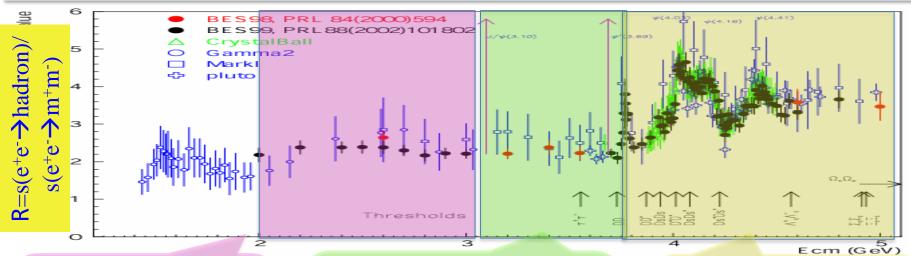


Prospects of Charm Physics at τ-c Facility

Hai-ping Peng


penghp@ustc.edu.cn

State Key Laboratory of Particle Detection and Electronics (SKLPE) University of Science and Technology of China (USTC)

8th workshop on Flavor Symmetries and Consequences in Accelerator and Cosmology Jul. 22-27, 2019, SJTU/USTC

Broad Physics at τ-c Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

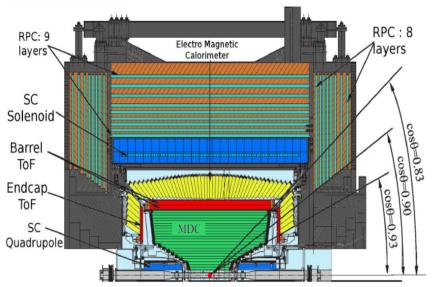
- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

Unique features : Rich of resonance, Threshold characteristics, Quantum Correlation

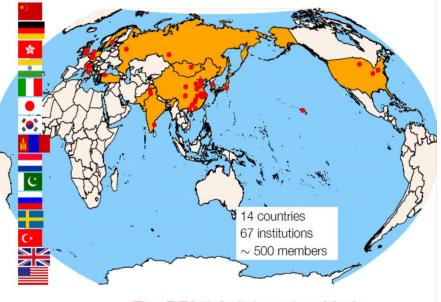
2019/7/26 Dundant physics FLASY2019, USTC

BEPCII



FLASY2019, USTC

BESIII Experiment



10 years data taking at BESIII

Data sets collected so far include

- $10 \times 10^9 J/\psi$ events
- 448 \times 10⁶ ψ' events
- scan data between
 2.0 and 3.08 GeV,
 and above 3.735 GeV
- large datasets for XYZ studies

The BESIII Collaboration 2019

Unique data sets for open charm:

\sqrt{s} / GeV	$\mathcal{L}/\mathrm{fb}^{-1}$	
3.77	2.93	DD
4.008	0.48	$DD^*, \psi(4040), D_s^+ D_s^-$
4.18	3.2	$D_{s}D_{s}^{*}$
4.6	0.59	$\Lambda_c^+ \bar{\Lambda}_c^-$

Limitation for BEPCII/BESIII

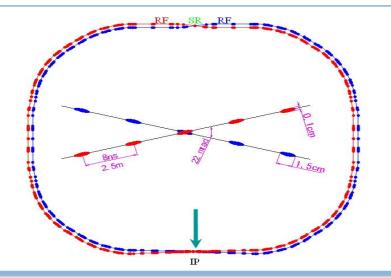
DBEPCII/BESIII have run 10 years, and are playing a leading role in tau-charm physics area. Limited by length of storage ring, no space and potential for the upgrade. Physics study limited by the Statistics (luminosity), CME □ Challenged by Belle II A Super τ -charm Facility is the nature extension and a viable option for a post-BEPCII HEP project in China

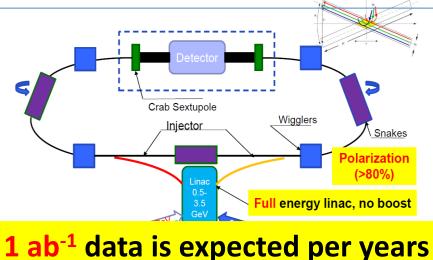
FLASY2019, USTC

BEPCII vs STCF in China

BEPCII

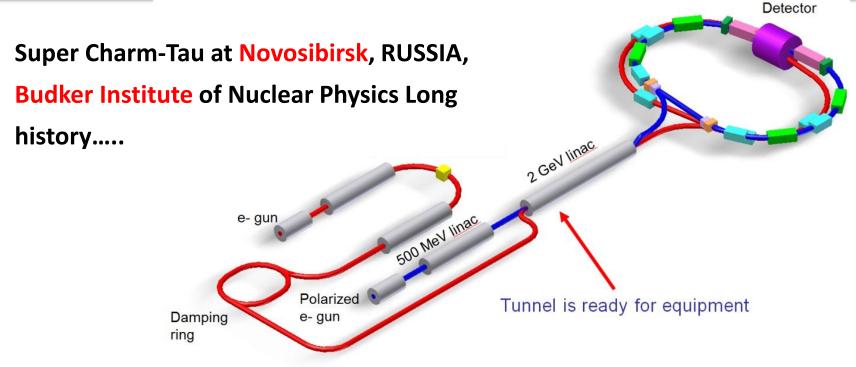
- Peak luminosity 0.6-1×10³³ cm⁻²s⁻¹ at 3.773 GeV
- **\Box** Energy range $E_{cm} = 2 4.6 \text{ GeV}$
- □ No Polarization


