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Origin of non-Abelian discrete 
flavour symmetries



Motivation of non-Abelian discrete flavour symmetries
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Motivation of non-Abelian discrete flavour symmetries
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Fundamental problems of non-Abelian discrete symmetries
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Anything behind non-Abelian discrete symmetries?

• A fundamental symmetry?

• A consequence of some more fundamental physics?



Fundamental problems of non-Abelian discrete symmetries
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Domain wall problem

Vacuum I     Domain wall     Vacuum II
space
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Zeldovich, Kobzarev, Okun, 74;  
Kibble, 76; Vilenkin, 85

Anything behind non-Abelian discrete symmetries?

• A fundamental symmetry?

• A consequence of some more fundamental physics?



Fundamental problems of non-Abelian discrete symmetries
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Is non-Abelian discrete symmetry

Anything behind non-Abelian discrete symmetries?

• A fundamental symmetry?

• A consequence of some more fundamental physics?

a fundamental symmetry of  
spacetime

an effective symmetry after  
a (gauge) continuous symmetry breaking

or ?
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Origin I

a fundamental symmetry of  
spacetime

The non-Abelian discrete symmetry as 



Extra dimensions with orbifolding
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Twisted torus with a Z2 parity
⇢

z ! z + 1
z ! z + !
z ! �zZ2

T 2

�1 = �3 = �2

0 1

!
1 + !

�1

�2

�3

z = x5 + ix6
Altarelli, Feruglio, Lin, 0610165;  
de Anda, King, Perdomo, 1812.05620

! = ei2⇡/3

Twisted torus

credit: http://www.geocities.ws/
glnarasimham/TorusMoebiusMorph.htm



Extra dimensions with orbifolding
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Twisted torus with a Z2 parity

0 1

!
1 + !

a3 a1 a2

a1 = a3 = a2 ⌘ a

⇢
z ! z + 1
z ! z + !
z ! �z

z = x5 + ix6

Z2

T 2



Extra dimensions with orbifolding
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Twisted torus with a Z2 parity
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Flavour symmetries from different orbifoldings

Kobayashi, Nilles, Ploger, Raby, Ratz, 0611020; Adulpravitchai, Blum, 
Lindner, 0906.0468; Burrows, King, 0909.1433; 1007.2310; 
Adulpravitchai, de Anda, King, 1803.04978…

b1 = b2 = b

c1 = c2 = c

b1

b2

c2

c1

a1 = a3 = a2 ⌘ a

a1 a2



Finite modular symmetries

Modular symmetry as origin of flavour symmetry
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Modular symmetry

S2
⌧ = (S⌧T⌧ )

3 = 1

T 3
⌧ = 1 T 4

⌧ = 1 T 5
⌧ = 1

A4 S4 A5

de Adelhart Toorop, Feruglio and Hagedorn, 1112.1340

) ) )
generated by two independent lattice transformations. 

�3 ' �4 ' �5 '

Ferrara, Lust, Theisen, 89 

!2

!1

S⌧!1

S⌧!2

T⌧!2

T⌧!1

T⌧ : ⌧ ! ⌧ + 1S⌧ : �1/⌧⌧ = !2/!1



Modular symmetry as direct origin of flavour mixing
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Proposed by Feruglio in 1706.08749, studied by …  
                        see talks by Feruglio, King, Penedo, Tanimoto, Titov

A “classical” flavour transformation

A modular transformation

� : ⌧ ! �⌧ =
a⌧ + b

c⌧ + d
in modular space τ with Im(τ) > 0

Motivation for multiple modular symmetries

10D 4D
Compactification

 ! ⇢I(�) 

Y (⌧) ! (c⌧ + d)2kY ⇢IY (�)Y (⌧) ! (c⌧ + d)2k⇢I(�) 

Y ('1,'2, ...) ! ⇢IY (�)Y ('1,'2, ...)

A modular symmetry as the direct origin of flavour mixing



Multiple modular symmetries as origin of flavour mixing
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�AC �BC

SA
4 ⇥ SB

4 ⇥ SC
4 ! SD

4

RH neutrino  
NB

RH neutrino  
NA

SA
4 , ⌧A SB

4 , ⌧B

SC
4 , ⌧C

RH ec, μc, τc 
weights: -6, -4, -2

weight: -6 weight: -4

Lepton doublets L ~ 3:  
zero weight

de Medeiros Varzielas,  
King, YLZ, 1906.02208 



Multiple modular symmetries as origin of flavour mixing
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⌧A, ⌧B , ⌧C
SD
4

