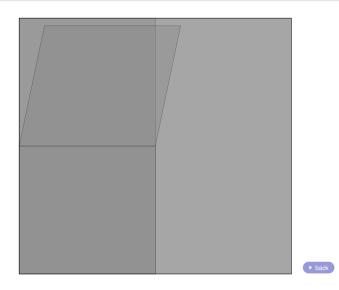
Heterotic orbifolds



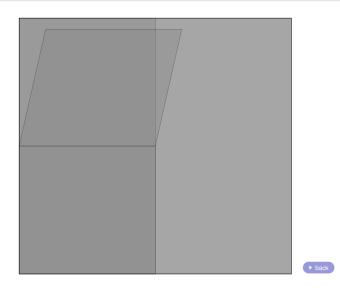
Heterotic orbifolds



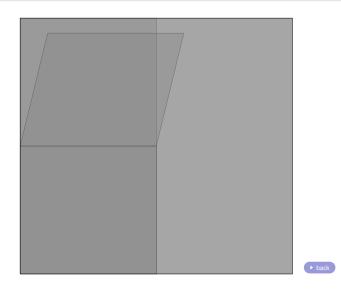
Heterotic orbifolds



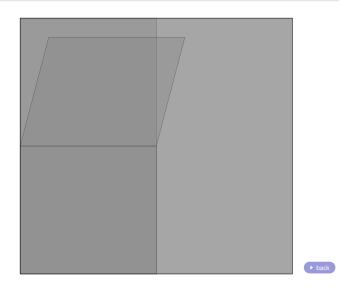
Heterotic orbifolds



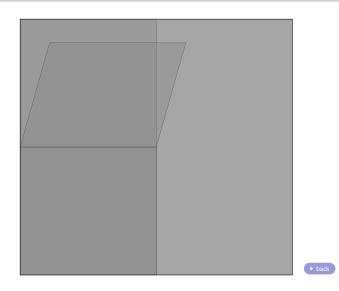
Heterotic orbifolds



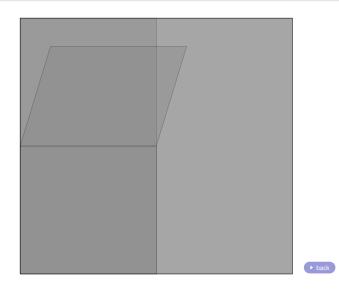
Heterotic orbifolds

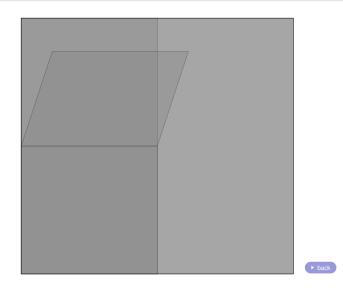


Heterotic orbifolds

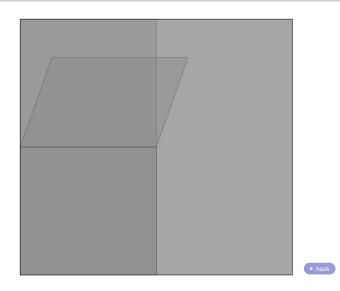


Heterotic orbifolds

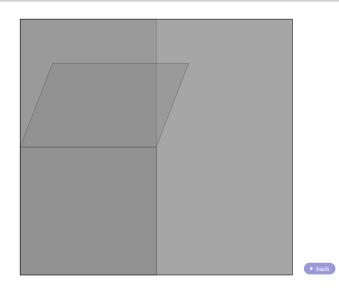




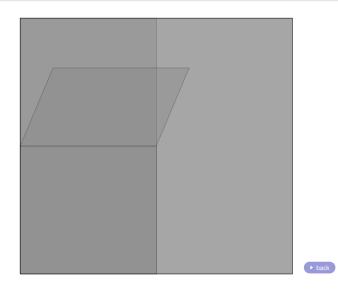
Heterotic orbifolds



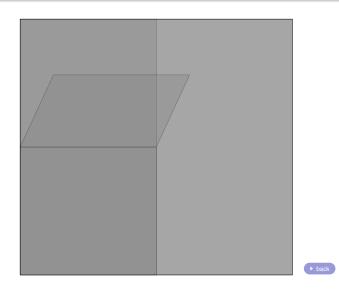
Heterotic orbifolds



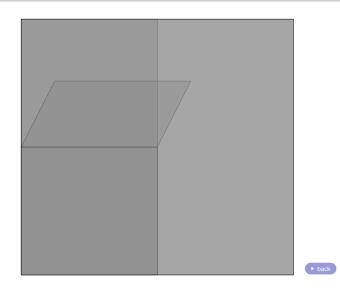
Heterotic orbifolds



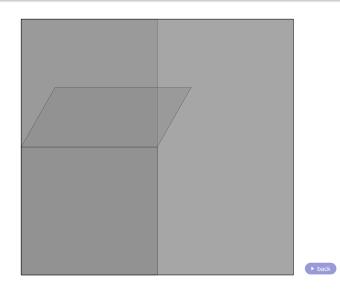
Heterotic orbifolds



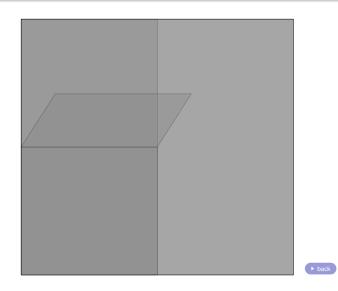
Heterotic orbifolds



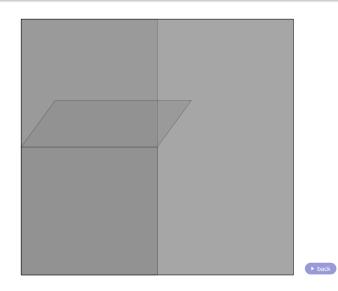
Heterotic orbifolds



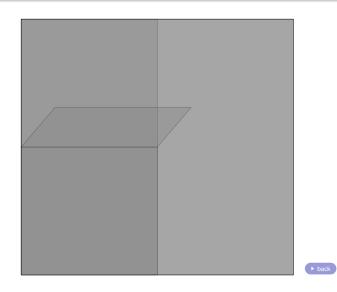
Heterotic orbifolds



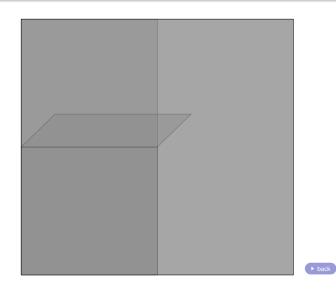
Heterotic orbifolds



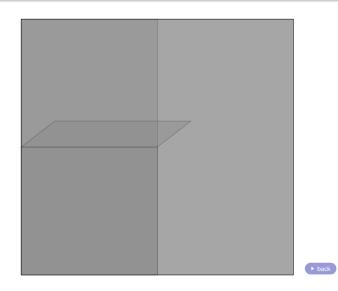
Heterotic orbifolds



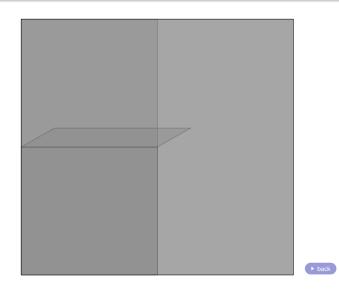
Heterotic orbifolds



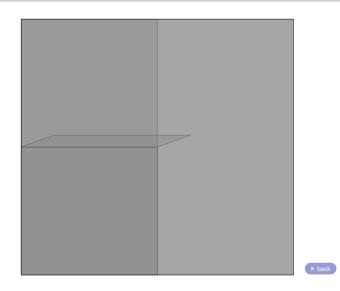
Heterotic orbifolds