Designed STCF


Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV

\Box Energy range $E_{cm} = 2-7 \text{ GeV}$

D Potential to increase luminosity


and realize beam polarization

International Collaboration

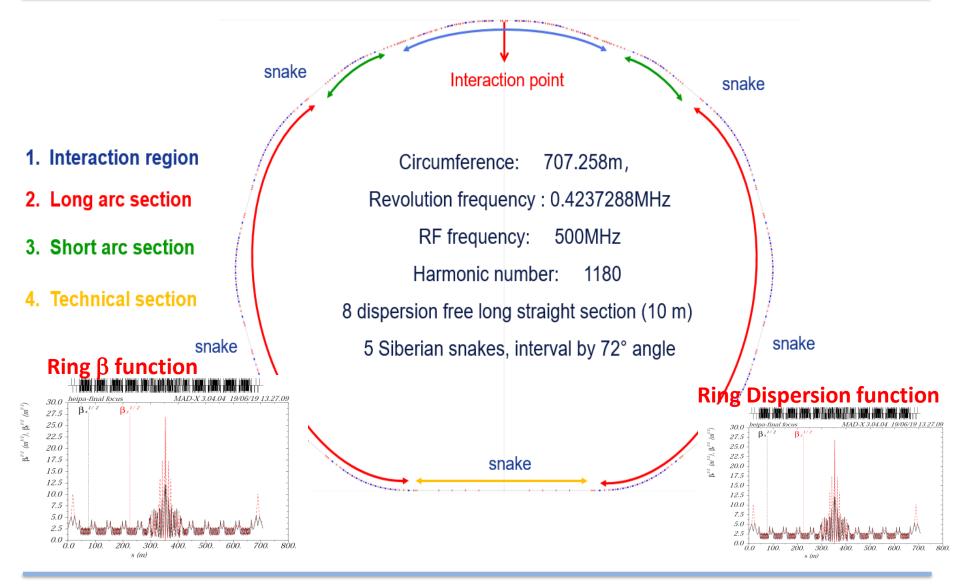
- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019 Moscow(September)

Strategy& Activities of STCF at China

CDR \rightarrow **TDR** \rightarrow project application \rightarrow construction \rightarrow commissioning

- Strategy: focus on CDR (3 years) and TDR (6 years) depend on the available resources. the construction site open.
- Webpage: http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/
- Domestic Workshops (2011, 12, 13, 14, 16)
- International Workshops (2015, 18)
- 2015 Fragrance Hill-Science Conference (No. 533)
- Report to USTC Scientific Committee and USTC presidents
- Report to local government
- Form the Organization (including project manager, physics/detector/accelerator work groups)
- Regular weekly meetings for Accelerator/Detector/physics !

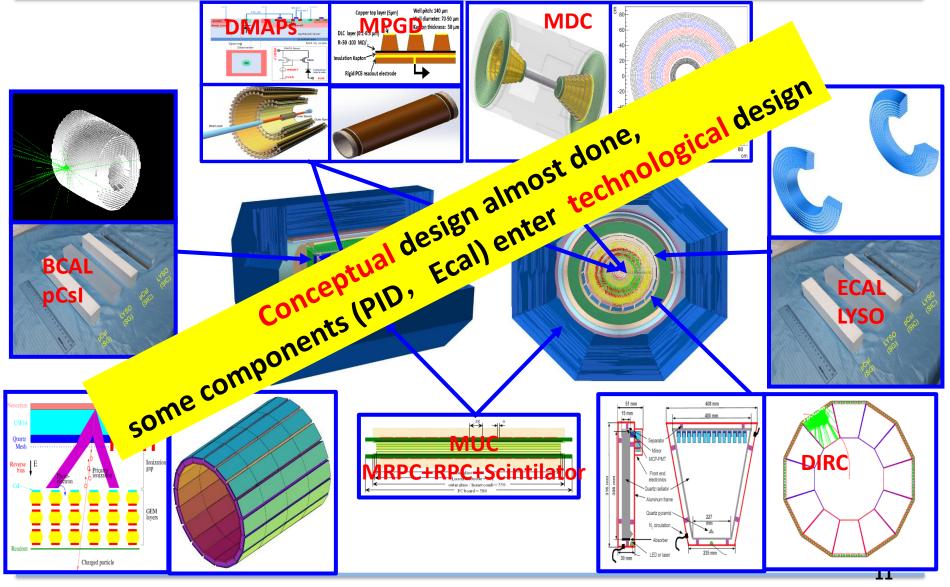
Activities


High Luminosity Tau Charm Physics

Indico for High Luminorcity Tau Charm Physics R&D

STCF Steering Committee	1 even.	٢	•
STCF Accelerator	27 events	۲	•
STCF Physics	6 events		•
STCF Detector	99 events)	•
STCF Accelerator-Detector Joint meetings	4 events	٢	•
STCF International Conference	7 events		•
STCF Domestic meeting	V events		•

Lattice with FODO-Like Arc



2019/7/26

Spectrometer

2019/7/26

FLASY2019, USTC

Facilities for Charm Study

LHCb: Hadron collider, huge cross, energy boost 9 fb⁻¹ until now, 50 fb⁻¹ upgrade I, World's largest sample of chadron decay in charged modes □ B-factories (Belle(-II), BaBar): e⁺e⁻ collider ~ 1 ab^{-1} Belle, 50 ab^{-1} Belle-II (2024) more kinematic constrains, clean environment, ~100% trigger efficiency $\Box \tau$ -charm factories (BESIII, STCF): e^+e^- 2019/7/2**collider** FLASY2019, USTC