SA
4 ⇥ SB

4 ⇥ SC
4 ! SD

4

RH neutrino  
NB

RH neutrino  
NA

h�ACi h�BCi

SA
4 , ⌧A SB

4 , ⌧B

SC
4 , ⌧C

weight: -6 weight: -4

RH ec, μc, τc 
weights: -6, -4, -2

Lepton doublets L ~ 3:  
zero weight



Multiple modular symmetries as origin of flavour mixing

ΦAC and ΦBC : bridges to connect different modular symmetries
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bi-triplet contraction

triplet contraction

Theory before and after                            breakingSA
4 ⇥ SB

4 ⇥ SC
4 ! SD

4

�AC�AC + µA�AC = 0

�AC�AC = 0

VEVs of ΦAC and ΦBC are achieved via the flat directions 



Multiple modular symmetries as origin of flavour mixing
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⌧A, ⌧B , ⌧C
SD
4

ZT
3

ZTS
3 ZU

2

h⌧Bih⌧Ai

h⌧Ci

SD
4 ! ZT

3 , Z
TS
3 , TU

2

Diagonal charged lepton Yukawa coupling

NB Yukawa couplingNA Yukawa coupling

h⌧Ai =
1

2
+ i

p
3

2

h⌧Bi =
1

2
+

i

2

h⌧Ci = �1

2
+ i

p
3

2

ZTS
3 = {1, TS, (TS)2}
ZU
2 = {1, U}

ZT
3 = {1, T, T 2}

S = T 2
⌧ , T = S⌧T⌧ , U = T⌧S⌧T

2
⌧ S⌧

S = T 2
⌧ , T = S⌧T⌧ , U = T⌧S⌧T

2
⌧ S⌧



Multiple modular symmetries as origin of flavour mixing
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second  
octant 

first  
octant 

best-fit

0 = m1 < m2 < m3normal hierarchy

Trimaximal mixing TM1

Xing, S. Zhou, 0607302; 
Lam, hep-ph/0611017; 
Albright, Rodejohann,  
0812.0436. 
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Origin II

an effective symmetry after  
a (gauge) continuous symmetry 

breaking

The non-Abelian discrete symmetry as 



 SO(3)→A4, S4 and A5
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SO(3) A4 S4 A5

1 1 1 1

3 3 3 3

5 1

0 + 1

00 + 3 2+ 3

0
5

7 1+ 3+ 3 1

0 + 3+ 3

0
3

0 + 4

9 1+ 1

0 + 1

00 + 3+ 3 1+ 2+ 3+ 3

0
4+ 5

11 1

0 + 1

00 + 3+ 3+ 3 2+ 3+ 3+ 3

0
3+ 3

0 + 5

13 1+ 1+ 1

0 + 1

00 + 3+ 3+ 3 1+ 1

0 + 2+ 3+ 3

0 + 3

0
1+ 3+ 4+ 5

Table 2: Decomposition of some irreps of SO(3) into irreps of A4, S4 and A5. Results of
decomposition to irreps of A4 have been given in [28].

• For a triplet 3 of SO(3), ' = ('1,'2,'3)T , it is also a triplet 3 of A4.

• A 5-plet of SO(3), �, can be represented as a rank-2 tensor �ij in the 3d space. It is
symmetric, �ij = �ji, and traceless, �11 + �22 + �33 = 0. Independent components
can be chosen as �11, �12, �13, �23 and �33. The 5-plet is decomposed to two non-
trivial singlets 10 and 1

00 and one triplet 3 of A4. It is useful to re-parametrise � in
the form

� =

0

B

@

1p
3
(�0 + �00) 1p

2
�3

1p
2
�2

1p
2
�3

1p
3
(!�0 + !2�00) 1p

2
�1

1p
2
�2

1p
2
�1

1p
3
(!2�0 + !�00)

1

C

A

, (39)

where ! = e2i⇡/3. This parametrisation has two advantages. One is the simple
transformation property in A4,

�0 ⇠ 1

0 , �00 ⇠ 1

00 , �3 ⌘ (�1,�2,�3) ⇠ 3 of A4 . (40)

The other is the normalised kinetic term,

(@µ�
⇤@µ�)1 = @µ�

0⇤@µ�0 + @µ�
00⇤@µ�00 + @µ�

†
3@

µ�3

= @µ�
0⇤@µ�0 + @µ�

00⇤@µ�00 + @µ�
⇤
1@

µ�1 + @µ�
⇤
2@

µ�2 + @µ�
⇤
3@

µ�3 . (41)