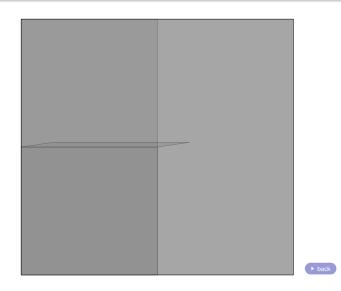
Heterotic orbifolds



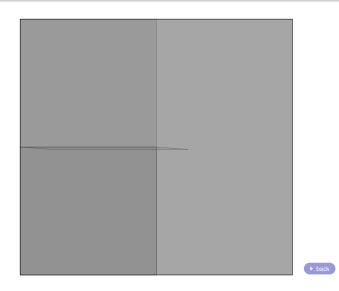
Heterotic orbifolds



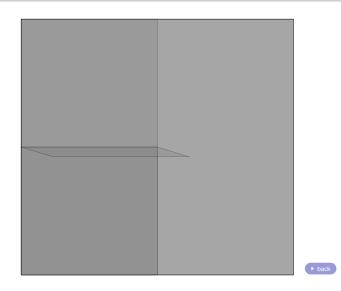
Heterotic orbifolds



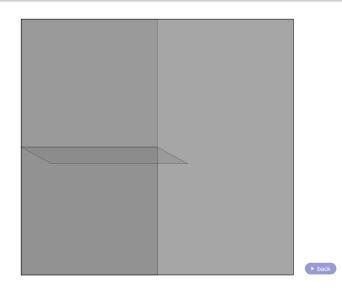
Heterotic orbifolds



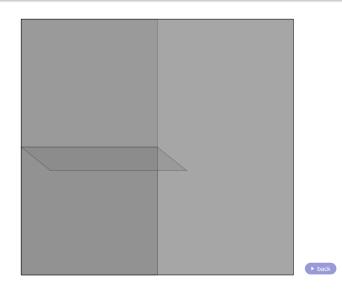
Heterotic orbifolds



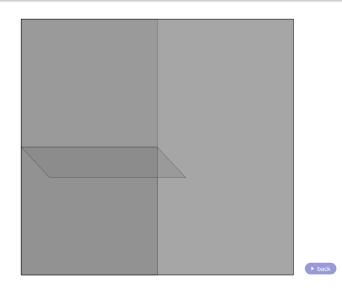
Heterotic orbifolds



Heterotic orbifolds

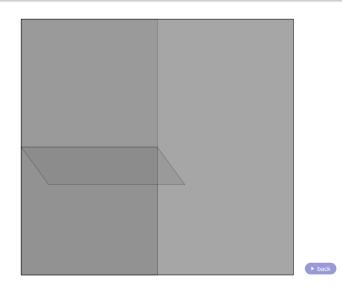


Heterotic orbifolds



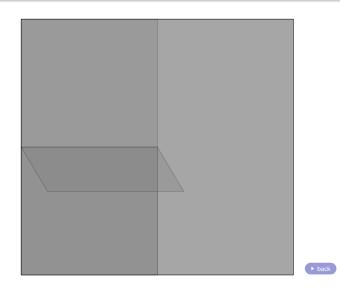
Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow

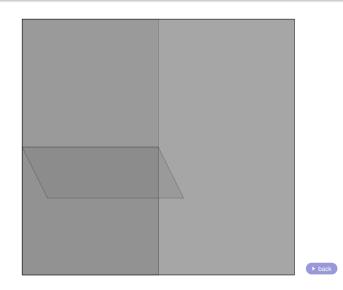


Michael Ratz, UC Irvine

Heterotic orbifolds

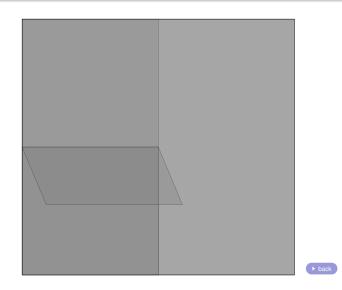


Heterotic orbifolds



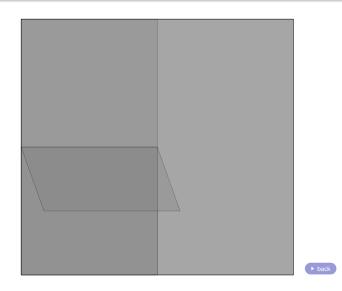
Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow



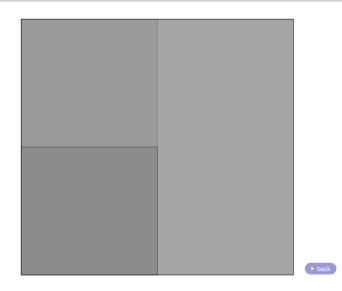
Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow



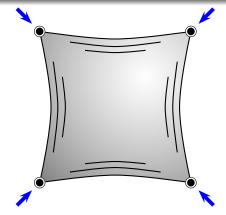
Heterotic orbifolds

\mathbb{Z}_2 orbifold pillow



Heterotic orbifolds

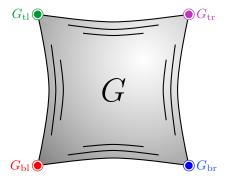
What is an orbifold?



an orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points

Heterotic orbifolds

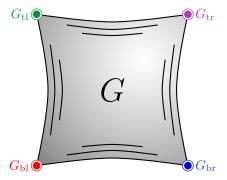
What is an orbifold?



