FLASY2019：8th Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology

Origin of non－Abelian discrete flavour symmetries

Ye－Ling Zhou（周也铃），Southampton U．，2019－07－26

Science \＆Technology Facilities Council

Motivation of non-Abelian discrete flavour symmetries

Motivation of non-Abelian discrete flavour symmetries

Fundamental problems of non-Abelian discrete symmetries
Anything behind non-Abelian discrete symmetries?

- A fundamental symmetry?
- A consequence of some more fundamental physics?

Fundamental problems of non-Abelian discrete symmetries
Anything behind non-Abelian discrete symmetries?

- A fundamental symmetry?
- A consequence of some more fundamental physics?

Domain wall problem

Fundamental problems of non-Abelian discrete symmetries
Anything behind non-Abelian discrete symmetries?

- A fundamental symmetry?
- A consequence of some more fundamental physics?

Is non-Abelian discrete symmetry
a fundamental symmetry of
or
an effective symmetry after a (gauge) continuous symmetry breaking

Origin I

The non-Abelian discrete symmetry as

a fundamental symmetry of spacetime

Extra dimensions with orbifolding

- Twisted torus with a Z_{2} parity

Altarelli, Feruglio, Lin, 0610165;

credit: http://www.geocities.ws/

Extra dimensions with orbifolding

- Twisted torus with a Z_{2} parity

Extra dimensions with orbifolding

- Twisted torus with a Z_{2} parity

$$
\begin{aligned}
& z_{1}=0 \\
& z_{2}=\frac{1}{2} \quad \text { Fixed } \\
& z_{3}=\frac{\omega}{2} \quad \text { Points } \\
& z_{4}=1+\frac{\omega}{2}
\end{aligned}
$$

$$
\begin{aligned}
a_{1}=a_{3} & =a_{2} \equiv a \\
b_{1} & =b_{2}=b \\
c_{1} & =c_{2}=c
\end{aligned}
$$

- Flavour symmetries from different orbifoldings

Kobayashi, Nilles, Ploger, Raby, Ratz, 0611020; Adulpravitchai, Blum, Lindner, 0906.0468; Burrows, King, 0909.1433; 1007.2310;
Adulpravitchai, de Anda, King, 1803.04978...

Modular symmetry as origin of flavour symmetry

- Modular symmetry

Ferrara, Lust, Theisen, 89 generated by two independent lattice transformations.

$$
\tau=\omega_{2} / \omega_{1} \quad S_{\tau}:-1 / \tau \quad T_{\tau}: \tau \rightarrow \tau+1
$$

- Finite modular symmetries

$$
S_{\tau}^{2}=\left(S_{\tau} T_{\tau}\right)^{3}=\mathbf{1}
$$

$$
T_{\tau}^{3}=1
$$

$$
T_{\tau}^{5}=1
$$

de Adelhart Toorop, Feruglio and Hagedorn, 1112.1340

Modular symmetry as direct origin of flavour mixing

- A "classical" flavour transformation

$$
\psi \rightarrow \rho_{I}(\gamma) \psi
$$

$$
Y\left(\varphi_{1}, \varphi_{2}, \ldots\right) \rightarrow \rho_{I_{Y}}(\gamma) Y\left(\varphi_{1}, \varphi_{2}, \ldots\right)
$$

- A modular transformation

$$
\gamma: \tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d} \quad \text { in modular space } \tau \text { with } \operatorname{Im}(\tau)>0
$$

$$
\psi \rightarrow(c \tau+d)^{2 k} \rho_{I}(\gamma) \psi
$$

$$
Y(\tau) \rightarrow(c \tau+d)^{2 k_{Y}} \rho_{I_{Y}}(\gamma) Y(\tau)
$$

- A modular symmetry as the direct origin of flavour mixing

Proposed by Feruglio in 1706.08749, studied by ... see talks by Feruglio, King, Penedo, Tanimoto, Titov