Features for Charm Study

	STCF	Belle(-II)	LHCb	$5^{25}_{20} = 0.5 \text{fb}^{-1} \sim 80 \text{Events}$	
Most are precision measurements, which are mostly dominant by the					
systematic uncertai	nty STCF ha	as overall a	dvantages i	n several studies	
Systematic error	* * * * *	* * *	* *		
Completeness	* * * * *	* * *	*	$\frac{2.3}{\text{RM}(D_{s}^{+})} + \text{M}(D_{s}^{+}) - \text{m}(D_{s}^{+}) (\text{GeV/c}^{2})$	
(Semi)-Leptonic mode	****	* * *	*	$\stackrel{>}{\ge} \frac{200}{130} = 3.0 \text{ fb}^{-1} + 40000 \text{ Events}$ $\stackrel{>}{\ge} 100 = 60.0 \text{ fb}^{-1} - 80000 \text{ Events}$	
Neutron/K _L mode	* * * * *	* *	☆	S 100	
Photon-involved	****	* * * * *	☆	andidate	
Absolute measurement	* * * * *	* * *	☆		
				2.5 2.55 2.6 2.65 $m(\overline{D}^{0}K^{-})$ [GeV/c ²]	

- Belle II (50 ab⁻¹) has ~20 times more statistics in production comparing to STCF 1 ab⁻¹
- STCF is expected to have higher detection efficiency. It's double tag yields expected to be ~20 times more than Belle II
- **STCF** has low backgrounds for productions at threshold

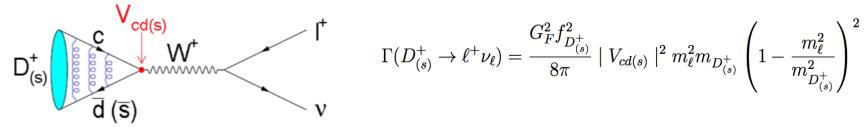
STCF for Charm Study

\square 4×10⁹ pairs of D^{±,0} and 10⁷~10⁸D_s pairs per year (1 ab⁻¹)

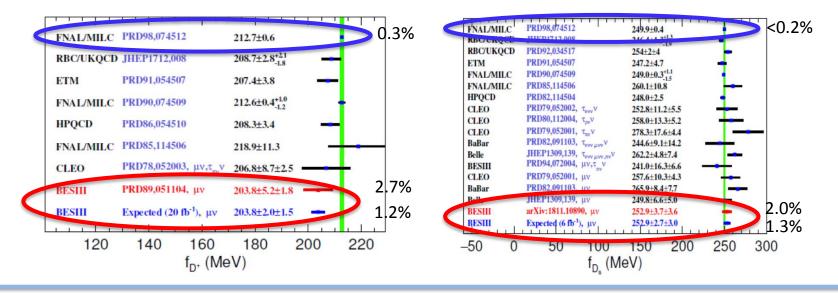

- -10^{10} charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D , f_{Ds} , CKM matrix...)
 - $-D^0 \overline{D}^0$ mixing, CPV
 - Rear decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (J^{PC}, Decay modes, absolute BF)
 - Light meson and hyperon spectroscopy studied in charmed hadron decays

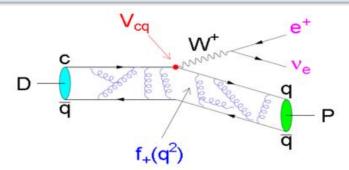
Precision measurement of CKM elements

CKM matrix elements are fundamental SM parameters that describe the mixing of QuarkisfieldsWdweryto weak interaction.


□ New physics beyond SM?

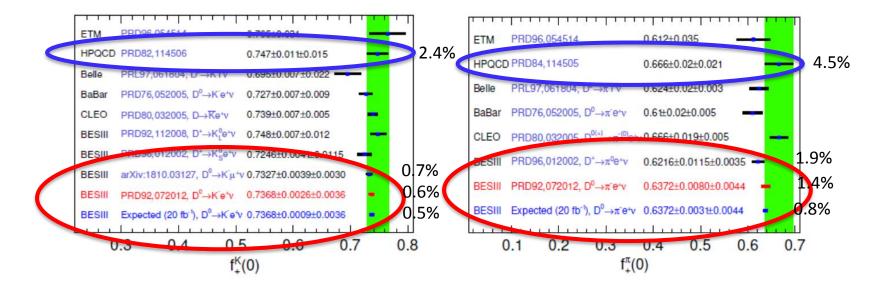
A direct measurement of V_{cd(s)} is one of the most important task in charm physics


D_(s) Leptonic decay

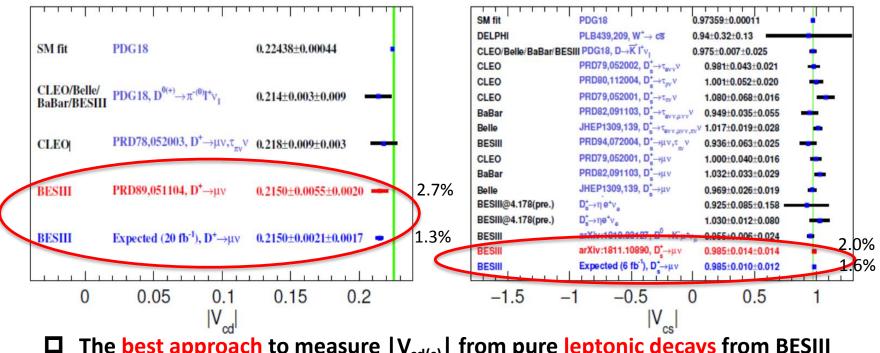


Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects

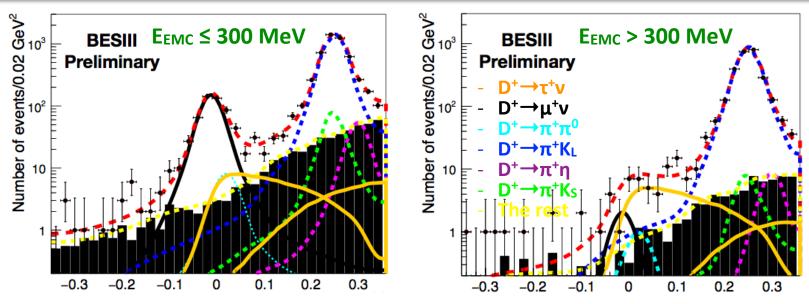
- **T** To validate Lattice QCD calculation of $f_{B(s)}$ and provide constrain of CKM-unitarity
- **Directly measurement :** $|V_{cd(s)}| \ge f_{D(s)}$
 - Input $f_{D(s)}$ from LQCD $\Rightarrow |V_{cd(s)}|$, or Input $|V_{cd(s)}|$ from a global fit $\Rightarrow f_{D(s)}$