- an orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
- ¹³⁷ 'bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points

Heterotic orbifolds

What is an orbifold?



- an orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
- ¹³⁷ 'bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points
- so low-energy gauge group : $G_{\text{low-energy}} = G_{\text{bl}} \cap G_{\text{br}} \cap G_{\text{tl}} \cap G_{\text{tr}}$

Strings on orbifolds

heterotic string	field theory	
untwisted sector = strings closed on the torus	extra compo- nents of gauge fields	
'twisted' sectors = strings which are only closed on the orbifold	'brane fields' (hard to understand in field-theoretical framework)	

0

('brane') Fields living at a fixed point with a certain symmetry appear as complete multiplet of that symmetry

0

Strings on orbifolds

heterotic string	field theory	
untwisted sector = strings closed on the torus	extra compo- nents of gauge fields	
'twisted' sectors = strings which are only closed on the orbifold	'brane fields' (hard to understand in field-theoretical framework)	

0

('brane') Fields living at a fixed point with a certain symmetry appear as complete multiplet of that symmetry

e.g. if the electron lives at a point with SO(10) symmetry also u and d quarks live there

0

Heterotic orbifolds

First 3 family models from stringy orbifolds

Ibáñez, Kim, Nilles & Quevedo (1987)

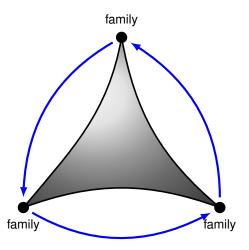
 ${}^{\scriptsize\hbox{\tiny IMS}}$ Very first stringy model of particle physics based on \mathbb{Z}_3 orbifold

Heterotic orbifolds

First 3 family models from stringy orbifolds

Ibáñez, Kim, Nilles & Quevedo (1987)

- ${}^{\scriptsize\hbox{\tiny IMS}}$ Very first stringy model of particle physics based on \mathbb{Z}_3 orbifold
 - three generations may live on equivalent fixed points
 - permutation symmetry of fixed points/families

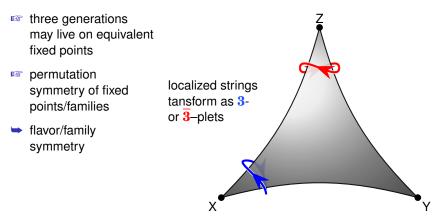


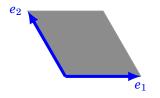
Heterotic orbifolds

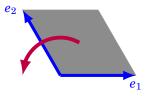
First 3 family models from stringy orbifolds

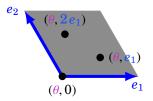
Ibáñez, Kim, Nilles & Quevedo (1987)

 ${}^{\scriptsize\hbox{\tiny IMS}}$ Very first stringy model of particle physics based on \mathbb{Z}_3 orbifold

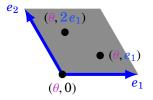








$$\mathbb{T}^2/\mathbb{Z}_3$$
 orbifold



Hamidi & Vafa (1987) Dixon, Friedan, Martinec & Shenker (1987)

so coupling between n localized states $|(\theta, m^{(j)} e_1)\rangle$ only allowed if

$$n = 3 imes (ext{integer}) \wedge \sum_{j=1}^n m_1^{(j)} = 0 \mod 3$$

$$\mathbb{T}^2/\mathbb{Z}_3$$
 orbifold

$$\begin{array}{c} e_{2} \\ \bullet \\ (\theta, 2e_{1}) \\ \bullet \\ (\theta, 0) \\ (\theta, 0) \\ e_{1} \end{array} \begin{pmatrix} |(\theta, 0)\rangle \\ |(\theta, e_{1})\rangle \\ |(\theta, 2e_{1})\rangle \end{pmatrix} \rightarrow \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{pmatrix} \begin{pmatrix} c|(\theta, 0)\rangle \\ |(\theta, e_{1})\rangle \\ |(\theta, 2e_{1})\rangle \end{pmatrix}$$

Hamidi & Vafa (1987) Dixon, Friedan, Martinec & Shenker (1987)

scoupling between n localized states $|(\theta, m^{(j)} e_1)\rangle$ only allowed if

$$n = 3 \times (\text{integer}) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

$$\mathbb{T}^2/\mathbb{Z}_3$$
 orbifold

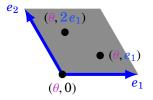
$$\begin{array}{c} e_{2} \\ \bullet \\ (0, 2e_{1}) \\ \bullet \\ (0, 0) \\ (\theta, 0) \\ e_{1} \end{array} \begin{pmatrix} |(\theta, 0)\rangle \\ |(\theta, e_{1})\rangle \\ |(\theta, 2e_{1})\rangle \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{pmatrix} \begin{pmatrix} c|(\theta, 0)\rangle \\ |(\theta, e_{1})\rangle \\ |(\theta, 2e_{1})\rangle \end{pmatrix}$$

Hamidi & Vafa (1987) Dixon, Friedan, Martinec & Shenker (1987)

scoupling between n localized states $|(\theta, m^{(j)} e_1)\rangle$ only allowed if

$$n = 3 \times (\text{integer}) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

$$\mathbb{T}^2/\mathbb{Z}_3$$
 orbifold



Hamidi & Vafa (1987) Dixon, Friedan, Martinec & Shenker (1987)

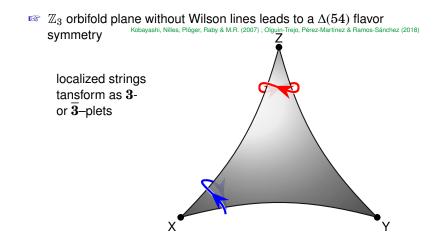
so coupling between n localized states $|(\theta, m^{(j)} e_1)\rangle$ only allowed if

$$n = 3 \times (\text{integer}) \wedge \sum_{j=1}^{n} m_1^{(j)} = 0 \mod 3$$

flavor symmetry

 $S_3 \cup (\mathbb{Z}_3 \times \mathbb{Z}_3) = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) = \Delta(54)$