- Motivation for multiple modular symmetries

Compactification

Multiple modular symmetries as origin of flavour mixing

Multiple modular symmetries as origin of flavour mixing

Multiple modular symmetries as origin of flavour mixing

- Φ_{AC} and Φ_{BC} : bridges to connect different modular symmetries
- VEVs of Φ_{AC} and Φ_{BC} are achieved via the flat directions
bi-triplet contraction

$$
\Phi_{A C} \Phi_{A C}+\mu_{A} \Phi_{A C}=0
$$

triplet contraction

$$
\Phi_{A C} \Phi_{A C}=0
$$

- Theory before and after $S_{4}^{A} \times S_{4}^{B} \times S_{4}^{C}$ breaking

$$
\begin{aligned}
w_{\ell}= & \frac{1}{\Lambda}\left[L \Phi_{A C} Y_{A}\left(\tau_{A}\right) N_{A}^{c}+L \Phi_{B C} Y_{B}\left(\tau_{B}\right) N_{B}^{c}\right] H_{u} \\
& +\left[L Y_{e}\left(\tau_{C}\right) e^{c}+L Y_{\mu}\left(\tau_{C}\right) \mu^{c}+L Y_{\tau}\left(\tau_{C}\right) \tau^{c}\right] H_{d} \\
& +\frac{1}{2} M_{A}\left(\tau_{A}\right) N_{A}^{c} N_{A}^{c}+\frac{1}{2} M_{B}\left(\tau_{B}\right) N_{B}^{c} N_{B}^{c}+M_{A B}\left(\tau_{A}, \tau_{B}\right) N_{A}^{c} N_{B}^{c} \\
w_{\ell}^{\mathrm{eff}}= & {\left[\frac{v_{A C}}{\Lambda} L Y_{A}\left(\tau_{A}\right) N_{A}^{c}+\frac{v_{B C}}{\Lambda} L Y_{B}\left(\tau_{B}\right) N_{B}^{c}\right] H_{u} } \\
& +\left[L Y_{e}\left(\tau_{C}\right) e^{c}+L Y_{\mu}\left(\tau_{C}\right) \mu^{c}+L Y_{\tau}\left(\tau_{C}\right) \tau^{c}\right] H_{d} \\
& +\frac{1}{2} M_{A}\left(\tau_{A}\right) N_{A}^{c} N_{A}^{c}+\frac{1}{2} M_{B}\left(\tau_{B}\right) N_{B}^{c} N_{B}^{c}+M_{A B}\left(\tau_{A}, \tau_{B}\right) N_{A}^{c} N_{B}^{c}
\end{aligned}
$$

Multiple modular symmetries as origin of flavour mixing

Diagonal charged lepton Yukawa coupling

Multiple modular symmetries as origin of flavour mixing

normal hierarchy

$$
0=m_{1}<m_{2}<m_{3}
$$

best-fit
second octant
first octant

Origin II

The non-Abelian discrete symmetry as

an effective symmetry after a (gauge) continuous symmetry breaking

$\mathrm{SO}(3) \rightarrow \mathrm{A}_{4}, \mathrm{~S}_{4}$ and A_{5}

$S O(3)$

Ovrut, 77; Etesi, 9706029; Berger and Grossman, 0910.4392
$\mathrm{SU}(3) \rightarrow \mathrm{A}_{4} \quad$ e.g., Luhn, 1101.2417; Merle, Zwicky, 1110.4891

SO(3) as origin of discrete symmetries

© How to realise it?

- - using high dimensional irrep

- For the first time, we realised it in SUSY with the help of flat direction

King, YLZ, 1809.10292

A_{4} breaking to Z_{3} and Z_{2}

- One way (not unique) to breaking A_{4} to Z_{3} and Z_{2}

$$
\varphi \sim \underline{3}=\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3}
\end{array}\right) \quad \chi_{i j} \sim \underline{5}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}}\left(\chi^{\prime}+\chi^{\prime \prime}\right) & \frac{1}{\sqrt{2}} \chi_{3} & \frac{1}{\sqrt{\sqrt{2}}} \chi_{2} \\
\frac{1}{\sqrt{2}} \chi_{3} & \frac{1}{\sqrt{3}}\left(\omega^{2}+\omega^{2} \chi^{2}\right) & \frac{1}{\sqrt{2}} \chi_{1} \\
\frac{1}{\sqrt{2}} \chi_{2} & \frac{1}{\sqrt{2}} \chi_{1} & \frac{1}{\sqrt{3}}\left(\omega^{2} \chi^{\prime}+\omega \chi^{\prime \prime}\right)
\end{array}\right)
$$