D_(s) Semi-Leptonic decay

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2,$$


Directly measurement : $|V_{cd(s)}| \ge f^{k(\pi)}(0)$

- Input $f^{k(\pi)}(0)$ from LQCD $\Rightarrow |V_{cd(s)}|$, or Input $|V_{cd(s)}|$ from a global fit $\Rightarrow f^{k(\pi)}(0)$


V_{cd(s)} Measurement

- The best approach to measure $|V_{cd(s)}|$ from pure leptonic decays from BESIII
- Semi-leptonic decay suffer large uncertainty of FF from LQCD calculation

 $D^+_{(S)} \rightarrow \tau v_{\tau}$ Decay

 $\square 137\pm27 \text{ D}^{+} \rightarrow \tau^{+}(\rightarrow \pi^{+} \overline{\nu}_{\tau})\nu_{\tau} \text{ events.}$

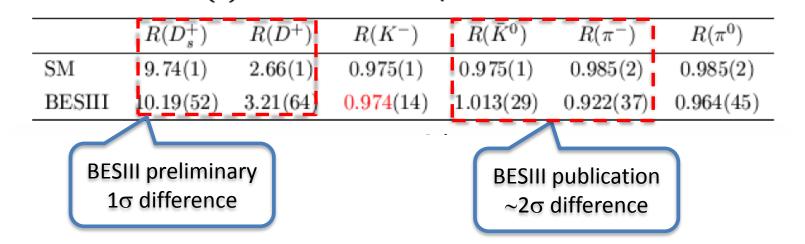
 \Box > 4 σ statistical significance. First evidence!

□ BF(D⁺ → $\tau^+ \nu_{\tau}$) = [1.20±0.24(stat.)]×10⁻³.

Expected to have comparable sensitivity with $D^+_{(S) \to \mu \nu_{\mu}}$ by combining different τ lepton decay modes

Lepton Flavor universality

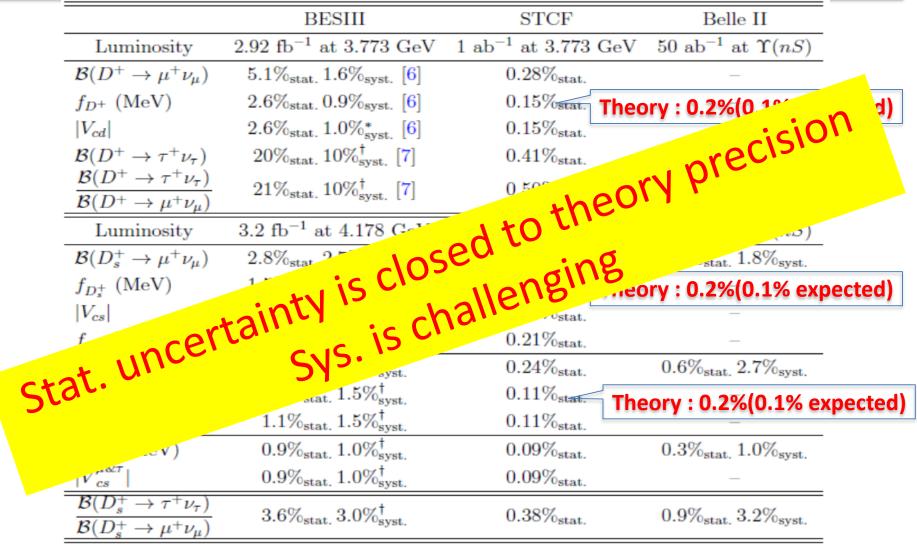
LFU is critical to test the SM and search for new physics beyond SM


> 9

Purely Leptonic:

$$R_{D_{(s)}^{+}} = \frac{\Gamma(D_{(s)}^{+} \to \tau^{+} \nu_{\tau})}{\Gamma(D_{(s)}^{+} \to \mu^{+} \nu_{\mu})} = \frac{m_{\tau^{+}}^{2} \left(1 - \frac{m_{\tau^{+}}^{2}}{m_{D_{(s)}}^{2}}\right)^{2}}{m_{\mu^{+}}^{2} \left(1 - \frac{m_{\mu^{+}}^{2}}{m_{D_{(s)}}^{2}}\right)^{2}}.$$

Semi-Leptonic:

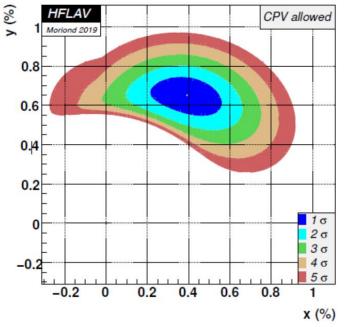

$$R_{\mu/e} = rac{\Gamma_{D o h \mu
u \mu}}{\Gamma_{D o h e
u e}}$$

Large uncertainty from BESIII, dominant by statistically limited

D_(s) Leptonic decay

* Assume f_{D(s)} with 0.2% uncertainty; + preliminary results; assume Belle II improved systematics by a factor 2

FLASY2019, USTC


$D^0 - \overline{D}^0$ Mixing and CPV

 $D^0 - \overline{D}^0$ pair produced coherently :

 $\psi(3770) \to (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \psi(4140) \to D^0 \bar{D}^{*0} \to \pi^0 (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \gamma (D^0 \bar{D}^0)_{\text{CP}=+}$