$\Delta(54)$ from a \mathbb{Z}_3 orbifold plane



$\Delta(54)$ from a \mathbb{Z}_3 orbifold plane

 ${\tt ISS}~\mathbb{Z}_3$ orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor

Kobayashi, Nilles, Plöger, Raby & M.R. (2007) ; Olguin-Trejo, Pérez-Martínez & Ramos-Sánchez (2018)

symmetry explicit model

Carballo-Perez,	Peinado	&	Ramos-Sánchez	(2016)

#	irrep	$\Delta(54)$	label
3	$({\bf 3},{\bf 2})_{rac{1}{6}}$	3_{11}	$oldsymbol{Q}_i$
3	$\left(\overline{3},1\right)_{-\frac{2}{2}}^{\circ}$	3_{11}	\overline{u}_i
3	$\left(\overline{3},1\right)_{\frac{1}{3}}^{3}$	3_{11}	\overline{d}_i
3	$(1,2)_{-\frac{1}{2}}^{^{3}}$	3_{11}	L_i
3	$(1, 1)_1$	3_{11}	\overline{e}_i
3	$(1, 1)_0$	3_{12}	$\overline{\nu}_i$

- explicit model

Carballo-Perez, Peinado & Ramos-Sánchez (2016)

region quarks and leptons transform as 3-plets (or $\overline{3}$ -plets) of $\Delta(54)$

- Z₃ orbifold plane without Wilson lines leads to a Δ(54) flavor
 symmetry
 Kobayashi, Nilles, Plöger, Raby & M.R. (2007); Olguin-Trejo, Pérez-Martínez & Ramos-Sánchez (2018)
- explicit model

Carballo-Perez, Peinado & Ramos-Sánchez (2016)

- $^{\mbox{\tiny ISS}}$ quarks and leptons transform as 3–plets (or $\overline{3}\text{-plets})$ of $\Delta(54)$
- \square $\Delta(54)$ is type I group: $\frown CP$ violation for free?

- 🖙 explicit model
- Carballo-Perez, Peinado & Ramos-Sánchez (2016)
- ${}^{\mbox{\tiny ISS}}$ quarks and leptons transform as ${\bf 3}{-}{\rm plets}$ (or ${\bf \overline{3}}{-}{\rm plets})$ of $\Delta(54)$
- Solution for free? $^{∞} \Delta(54)$ is type I group: $\sim CP$ violation for free?
- so not that simple! if the representation content is very special, one *can* impose a CP transformation
 - $\exists \text{ out } : \mathbf{3}_i \stackrel{\text{out }}{\longleftrightarrow} \overline{\mathbf{3}}_i \text{ and } \mathbf{1}_i \stackrel{\text{out }}{\longleftrightarrow} \overline{\mathbf{1}}_i$

- Carballo-Perez, Peinado & Ramos-Sánchez (2016)
- so quarks and leptons transform as 3–plets (or $\overline{\mathbf{3}}$ –plets) of $\Delta(54)$
- \square $\Delta(54)$ is type I group: $\frown CP$ violation for free?
- so not that simple! if the representation content is very special, one *can* impose a CP transformation
- at the massless level, only 3- and 1–dimensional representations occur \sim a class–inverting outer automorphism exists \sim a CP candidate exists

is however, at the massive level $\Delta(54)$ 2-plets arise

Nilles, M.R., Trautner & Vaudrevange (2018)

CP violation from strings

 ${\tt I}{\tt S}{\tt S}$ however, at the massive level $\Delta(54)$ 2–plets arise

Nilles, M.R., Trautner & Vaudrevange (2018)

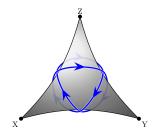
doublets $\mathbf{2}_1$, $\mathbf{2}_3$ and $\mathbf{2}_4$ correspond to linear combinations of strings that wind around two different fixed points in opposite directions

CP violation from strings

is however, at the massive level $\Delta(54)$ 2-plets arise

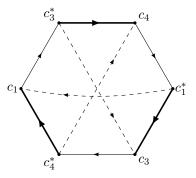
Nilles, M.R., Trautner & Vaudrevange (2018)

- doublets $\mathbf{2}_1$, $\mathbf{2}_3$ and $\mathbf{2}_4$ correspond to linear combinations of strings that wind around two different fixed points in opposite directions
- \bowtie doublet $\mathbf{2}_2$



doublets save the day

Nilles, M.R., Trautner & Vaudrevange (2018)



- we follow invariant approach
- super powerful tool: Susyno

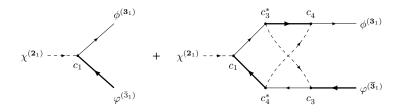
Bernabéu, Branco & Gronau (1986)

Fonseca (2012)

$C\mathcal{P}$ violation from strings

- doublets save the day
- physical CP in doublet decay

Nilles, M.R., Trautner & Vaudrevange (2018)



$C\mathcal{P}$ violation from strings

doublets save the day

Nilles, M.R., Trautner & Vaudrevange (2018)

- physical CP in doublet decay
- phenomenological implications not worked out

doublets save the day

Nilles, M.R., Trautner & Vaudrevange (2018)

- physical CP in doublet decay
- phenomenological implications not worked out

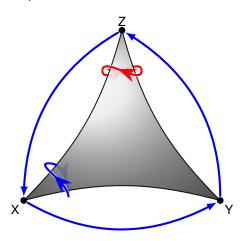
bottom-line:

 $C\mathcal{P}$ violation can come from group theory in UV complete settings in which the origin of the flavor group is fully understood

Summary

Summary

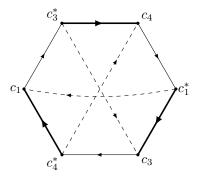
evidential string models exhibit flavor symmetries, which have a simple geometric interpretation



Summary

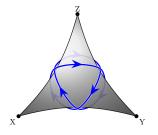
string models exhibit flavor symmetries

 ${igodot}$ even the simplest stringy standard models have built–in $C\!\mathcal{P}$ violation



Summary

- string models exhibit flavor symmetries
- \bigcirc even the simplest stringy standard models have built–in $C\!P$ violation
- amazingly the states that complete the model in the UV are also needed to establish physical CP violation



Summary

- string models exhibit flavor symmetries
- \bigcirc even the simplest stringy standard models have built–in $C\!P$ violation
 - amazingly the states that complete the model in the UV are also needed to establish physical CP violation
- 3
- so far no phenomenological implications worked out
 - decay of doublets violates CP
 - integrating out doublets gives rise to CPP interactions
 - . . .

so new solution of strong CP problem (?)