Framework of model building

Lepton masses and mixing

- Charged lepton mass matrices

$$
\begin{gathered}
w_{e}^{\text {eff }}=y_{e} \frac{v_{\varphi}^{3}}{\Lambda^{3}} \ell^{T}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{c} H_{d} \\
\underline{1}
\end{gathered}
$$

$$
S O(3) \times U(1) \simeq S U(2) \times U(1)
$$

How to extract the 1' and 1 " of A_{4} from the irrep of $\mathrm{SO}(3)$?
$\begin{aligned} w_{R_{\mu}}^{\mathrm{eff}}= & \left(\ell^{T}, L_{\mu 0}, L_{\mu 3}^{T}\right) \\ & (\underline{3}, \underline{1}, \underline{3})\end{aligned}$

After heavy leptons decouple,

Lepton masses and mixing

- Neutrino mass matrix

$$
\begin{gathered}
w_{N}=y_{N}(\ell N)_{\underline{1}} H_{u}+\frac{\lambda_{\eta}}{\Lambda} \bar{\eta}^{2}(N N)_{\underline{1}}+\lambda_{\chi}\left(\chi(N N)_{\underline{\underline{5}}}\right)_{\underline{1}} \\
M_{D}=\frac{y_{D} v_{u}}{\sqrt{2}} \mathbb{1}_{3 \times 3}, \quad M_{M}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a & b \\
0 & b & a
\end{array}\right)
\end{gathered}
$$

Nothing special, but the Z_{2}-preserving one.

- Mixing is given by TBM $+\mathrm{e} \mu$-mixing correction

$$
\begin{aligned}
\sin \theta_{13} & =\frac{\sin \theta_{e \mu}}{\sqrt{2}} \\
\sin \theta_{12} & =\sqrt{\frac{2-2 \sin 2 \theta_{e \mu} \cos \phi_{e \mu}}{3\left(2-\sin ^{2} \theta_{e \mu}\right)}}, \\
\sin \theta_{23} & =\frac{\cos \theta_{e \mu}}{\sqrt{2-\sin ^{2} \theta_{e \mu}}} \cdot \begin{array}{c}
\text { first } \\
\text { octant }
\end{array}
\end{aligned}
$$

King,0506297;
Antusch and King,0508044;
King and Malinsky, 0608021;
Masina, 0508031;
Antusch, Huber, King, Schwetz,
0702286; Ballett, King, Luhn,
Pascoli, Schmidt, 1410.7573;
Girardi, Petcov, Titov, 1410.8056.
$\delta=\arg \left(\left(3 \cos 2 \theta_{e \mu}+\cos 4 \theta_{e \mu}\right) \cos \phi_{e \mu}-i\left(\cos 2 \theta_{e \mu}+3\right) \sin \phi_{e \mu}+\sin 2 \theta_{e \mu}\right)$

The absence of domain wall in our model

$\bullet \mathrm{SO}(3) \times \mathrm{U}(1) \rightarrow \mathrm{A}_{4}$, the breaking of gauge symmetry does not generate domain walls.

- $\mathrm{A}_{4} \rightarrow \mathrm{Z}_{2}$ and Z_{3}, even if the energy gap between different vacuums is generated, it will decay to gauge bosons and finally to leptons. The two vacuums are finally identical with each other via gauge transformation.

Summary

Non-Abelian discrete symmetries from ...

extra dimensions

- A simple example of how to realise A_{4} via orbifolding.

■ Multiple modular symmetries as the direct origin of flavour mixing.

a gauge symmetry breaking

V SO(3) breaking to A_{4}, S_{4} or A_{5} via VEV of high irreps.
■ A gauge $\mathrm{SO}(3) \times \mathrm{U}(1)$ flavour model is introduced. Through a two-step symmetry breaking, $\mathrm{SO}(3) \rightarrow \mathrm{A}_{4} \rightarrow \mathrm{Z}_{3}, \mathrm{Z}_{2}$, flavour mixing is realised, fully consistent with oscillation data.

- The domain wall problem is absent.

Thank you!