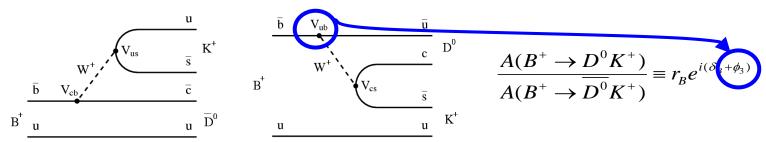
Therefore obtain useful constraints on $D^0 - \overline{D}^0$ mixing and CPV parameters

■ Global fit of the measurement : - $D^0 \rightarrow K^{(*)+}\ell^-\overline{\nu}_\ell, K^+K^-, \pi^+\pi^-, K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+\pi^-, K^0_S\pi^+\pi^-, K^0_SK^+K^-$ etc - their CP conjugate proceses - the coherent decays : $\psi(3770) \rightarrow D^0\overline{D}^0 \rightarrow f_1f_2$ ■ Obtained 95% confidence-level : $0.4 \times 10^{-3} \leq x \leq 6.2 \times 10^{-3}$ $5.0 \times 10^{-3} \leq y \leq 8.0 \times 10^{-3}$ ■ Consistent with the theoretical estimation

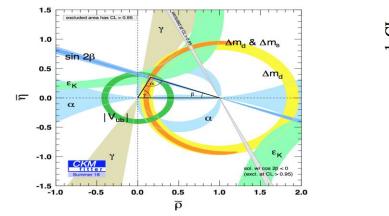
$D^0 - \overline{D}^0$ Mixing and CPV

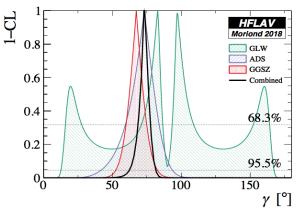
深

$D^0 - \overline{D}^0$ mixing and CPV

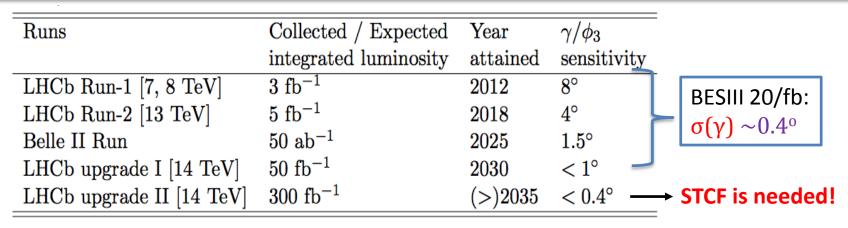

□ Mixing rate $R_M = \frac{x^2 + y^2}{2} \sim 10^{-5}$ with 1 ab⁻¹ data at 3.773 GeV via same charged final states $(K^{\pm}\pi^{\mp})(K^{\pm}\pi^{\mp})$ or $(K^{\pm}l^{\mp}v)(K^{\pm}l^{\mp}v)$ □ Mixing parameter $(x, y) \sim 0.05\%$ with 1 ab⁻¹ data at 4.040 by $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$ □ $\Delta A_{CP} \sim 10^{-3}$ for KK and $\pi\pi$ channels

The accurate values might not help much to clarify to the long distance effects in on $D^0 - \overline{D}^0$ mixing, but will help a lot to probe the presumably small effects of CPV in neutral charmed decays


Determination of γ/ϕ_3 angle



The cleanest way to extract γ is from $B \rightarrow DK$ decays:


- Interference between tree-level decays; theoretically clean
- current uncertainty $\sigma(\gamma) \sim 5^0$
- however, theoretical relative error $\sim 10^{-7}$ (very small!)
- □ Information of *D decay strong phase* is needed
 - Best way is to employ quantum coherence of DD production at threshold

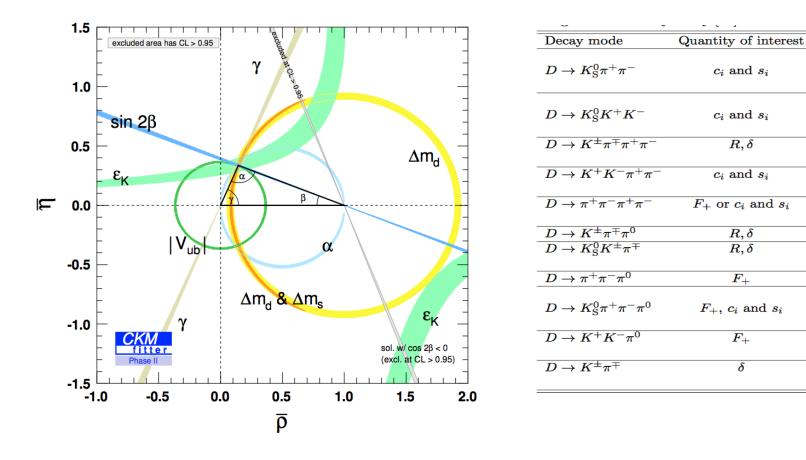
Determination of γ/ϕ_3 **angle**

Three methods for exploiting interference (choice of D⁰ decay modes):

□ Gronau, London, Wyler (GLW): Use CP eigenstates of D^{(*)0} decay,

e.g. $D^0 \rightarrow K_s \pi^0$, $D^0 \rightarrow \pi^+ \pi^-$

□ Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$


− With 1 ab⁻¹ @ STCF : $\sigma(\cos \delta_{K\pi}) \sim 0.007$; $\sigma(\delta_{K\pi}) \sim 2^{\circ} \rightarrow \sigma(\gamma) < 0.5^{\circ}$

- □ Giri, Grossman, Soffer, Zupan (GGSZ): Use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$; high statistics; need precise Dalitz model
 - STCF would provide important constraints to reduces the contribution of *D* Dalitz model to a level of $\sim 0.1^{\circ}$