Thanks a lot!

so type I groups can be embedded in SU(N)

no CP transformation

has CP transformation

so type I groups can be embedded in SU(N)

➡ question: at which stage gets CP broken?

stype I groups can be embedded in SU(N)

- \blacktriangleright question: at which stage gets CP broken?
- possible options include:
 - $C\mathcal{P}$ gets broken by the VEV that breaks $\mathrm{SU}(N)$ to G

stype I groups can be embedded in SU(N)

- \blacktriangleright question: at which stage gets CP broken?
- possible options include:
 - CP gets broken by the VEV that breaks $\mathrm{SU}(N)$ to G
 - the resulting setting always has additional symmetries and does not violate \mathcal{CP}

so type I groups can be embedded in SU(N)

- ➡ question: at which stage gets CP broken?
- possible options include:
 - $C\mathcal{P}$ gets broken by the VEV that breaks $\mathrm{SU}(N)$ to G
 - the resulting setting always has additional symmetries and does not violate \mathcal{CP}
- surprisingly the answer is none of the above

0

Example: $SU(3) \rightarrow T_7$

 \blacksquare starting point: SU(3) gauge theory with

$$\mathscr{L} = \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \mathscr{V}(\phi)$$
$$D_{\mu} = \partial_{\mu} - ig A_{\mu} \qquad \text{field strength}$$

Example: $SU(3) \rightarrow T_7$

 \blacksquare starting point: SU(3) gauge theory with

$$\mathscr{L} = \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \mathscr{V}(\phi)$$
15-plet

Example: $SU(3) \rightarrow T_7$

starting point: SU(3) gauge theory with

$$\mathscr{L} = \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \mathscr{V}(\phi)$$

so potential:
$$\mathscr{V}(\phi) = -\mu^2 \phi^{\dagger} \phi + \sum_{i=1}^5 \lambda_i I^{(4)}{}_i(\phi)$$

quartic SU(3) invariants

Example: $SU(3) \rightarrow T_7$

starting point: SU(3) gauge theory with

$$\mathscr{L} = \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \mathscr{V}(\phi)$$

so potential:
$$\mathscr{V}(\phi) = -\mu^2 \phi^{\dagger} \phi + \sum_{i=1}^5 \lambda_i \mathcal{I}^{(4)}{}_i(\phi)$$

 \square action invariant under CP transformation

$$\begin{array}{ccc} A^{a}_{\mu}(x) & \stackrel{\mathrm{SU}(3)-C\mathcal{P}}{\longmapsto} & R^{ab} \, \mathcal{P}^{\,\nu}_{\mu} A^{b}_{\nu}(\mathcal{P} \, x) \\ \phi_{i}(x) & \stackrel{\mathrm{SU}(3)-C\mathcal{P}}{\longmapsto} & U_{ij} \, \phi^{*}_{*}(\mathcal{P} \, x) \\ & \mathcal{P} = \mathrm{diag}(1,-1,-1,-1) \end{array}$$

Example: $SU(3) \rightarrow T_7$

starting point: SU(3) gauge theory with

$$\mathscr{L} = \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \mathscr{V}(\phi)$$

so potential:
$$\mathscr{V}(\phi) = -\mu^2 \phi^{\dagger} \phi + \sum_{i=1}^5 \lambda_i I^{(4)}{}_i(\phi)$$

 \square action invariant under CP transformation

$$\begin{array}{ccc} A^{a}_{\mu}(x) & \longmapsto^{\mathrm{SU}(3)-C\mathcal{P}} & R^{ab} \ \mathcal{P}^{\nu}_{\mu} A^{b}_{\nu}(\mathcal{P}x) \\ \\ \phi_{i}(x) & \longmapsto^{\mathrm{SU}(3)-C\mathcal{P}} & U_{ij} \ \phi^{*}_{j}(\mathcal{P}x) \end{array}$$

$$SU(3) \rightarrow T_7$$

$$\bowtie \langle \phi \rangle$$
 breaks $\mathrm{SU}(3)$ to T_7

$$SU(3) \rtimes \mathbb{Z}_2 \xrightarrow{\langle \phi \rangle} \mathsf{T}_7 \rtimes \mathbb{Z}_2$$

see e.g. Luhn (2011) & Merle & Zwicky (2012)

 $SU(3) \rightarrow T_7$

$$\bowtie \langle \phi
angle$$
 breaks $\mathrm{SU}(3)$ to T_7

see e.g. Luhn (2011) & Merle & Zwicky (2012)

$$\mathrm{SU}(3) \rtimes \mathbb{Z}_2 \xrightarrow{\langle \phi \rangle} \mathsf{T}_7 \rtimes \mathbb{Z}_2$$

physical fields before and after symmetry breaking

name	$SU(3) \xrightarrow{\langle \phi \rangle}$	name	T_7
A_{μ}	8	$Z_{\mu} \ W_{\mu}$	1_1 3
φ	15	$\operatorname{Re}\sigma_0,\operatorname{Im}\sigma_0$	10
		σ_1	1_{1}
		$ au_1$	3
		$ au_2$	3
		$ au_3$	3

SU(3) - CP vs. $Out(T_7)$

 ${\ensuremath{\,{\rm \ensuremath{\,\rm SU}}}}(3)-{\ensuremath{{\rm \ensuremath{\mathcal{CP}}}}}$ breaks to unique \mathbb{Z}_2 outer automorphism of ${\ensuremath{\mathsf{T}}}_7$

$$Out(\mathsf{T}_7): \quad 1_1 \longleftrightarrow 1_1, \quad \overline{1}_1 \longleftrightarrow \overline{1}_1, \quad 3 \longleftrightarrow \overline{3}$$

SU(3) - CP vs. $Out(T_7)$

 ${\ensuremath{\,{\rm \tiny IS}}}\xspace SU(3)$ – ${\ensuremath{{\rm CP}}}\xspace$ breaks to unique \mathbb{Z}_2 outer automorphism of ${\ensuremath{{\rm T}}}_7$

$$Out(\mathsf{T}_7): \quad 1_1 \longleftrightarrow 1_1 , \quad \overline{1}_1 \longleftrightarrow \overline{1}_1 , \quad 3 \longleftrightarrow \overline{3}$$