• The 7-plet of SO(3) is a symmetric and traceless rank-3 tensor in the 3d space. It is
decomposed to one trivial singlet 1 and two triplets 3 of A4. The former mentioned
⇠ can be re-labelled as

⇠123 =
1p
6
⇠0 ,

⇠111 = � 2p
10

⇠01 , ⇠112 =
1p
10

⇠02 �
1p
6
⇠2 , ⇠113 =

1p
10

⇠03 +
1p
6
⇠3 ,

⇠133 =
1p
10

⇠01 �
1p
6
⇠1 , ⇠233 =

1p
10

⇠02 +
1p
6
⇠2 , ⇠333 = � 2p

10
⇠03 . (42)

Here,

⇠0 ⇠ 1 , ⇠3 ⌘ (⇠1, ⇠2, ⇠3) ⇠ 3 , ⇠03 ⌘ (⇠01, ⇠
0
2, ⇠

0
3) ⇠ 3 of A4 . (43)

11

SO(3)

Ovrut, 77; Etesi, 9706029; Berger and Grossman, 0910.4392

e.g., Luhn, 1101.2417; Merle, Zwicky, 1110.4891SU(3)→A4

SO(3)



How to realise it?  
——using high dimensional irrep

SO(3) as origin of discrete symmetries
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⇠ijk ⇠ 7 =

SO(3)

A4 S4
A5

⇠ ⇠ 7

(⇠⇠)5 = 0 ⇢ ⇠ 9

(⇢⇢)5 = 0

⇣ ⇠ 13

(⇣⇣)9 = 0

King, YLZ, 1809.10292

For the first time, we realised it in SUSY with the 
help of flat direction



A4 breaking to Z3 and Z2
One way (not unique) to breaking A4 to Z3 and Z2
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' ⇠ 3 =

0

@
'1

'2

'3

1

A � ⇠ 5 =

0

B@

1p
3
(�0 + �00) 1p

2
�3

1p
2
�2

1p
2
�3

1p
3
(!�0 + !2�00) 1p

2
�1

1p
2
�2

1p
2
�1

1p
3
(!2�0 + !�00)

1

CA�ij ⇠ 5 =

(⇠(��)5)3 = 0(⇠�)5 = 0

(⇠('')5)5 = 0

A4→Z3

A4→Z2

⇠ 3

⇠ 10

⇠ 100



Framework of model building
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A4

Z2Z3

SO(3)⇥ U(1)

Lepton mixing

` N ec Rµ R⌧

3 3 1 5 5

13 3 (10,100,3) (10,100,3)

µc ⌧ cHeavy leptons

Leptons

h⇣i ⇠ {v⇣ , 0, (0, 0, 0)}
(10, 100, 3)5 ⇠



Lepton masses and mixing
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3 1

(3, 1, 3)

(3, 1, 3)

5

10

100

3

10

100

3
5

How to extract the 1’ and 1’’ of A4 from the irrep of SO(3)?

After heavy leptons decouple, 

Charged lepton mass matrices
SO(3)⇥ U(1) ' SU(2)⇥ U(1)



Lepton masses and mixing
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Nothing special, but the Z2-preserving one.

Mixing is given by TBM + eμ-mixing correction

Neutrino mass matrix

King,0506297;  
Antusch and King,0508044;  
King and Malinsky, 0608021;  
Masina, 0508031;  
Antusch, Huber, King, Schwetz, 
0702286; Ballett, King, Luhn, 
Pascoli, Schmidt, 1410.7573;  
Girardi, Petcov, Titov, 1410.8056. 

first  
octant 



The absence of domain wall in our model
SO(3) x U(1)→A4 , the breaking of gauge symmetry does not 
generate domain walls. 

A4→Z2 and Z3 , even if the energy gap between different 
vacuums is generated, it will decay to gauge bosons and 
finally to leptons. The two vacuums are finally identical with 
each other via gauge transformation. 
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Vacuum I     Domain wall     Vacuum II

space

po
te

nt
ia

l decay to SO(3) gauge 
bosons  (on/off shell?)

Leptons



Summary
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SO(3) breaking to A4, S4 or A5 via VEV of high irreps. 

A gauge SO(3) x U(1) flavour model is introduced. Through a two-step 
symmetry breaking, SO(3)→A4→Z3, Z2, flavour mixing is realised, fully 
consistent with oscillation data.

The domain wall problem is absent. 

a gauge symmetry breaking

extra dimensions

A simple example of how to realise A4 via orbifolding. 

Multiple modular symmetries as the direct origin of flavour mixing. 

Non-Abelian discrete symmetries from … 

Thank you!