Scenario beyond 2035

STCF will provide complementary information on the strong phase and allow detailed comparison of the γ results from different decay modes

Charmed Rare Decays

 $D^+ \rightarrow \pi^+ e^+ e^-$

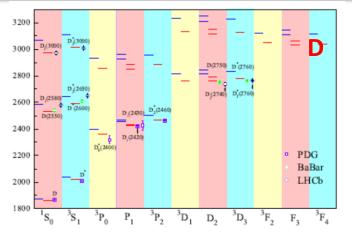
high luminosity, clean environment and excellent detector performance Great potential to search for rare and forbidden charmed decays May serve as a useful tool for probing new physics beyond the SM

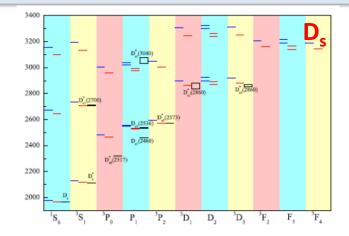
- **FCNC**, suppressed by GIM mechanism, only occurred via the loop diagrams :
 - Short distance : interested, computable by pQCD, directly test SM
 - Long distance effect can enhance the rate to $10^{-6} \sim 10^{-7}$, dominantly.
 - Some typical FCNC channel : $Br(D^{0} \rightarrow \gamma \gamma) < 8.5 \times 10^{-7} (SM \sim 1 \times 10^{-8})$ $Br(D^{0} \rightarrow \mu^{+}\mu^{-}) < 6.2 \times 10^{-9} (SM \sim 3 \times 10^{-13})$ $Br(D^{0} \rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}) = (9.6 \pm 1.2) \times 10^{-7}$ $Br(D^{0} \rightarrow \pi^{+}K^{-}\mu^{+}\mu^{-}) = (1.54 \pm 0.32) \times 10^{-7}$ $Br(D^{0} \rightarrow \pi^{+}K^{-}\mu^{+}\mu^{-}) = (4.2 \pm 0.4) \times 10^{-6}$ $I = h^{-1} \otimes STCCC$ are achieved the constitution to $10^{-8} \cdot 10^{-9}$ to set of ViM statistics
 - $-1ab^{-1}$ @ STCF can achieve the sensitivity to $10^{-8} \sim 10^{-9}$, tested SM strictly
 - Allow with sizeable decay rate in NP, discriminate NP from SM by measuring :

 $D \rightarrow V l^+ l^-$: AFB asymmetry

- $D \rightarrow Pl^+l^-$: line shape of dilepton mass, to reveal the interference effect between longdistance and FCNC weak amplitude (NP amplitude);
- Best constrain on rare decays with invisible particles $(D \rightarrow \pi^0 / \gamma v \bar{v})$

Charmed Rare Decays




□ LFV, LNV and BNV are forbidden in the SM, NP allow at sizable levels.

- No evidence has been found so far
- Typical experimental bounds on LFV are at level 10^{-6} to 10^{-5}
- STCF: $10^{-8} \sim 10^{-9} \rightarrow$ stringent constrains to NP models

Charmed Meson Spectroscopy

Status :

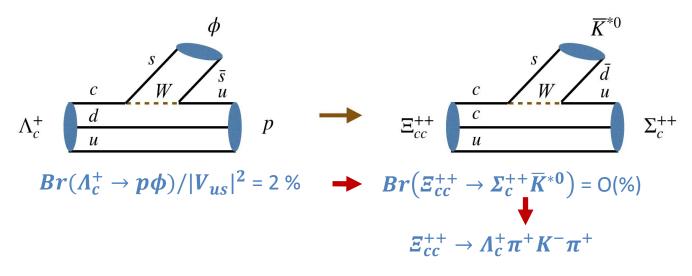
All 1S and 1P states have been observed, but almost missing for other quantum states
 Many excited open-charm states observed, but controversial in their nature

- Narrow $D_{sJ}^*(2632)$ Observed by SELEX, but not in CLEO, BaBar and FOCUS
- The unexpected low masses of $D_{s0}^*(2317)$ and $D_{s1}^*(2460) \Rightarrow D^{(*)}K$ molecule **STCF:**
- **D** Excited states D^{**} can be produced via $e^+e^- \rightarrow D^{**}\overline{D}^{(*)}(\pi)$ in CME 4.1~6 GeV
- □ Higher mass D** hadronic or radiative decays to lower open-charm states
- □ Systematic study on D** spectra provide important data to explore the non pQCD dynamics

Charmed Baryon (B_c^+)

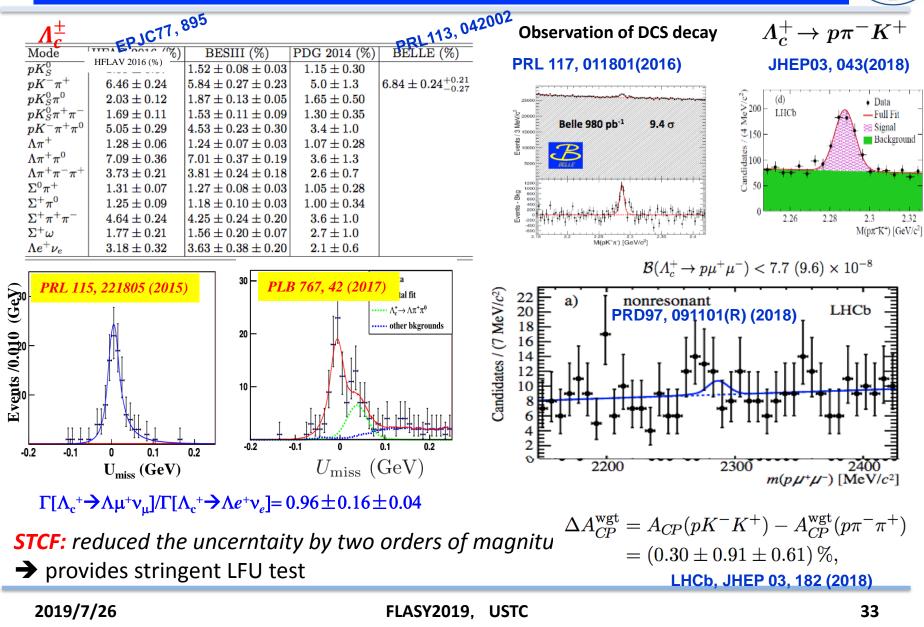
Charmed baryons are produced via $e^+e^- \rightarrow B_{1c}B_{2c}$ with $B_{ic} = n_1n_2c$