I T₇ character table

		-9	-9	¥	\searrow
T_7	C_{1a}	C_{3a}	C_{3b}	C_{7a}	C_{7b}
	е	b	b^2	а	a^3
10	1	1	1	1	1
$\frac{9 1_1}{9}$	1	ω	ω^2	1	1
¢11	1	ω^2	ω	1	1
<mark>} 3</mark> 3	3	0	0	η	η^*
> 3	3	0	0	η^*	η

SU(3) - CP vs. $Out(T_7)$

 ${\ensuremath{\,{\rm \tiny IS}}}\xspace SU(3)$ – ${\ensuremath{{\rm CP}}}\xspace$ breaks to unique \mathbb{Z}_2 outer automorphism of ${\ensuremath{{\rm T}}}_7$

$$Out(\mathsf{T}_7): \quad 1_1 \longleftrightarrow 1_1, \quad \overline{1}_1 \longleftrightarrow \overline{1}_1, \quad 3 \longleftrightarrow \overline{3}$$

T₇ character table

$SU(3) - C\mathcal{P} \text{ vs. } Out(\mathsf{T}_7)$

 ${\ensuremath{\,{\rm sc V}}}\xspace{1.5mu} SU(3)$ – $C\!\mathcal{P}$ breaks to unique \mathbb{Z}_2 outer automorphism of T_7

$$Out(\mathsf{T}_7): \quad 1_1 \longleftrightarrow 1_1, \quad \overline{1}_1 \longleftrightarrow \overline{1}_1, \quad 3 \longleftrightarrow \overline{3}$$

T₇ character table

		-9	-9	¥	\searrow
T_7	C_{1a}	C_{3a}	C_{3b}	C_{7a}	C_{7b}
	е	b	b^2	а	a^3
10	1	1	1	1	1
$\frac{91}{91}$	1	ω	ω^2	1	1
91	1	ω^2	ω	1	1
$\frac{3}{3}$	3	0	0	η	η^*
⊁ 3	3	0	0	η^*	η

 \mathbb{I}_1 and $\overline{\mathbf{1}_1}$ do **not** get swapped!

IF T₇ can be generated by two elements with the presentation

$$\langle a, b \mid a^7 = b^3 = e, b^{-1}ab = a^4 \rangle$$

$$\left< a, b \ \right| \ a^7 \ = \ b^3 \ = \ e \ , b^{-1} \ a \ b \ = \ a^4 \right>$$

triplet representation

$$A = \begin{pmatrix} \rho & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & \rho^4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

T₇ can be generated by two elements with the presentation

$$\left< a, b \ \right| \ a^7 \ = \ b^3 \ = \ e \ , b^{-1} \ a \ b \ = \ a^4 \right>$$

triplet representation

$$A = \begin{pmatrix} \rho & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & \rho^4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

 $\ensuremath{\,^{\scriptsize \mbox{\scriptsize smallmatrix}}}\xspace$ embedding into SU(3)

$$X^{(\boldsymbol{r})} = \exp\left(\mathrm{i}\,\alpha_a\,\mathsf{t}_a^{(\boldsymbol{r})}\right)$$

$$\vec{\alpha}^{(A)} = \frac{2\pi}{7} \left(0, 0, 0, 0, 0, 0, \sqrt{3}, 5 \right)$$

T₇ can be generated by two elements with the presentation

$$\left< a, b \ \right| \ a^7 \ = \ b^3 \ = \ e \ , b^{-1} \ a \ b \ = \ a^4 \right>$$

triplet representation

$$A = \begin{pmatrix} \rho & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & \rho^4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

 $\ensuremath{\,^{\scriptsize \mbox{\scriptsize smallmatrix}}}\xspace$ embedding into SU(3)

$$X^{(\boldsymbol{r})} = \exp\left(\mathrm{i}\,\alpha_a\,\mathsf{t}_a^{(\boldsymbol{r})}\right)$$

$$\vec{\alpha}^{(B)} = \frac{4\pi}{3\sqrt{3}}(0,0,1,1,1,0,0,0)$$

T₇ can be generated by two elements with the presentation

$$\left< a, b \ \right| \ a^7 \ = \ b^3 \ = \ e \ , b^{-1} \ a \ b \ = \ a^4 \right>$$

triplet representation

$$A = \begin{pmatrix} \rho & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & \rho^4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

 $\ensuremath{\,^{\scriptsize \mbox{\scriptsize smallmatrix}}}\xspace$ embedding into SU(3)

$$X^{(\boldsymbol{r})} = \exp\left(\mathrm{i}\,\alpha_a\,\mathrm{t}_a^{(\boldsymbol{r})}\right)$$

🖙 work in SusyNo basis

Fonseca (2012)

T₇ scalar states

 $\label{eq:states} \begin{array}{c} \mbox{ branchings: } & _ & _ \\ & 8 \end{tabular} & 3 \end{tabular} & 1_1 \end{tabular} & 1_1 \end{tabular} & 3 \end{tabular} & 3 \\ & 15 \end{tabular} & 1_0 \end{tabular} & 1_1 \end{tabular} & \overline{1}_1 \end{tabular} & 3 \end{tabular} & 3 \end{tabular} & \overline{3} \end{tabular} & \overline{3} \\ \end{array}$

T₇ scalar states

Physical scalar fields (would-be Goldstone bosons subtracted)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

T₇ scalar states

Physical scalar fields (would-be Goldstone bosons subtracted)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

INT T₇ representations

$$\begin{array}{lll} \phi_1 \ \widehat{=} \ \mathbf{1}_0 \ , & \phi_2 \ \widehat{=} \ \mathbf{1}_1 \ , \\ T_1 \ := \ (\phi_4, \ \phi_5, \ \phi_6) \ \widehat{=} \ \mathbf{3} \ , & T_2 \ := \ (\phi_7, \ \phi_8, \ \phi_9) \ \widehat{=} \ \mathbf{3} \ , \\ \overline{T}_3 \ := \ (\phi_{10}, \ \phi_{11}, \ \phi_{12}) \ \widehat{=} \ \overline{\mathbf{3}} \end{array}$$

T_7 scalar states

Physical scalar fields (would-be Goldstone bosons subtracted)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

INT T₇ representations

so physical $C\mathcal{P}$ trafo allowed by $T_7!$

T_7 scalar states

Physical scalar fields (would-be Goldstone bosons subtracted)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

INT T₇ representations

so physical $C\mathcal{P}$ trafo allowed by T_7 !

