Effective field theory approach to lepton number violation

Yi Liao 廖益 Nankai Univ 南开大学

New physics beyond SM: $m_{\nu} \neq 0$ and lepton mixing

- Single, definite evidence for phys beyond SM on particle phys side.
- Extremely tiny $m_{
 m v} < 1~{
 m eV}$ calls for understanding of its origin.
- Being neutral, v can be either Dirac or Majorana type.

Why Majorana?

- Not forbidden by conservation law –
 Lepton number *L* conservation as accidental symmetry in SM.
- ν easily appears as Majorana type in underlying theory for m_ν Special arrangements required to guarantee Dirac type.
 3 canonical seesaws plus many others.
- Bonus: lepton number violation (LNV) \rightarrow BAU via leptogenesis

SM as effective field theory (EFT)

SM has been very successful though fundamental questions remain to be answered: Mechanism for electroweak symmetry breaking? Flavor puzzle? Unification of gauge couplings?

From modern point of view of QFT, what we have verified is that

- SM is a very good EFT at energies below ~100 GeV;
- All predicted particles discovered, no additional particles of mass below ~100 GeV;
- Potential effects from New Phys on SM particles' interactions appear as suppressed effective interactions not yet in sight beyond $m_v \neq 0$.

Central issue: what else LNV effects to expect for Majorana v besides $m_v \neq 0$?

Approaches to LNV signals

Experimental High-energy frontier:

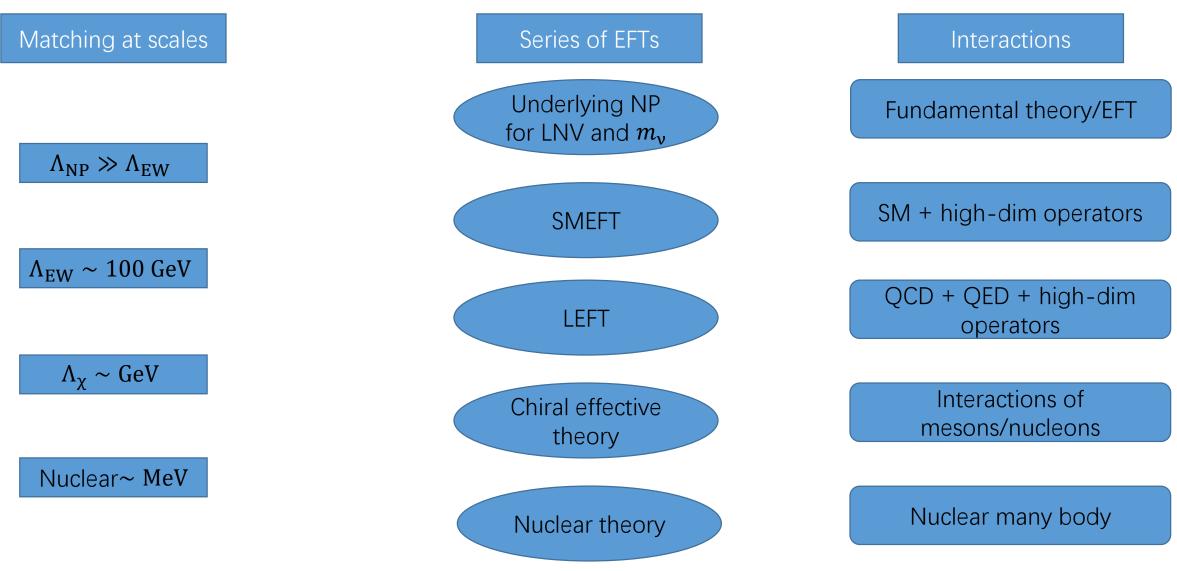
Discover new particles/interactions at colliders – like-charge multileptons

High-intensity frontier:

Search for forbidden processes with large samples/extreme precision – $0\nu\beta\beta$, $M_1^- \rightarrow M_2^+\ell_{\alpha}^-\ell_{\beta}^-$, $\tau^- \rightarrow M_1^-M_2^-\ell^+$

Theoretical

Top-down approach:


Study signals model by model Many parameters, but once fixed, def. answer

Bottom-up approach:

Work with EFT, not specific for one model, but possibly for a class of them Uncertainties due to hadronic/nuclear phys

Both approaches are necessary and complementary. EFT offers a means *via a series of EFTs from* Λ_{NP} *to* Λ_{χ} *to nuclear scale*, to connect high and low energy processes, and to organize all data in a coherent manner.

Flow chart of EFTs for LNV phys

Experimental bounds on LNV: collider

Bounds from LHC:

Typical signal – like-charge multi-leptons;

Depending on theoretical assumptions about parameters and decay Brs;

Typically, new particles > few 100 GeV or TeV.