	Structure	J^{P}	Mass, MeV	Width,MeV	Decay
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	(200 ± 6) fs	weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	$(442\pm26)~{\rm fs}$	weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88\substack{+0.34\\-0.8}$	112^{+13}_{-10} fs	weak
Σ_{c}^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6	$\Lambda_c^+ \pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	_	$\Xi_c^+ \gamma$
$\Xi_c^{\prime 0}$	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	SSC	$(1/2)^+$	2695.2 ± 1.7	(69 ± 12) fs	weak


Systematic study the charmed baryon spectroscopy and precisely measure the transition widths provide an excellent ground for studying the dynamics of light quarks in the environment of a heavy quark

Topological diagrams + Symmetries + Experimental inputs

 \Rightarrow to understand the decaying dynamics, predicting doublecharm baryon decays, CPV, etc. (predictive power)


- \square Λ_c^+ decays used for global analysis
 - $\Rightarrow \mathcal{Z}_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\mathcal{Z}_c^+ \pi^+$ are large enough for observation.

 Λ_c^+ decays \Rightarrow Stronger predictive power

FLASY2019, USTC

Lots of activities on Λ_c^+ decays

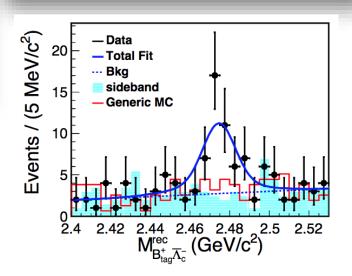
Single Charmed baryon in PDG

Absolute branching fractions measurement at threshold production will be important

\mathcal{Z}_{c}^{+} : relative to $\mathcal{Z}^{-}2\pi^{+}$

	Mode ute branching fractions have been me Cabibbo-favored (S = -2) decays -	
Γ_1	p2 K_S^0	0.087 ± 0.021
Γ2	$\Lambda \overline{K}^0 \pi^+$	
Γ3	$\Sigma(1385)^+\overline{K}^0$	1.0 ± 0.5
Γ_4	$\Lambda K^{-}2\pi^{+}$	0.323 ± 0.033
Γ5	$\Lambda \overline{K}^*(892)^0 \pi^+$	< 0.16
Г6	$\Sigma(1385)^{+}K^{-}\pi^{+}$	< 0.23
Γ ₇	$\Sigma^+ K^- \pi^+$	0.94 ± 0.10
Γ_8	$\Sigma^+\overline{K}^*(892)^0$	0.81 ± 0.15
Г9	$\Sigma^0 K^- 2 \pi^+$	0.27 ± 0.12
Γ ₁₀	$\Xi^0 \pi^+$	0.55 ± 0.16
Γ_{11}	$\Xi^{-}2\pi^{+}$	DEFINEDAS1
Γ ₁₂	$\Xi(1530)^{0}\pi^{+}$	< 0.10
Γ ₁₃	$\Xi^0 \pi^+ \pi^0$	2.3 ± 0.7
Γ_{14}	$\Xi^0 \pi^- 2 \pi^+$	1.7 ± 0.5
Γ15	$\Xi^0 e^+ \nu_e$	$2.3^{+0.7}_{-0.8}$
Γ_{16}	$\Omega^- K^+ \pi^+$	0.07 ± 0.04
	suppressed decays – relative to Ξ^- .	
Γ ₁₇	$pK^{-}\pi^{+}$	0.21 ± 0.04
Γ_{18}	$p\overline{K}^{*}(892)^{0}$	0.116 ± 0.030
Γ ₁₉	$\Sigma^{+}\pi^{+}\pi^{-}$	0.48 ± 0.20
Γ ₂₀	$\Sigma^{-}2\pi^{+}$	0.18 ± 0.09
Γ ₂₁	$\Sigma^+ K^+ K^-$	0.15 ± 0.06

${\it \Xi}_{\it c}^{0}$: relative to ${\it \Xi}^{-}\pi^{+}$


	Mode	Fraction (Γ_i / Γ)
	absolute branching fractions have been 2) decays - relative to $\Xi^- \pi^+$	n measured.The following are br
Γ_1	$pK^-K^-\pi^+$	0.34 ± 0.04
Γ_2	$pK^{-}\overline{K}^{*}(892)^{0}$	0.21 ± 0.05
Γ_3	$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04
Γ_4	ΛK_S^0	0.210 ± 0.028
Γ_5	$\Lambda K^{-}\pi^{+}$	1.07 ± 0.14
Γ_6	$\Lambda \overline{K}^0 \pi^+ \pi^-$	seen
Γ7	$\Lambda K^{-}\pi^{+}\pi^{+}\pi^{-}$	seen
Γ_8	$\Xi^{-}\pi^{+}$	DEFINEDAS1
Г9	$\Xi^-\pi^+\pi^+\pi^-$	3.3 ± 1.4
Γ_{10}	$\Omega^- K^+$	0.297 ± 0.024
Γ_{11}	$\Xi^- e^+ \nu_e$	3.1 ± 1.1
Γ_{12}	$arepsilon^- \ell^+$ anything	1.0 ± 0.5
👻 Cab	ibbo-suppressed decays - relative to	$\Xi^{-} \pi^{+}$
Γ_{13}	Ξ^-K^+	0.028 ± 0.006
Γ_{14}	ΛK^+K^- (no ϕ)	0.029 ± 0.007
Γ_{15}	$\Lambda \phi$	0.034 ± 0.007