🔊 VEV

$$|v| = \mu \times 3 \sqrt{\frac{7}{2}} \left(-7 \sqrt{15} \lambda_1 + 14 \sqrt{15} \lambda_2 + 20 \sqrt{6} \lambda_4 + 13 \sqrt{15} \lambda_5 \right)^{-1/2}$$

🖙 VEV

$$|v| = \mu \times 3 \sqrt{\frac{7}{2}} \left(-7 \sqrt{15} \lambda_1 + 14 \sqrt{15} \lambda_2 + 20 \sqrt{6} \lambda_4 + 13 \sqrt{15} \lambda_5 \right)^{-1/2}$$

I ■ T₇ 1-plet representations

Re
$$\sigma_0 = \frac{1}{\sqrt{2}} (\phi_1 + \phi_1^*)$$
 Im $\sigma_0 = -\frac{i}{\sqrt{2}} (\phi_1 - \phi_1^*)$
 $\sigma_1 = \phi_2$

🖙 VEV

$$|v| = \mu \times 3 \sqrt{\frac{7}{2}} \left(-7\sqrt{15}\,\lambda_1 + 14\sqrt{15}\,\lambda_2 + 20\sqrt{6}\,\lambda_4 + 13\sqrt{15}\,\lambda_5 \right)^{-1/2}$$

 \blacksquare T₇ 1-plet representation be eliminated gauging accidental U(1)

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} \left(\phi_{1} + \phi_{1}^{*} \right) \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} \left(\phi_{1} - \phi_{1}^{*} \right)$$
$$\sigma_{1} = \phi_{2}$$

🖙 VEV

$$|v| = \mu \times 3 \sqrt{\frac{7}{2}} \left(-7\sqrt{15}\,\lambda_1 + 14\sqrt{15}\,\lambda_2 + 20\sqrt{6}\,\lambda_4 + 13\sqrt{15}\,\lambda_5 \right)^{-1/2}$$

T₇ 1–plet representations

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} \left(\phi_{1} + \phi_{1}^{*} \right) \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathsf{i}}{\sqrt{2}} \left(\phi_{1} - \phi_{1}^{*} \right)$$
$$\sigma_{1} = \phi_{2}$$

masses

$$m_{\text{Re}\sigma_0}^2 = 2\,\mu^2 , \qquad m_{\text{Im}\sigma_0}^2 = 0$$
$$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\,\lambda_5\,v^2$$

Gauge fields

gauge fields

$$Z^{\mu} = \frac{1}{\sqrt{2}} \left(A_{7}^{\mu} - iA_{8}^{\mu} \right)$$
$$W_{1}^{\mu} = \frac{1}{\sqrt{2}} \left(A_{4}^{\mu} - iA_{1}^{\mu} \right)$$
$$W_{2}^{\mu} = \frac{1}{\sqrt{2}} \left(A_{5}^{\mu} - iA_{2}^{\mu} \right)$$
$$W_{3}^{\mu} = \frac{i}{\sqrt{2}} \left(A_{6}^{\mu} - iA_{3}^{\mu} \right)$$

Gauge fields

gauge fields

$$Z^{\mu} = \frac{1}{\sqrt{2}} \left(A_{7}^{\mu} - iA_{8}^{\mu} \right)$$
$$W_{1}^{\mu} = \frac{1}{\sqrt{2}} \left(A_{4}^{\mu} - iA_{1}^{\mu} \right)$$
$$W_{2}^{\mu} = \frac{1}{\sqrt{2}} \left(A_{5}^{\mu} - iA_{2}^{\mu} \right)$$
$$W_{3}^{\mu} = \frac{i}{\sqrt{2}} \left(A_{6}^{\mu} - iA_{3}^{\mu} \right)$$

masses

$$m_Z^2 = rac{7}{3}g^2v^2$$
 and $m_W^2 = g^2v^2$

Triplet mass eigenstates

mass eigenstates

$$\begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix} = \underbrace{ \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix}}_{= V} \begin{pmatrix} T_2 \\ \overline{T}_3^* \\ T_1 \end{pmatrix}$$

Triplet mass eigenstates

mass eigenstates

$$\begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix} = \underbrace{ \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix}}_{= V} \begin{pmatrix} T_2 \\ \overline{T}_3^* \\ T_1 \end{pmatrix}$$

masses and mixing matrix depend on potential parameters

 \square Out(T₇)

$$\begin{array}{lll} Z_{\mu}(x) \ \mapsto \ - \mathcal{P}_{\mu}^{\ \nu} Z_{\nu}(\mathcal{P}x) \ , & \sigma_{0}(x) \ \mapsto \ \sigma_{0}(\mathcal{P}x) \ , \\ W_{\mu}(x) \ \mapsto & \mathcal{P}_{\mu}^{\ \nu} W_{\nu}^{*}(\mathcal{P}x) \ , & \sigma_{1}(x) \ \mapsto \ \sigma_{1}(\mathcal{P}x) \ , & \tau_{i}(x) \ \mapsto \ \tau_{i}^{*}(\mathcal{P}x) \end{array}$$

 \square Out(T₇)

$$\begin{array}{lll} Z_{\mu}(x) \ \mapsto \ - \ \mathcal{P}_{\mu}^{\ \nu} Z_{\nu}(\mathcal{P}x) \ , & \sigma_{0}(x) \ \mapsto \ \sigma_{0}(\mathcal{P}x) \ , \\ W_{\mu}(x) \ \mapsto & \ \mathcal{P}_{\mu}^{\ \nu} W_{\nu}^{*}(\mathcal{P}x) \ , & \sigma_{1}(x) \ \mapsto \ \sigma_{1}(\mathcal{P}x) \ , & \tau_{i}(x) \ \mapsto \ \tau_{i}^{*}(\mathcal{P}x) \end{array}$$

mode expansion

$$\widehat{\boldsymbol{\sigma}}_{1}(x) = \int \widetilde{dp} \left\{ \widehat{\boldsymbol{a}}(\vec{p}) e^{-ipx} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) e^{ipx} \right\}$$