• First measurement of absolute BF of Ξ_c^0 at Belle [arxiv:1811.09738]

 $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80 \pm 0.50 \pm 0.14)\%,$

Ω_c^0 : relative to $\Omega^-\pi^+$

Mode		Fraction (Γ_i / Γ)
> No absolute branching fractions have been measured. The following are branching <i>n</i> . Cabibbo-favored ($S = -3$) decays – relative to $\Omega^{-}\pi^{+}$		
Г6	$\Xi^0\overline{K}^0$	1.64 ± 0.29
Γ ₇	$\Xi^0 K^- \pi^+$	1.20 ± 0.18
Γ8	$\Xi^0 \overline{K}^{*0}$, $\overline{K}^{*0} \to K^- \pi^+$	0.68 ± 0.16
Г9	$\Xi \overline{K}^{0} \pi^{+}$	2.12 ± 0.28
Γ ₁₀	$\Xi^{-}K^{-}2\pi^{+}$	0.63 ± 0.09
Γ ₁₁	$\varXi(1530)^0 K^- \pi^+$, $\varXi^{*0} \to \varXi^- \pi^+$	0.21 ± 0.06
Γ ₁₂	$\Xi \overline{K}^{*0} \pi^+$	0.34 ± 0.11
Г ₁₃	$\Sigma^+ K^- K^- \pi^+$	< 0.32
Γ ₁₄	$\Lambda \overline{K}^0 \overline{K}^0$	1.72 ± 0.35

Precision study of the B_c decay

- Era of precision study of the charmed baryon (Λ_c , Ξ_c and Ω_c) decays to help developing more reliable QCD-derived models in charm sector
- Hadronic decays:
 - to explore as-yet-unmeasured channels and understand full picture of intermediate structures in B_c decays, esp., those with neutron/ Σ/Ξ particles
- Semi-leptonic decays:
 - to test LQCD calculations and LFU
- CPV in charmed baryon: BP and BV two-body decay asymmetry, chargedependent rate of SCS
- Charmed Baryons Spectroscopy : (63 P wave states from QM, 16 observed!)
- □ Rare decays: LFV, BNV, FCNC

STCF will provide very precise measurements of their overall decays, up to the unprecedented level of 10⁻⁶ ~10⁻⁷

Summary

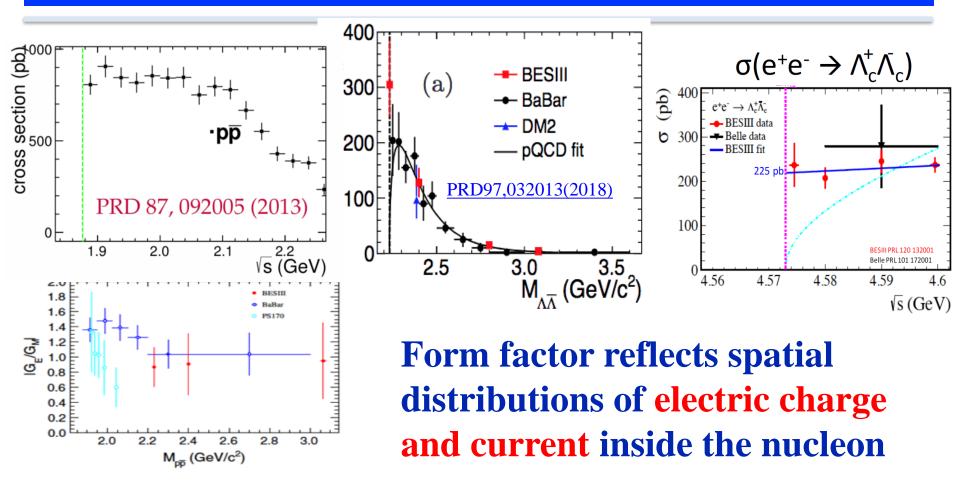
- $\Box \tau$ -c facilities have rich of physics program, play unique role in charmed physics, and is one of the crucial precision frontier.
- The R&D program of a Super τ-c Factory (STCF) is underway in China:
 - double ring with circumference around 600~1000 m
 - e^+e^- collision with $E_{cm} = 2 7$ GeV, $L = 1 \times 10^{35}$ cm⁻²s⁻¹

□ Welcome to join the efforts of STCF R&D program

Summary

Super τ -c Factory (STCF):

- double ring with circumference around 600~1000 m
- e^+e^- collision with $E_{cm} = 2 7$ GeV, $L = 1 \times 10^{35}$ cm⁻²s⁻¹
- **STCF** is one of the crucial precision frontier
 - rich of physics program
 - unique for physics with c quark and τ leptons,
 - important playground for study of QCD, exotic hadrons and search for new physics.
- **U** We initialized 10 M CNY (2018), 10-20M CNY(2019) for start R&D.
- □ Project organization is setup, a working group is toward for CDR/TDR
- □ An International collaboration is essential for promoting the project.



Welcome to join the effort

FLASY2019, USTC

The threshold production of baryon pair

STCF: 100^[2] more statistics will much enhance the understandings of these 'unexpected' threshold enhancement! (Study e⁺e⁻^[2] $p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}, \Sigma\overline{\Sigma}, \Xi\overline{\Xi}, \Omega\overline{\Omega}, \Lambda_c\overline{\Lambda_c}, \Sigma_c\overline{\Sigma_c}, \Xi_c\overline{\Sigma_c}, \Omega_c\overline{\Omega_c} \dots$ @threshold)