 $\begin{array}{cccc} & \operatorname{Out}(\mathsf{T}_7) \\ & & Z_{\mu}(x) \ \mapsto \ - \mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P}x) \ , & \sigma_0(x) \ \mapsto \ \sigma_0(\mathcal{P}x) \ , \\ & & W_{\mu}(x) \ \mapsto & \mathcal{P}_{\mu}^{\nu} W_{\nu}^*(\mathcal{P}x) \ , & \sigma_1(x) \ \mapsto \ \sigma_1(\mathcal{P}x) \ , & \tau_i(x) \ \mapsto \ \tau_i^*(\mathcal{P}x) \end{array}$

mode expansion

$$\widehat{\boldsymbol{\sigma}}_{1}(x) = \int \widetilde{\mathsf{d}} \widetilde{\boldsymbol{p}} \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \, \mathrm{e}^{-\mathrm{i} p \, x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \, \mathrm{e}^{\mathrm{i} p \, x} \right\}$$

outer automorphism of T₇

$$\operatorname{Out}(\mathsf{T}_7) : \quad \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}(-\vec{p}) \qquad \text{and} \qquad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}^{\dagger}(-\vec{p})$$

 \square Out(T₇)

$$\begin{array}{lll} Z_{\mu}(x) \ \mapsto \ - \mathcal{P}_{\mu}^{\ \nu} Z_{\nu}(\mathcal{P}x) \ , & \sigma_{0}(x) \ \mapsto \ \sigma_{0}(\mathcal{P}x) \ , \\ W_{\mu}(x) \ \mapsto & \mathcal{P}_{\mu}^{\ \nu} W_{\nu}^{*}(\mathcal{P}x) \ , & \sigma_{1}(x) \ \mapsto \ \sigma_{1}(\mathcal{P}x) \ , & \tau_{i}(x) \ \mapsto \ \tau_{i}^{*}(\mathcal{P}x) \end{array}$$

mode expansion

$$\widehat{\boldsymbol{\sigma}}_{1}(x) = \int \widetilde{\mathsf{d}} \widetilde{\boldsymbol{p}} \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \, \mathrm{e}^{-\mathrm{i} p \, x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \, \mathrm{e}^{\mathrm{i} p \, x} \right\}$$

outer automorphism of T₇

$$\operatorname{Out}(\mathsf{T}_7) : \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}(-\vec{p}) \quad \text{and} \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}^{\dagger}(-\vec{p})$$

 \square QFT *CP* not a symmetry of the action

$$C\mathcal{P}$$
 : $\widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}(-\vec{p})$ and $\widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}^{\dagger}(-\vec{p})$

$C\mathcal{P}$ violation in the T₇ phase

decay asymmetry

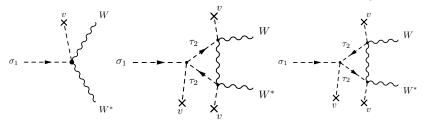
$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left| \mathcal{M}(\sigma_1 \to W W^*) \right|^2 - \left| \mathcal{M}(\sigma_1^* \to W W^*) \right|^2}{\left| \mathcal{M}(\sigma_1 \to W W^*) \right|^2 + \left| \mathcal{M}(\sigma_1^* \to W W^*) \right|^2}$$

CP violation in the T₇ phase

decay asymmetry

$$\varepsilon_{\sigma_1 \to W \, W^*} \ := \ \frac{\left| \mathcal{M}(\sigma_1 \to W \, W^*) \right|^2 - \left| \mathcal{M}(\sigma_1^* \to W \, W^*) \right|^2}{\left| \mathcal{M}(\sigma_1 \to W \, W^*) \right|^2 + \left| \mathcal{M}(\sigma_1^* \to W \, W^*) \right|^2}$$

CP violation from interference between tree–level and 1–loop



References I

- J. Bernabéu, G.C. Branco & M. Gronau. CP RESTRICTIONS ON QUARK MASS MATRICES. *Phys. Lett.*, B169:243–247, 1986. doi: 10.1016/0370-2693(86)90659-3.
- Brenda Carballo-Perez, Eduardo Peinado & Saul Ramos-Sánchez. $\Delta(54)$ flavor phenomenology & strings. *JHEP*, 12:131, 2016. doi: 10.1007/JHEP12(2016)131.
- Mu-Chun Chen & K.T. Mahanthappa. Group Theoretical Origin of CP Violation. *Phys. Lett.*, B681:444–447, 2009. doi: 10.1016/j.physletb.2009.10.059.
- Mu-Chun Chen, Maximilian Fallbacher, K.T. Mahanthappa, Michael Ratz & Andreas Trautner. CP Violation from Finite Groups. *Nucl. Phys.*, B883:267, 2014.
- Michael Dine, Robert G. Leigh & Douglas A. MacIntire. Of CP & other gauge symmetries in string theory. *Phys. Rev. Lett.*, 69:2030–2032, 1992. doi: 10.1103/PhysRevLett.69.2030.

References II

- Lance J. Dixon, Daniel Friedan, Emil J. Martinec & Stephen H. Shenker. The Conformal Field Theory of Orbifolds. *Nucl. Phys.*, B282:13–73, 1987.
- Renato M. Fonseca. Calculating the renormalisation group equations of a SUSY model with Susyno. *Comput. Phys. Commun.*, 183: 2298–2306, 2012. doi: 10.1016/j.cpc.2012.05.017.
- Shahram Hamidi & Cumrun Vafa. Interactions on Orbifolds. *Nucl. Phys.*, B279:465, 1987.
- Luis E. Ibáñez, Jihn E. Kim, Hans Peter Nilles & F. Quevedo. Orbifold compactifications with three families of SU(3) x SU(2) x U(1)**n. *Phys. Lett.*, B191:282–286, 1987.
- Tatsuo Kobayashi, Hans Peter Nilles, Felix Plöger, Stuart Raby & Michael Ratz. Stringy origin of non-Abelian discrete flavor symmetries. *Nucl. Phys.*, B768:135–156, 2007.

Christoph Luhn. Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian's approach. *JHEP*, 1103:108, 2011. doi: 10.1007/JHEP03(2011)108.

Alexander Merle & Roman Zwicky. Explicit & spontaneous breaking of SU(3) into its finite subgroups. JHEP, 1202:128, 2012. doi: 10.1007/JHEP02(2012)128.

Hans Peter Nilles, Michael Ratz, Andreas Trautner & Patrick K. S. Vaudrevange. *CP* Violation from String Theory. 2018.

Yessenia Olguin-Trejo, Ricardo Pérez-Martínez & Saul Ramos-Sánchez. Charting the flavor landscape of MSSM-like Abelian heterotic orbifolds. 2018.