Skipped here.

Experimental bounds on LNV: low energy processes

- Rich data from intense experimental activities.
- Most extensively studied theoretically and experimentally: Nuclear neutrinoless double-beta decay $(0\nu\beta\beta)$; LNV meson and τ decays.

Experimental bounds on LNV 0 uetaetaeta decays

Current limits on lifetime (and effective v mass $m_{\beta\beta}$ assuming m_{ν} dominance)

Isotope	$T_{1/2}^{0\nu} (\times 10^{25} \text{ y})$	$\langle m_{\beta\beta} \rangle ~(\mathrm{eV})$	Experiment
^{48}Ca	$> 5.8 \times 10^{-3}$	< 3.5 - 22	ELEGANT-IV
76 Ge	> 8.0	< 0.12 - 0.26	GERDA
	> 1.9	< 0.24 - 0.52	Majorana Demonstrator
82 Se	$> 3.6 \times 10^{-2}$	< 0.89 - 2.43	NEMO-3
96 Zr	$> 9.2 \times 10^{-4}$	< 7.2 - 19.5	NEMO-3
^{100}Mo	$> 1.1 \times 10^{-1}$	< 0.33 - 0.62	NEMO-3
^{116}Cd	$> 1.0 \times 10^{-2}$	< 1.4 - 2.5	NEMO-3
¹²⁸ Te	$> 1.1 \times 10^{-2}$		
¹³⁰ Te	> 1.5	< 0.11 - 0.52	CUORE
136 Xe	> 10.7	< 0.061 - 0.165	KamLAND-Zen
	> 1.8	< 0.15 - 0.40	EXO-200
150 Nd	$> 2.0 \times 10^{-3}$	< 1.6 - 5.3	NEMO-3

Lifetime expected to be pushed up further by $10^{1\sim2}$ in future at EXO-200 (4yr), nEXO, KamLAND-Zen (300 kg, 3 yr), GERDA II, CUORE (5yr), SNO+, SuperNEMO, NEXT, …

Experimental bounds on LNV meson decays

Current limits on Brs from Belle, BarBar, LHCb

Modes for $\ell_{\alpha}\ell_{\beta} =$	ee	еμ	μμ	
$K^- \to \pi^+ \ell_\alpha^- \ell_\beta^-$	6.4×10^{-10}	5.0×10^{-10}	1.1×10^{-9}	
$D^- \to \pi^+ \ell_\alpha^- \ell_\beta^-$	1.1×10^{-6}	2.0×10^{-6}	2.2×10^{-8}	
$D^- \to K^+ \ell_\alpha^- \ell_\beta^-$	9.0×10^{-7}	1.9×10^{-6}	1.0×10^{-5}	
$B^- \to \pi^+ \ell_\alpha^- \ell_\beta^-$	2.3×10^{-8}	1.5×10^{-7}	4.0×10^{-9}	
$B^- \to K^+ \ell_\alpha^- \ell_\beta^-$	3.0×10^{-8}	1.6×10^{-7}	4.1×10^{-8}	

Expected to be improved by $10^{1\sim2}$ in future at LHCb run2, NA62 (TUM), Belle 2, and possibly at FCC-ee, Super- τ -Charm, etc?

Experimental bounds on LNV τ decays

Current limits on Brs from Belle

Modes for $\ell =$	е	μ
$\tau^- \to \pi^- \pi^- \ell^+$	2.0×10^{-8}	3.9×10^{-8}
$\tau^- \to \pi^- K^- \ell^+$	3.2×10^{-8}	4.8×10^{-8}
$\tau^- \to K^- K^- \ell^+$	3.3×10^{-8}	4.7×10^{-8}

Back to theory

- Start from EFT above electroweak scale $\Lambda_{\rm EW}$, go downwards crossing scales $\Lambda_{\rm EW}$, m_b , ..., till EFT at scale of process under consideration.
- This requires to study a sequence of EFTs.
- Essential for an EFT:

Dynamical degrees of freedom for which EFT is constructed; Symmetries as guiding principle for dynamics; Power counting rule: what is more important.

What to do with an EFT

effective interaction = Wilson coefficient/low-energy constants (LECs) × operators

- Find out a basis of complete and independent operators, *necessary* to catch all possible phys, for being renormalizable in EFT, and for correct theory-experiment comparison.
- Renormalize operators

to improve naïve perturbation theory by summing up large log(M/m)
M: where effective interaction is generated
m: where matrix elements of effective interaction are evaluated or effective interaction is further matched to next EFT
This is done by RGE analysis.

What to do with an EFT

• Matching calculation at the boundary of 2 EFTs to link LECs from EFT at high scale to EFT at scale for interested process.

Essentially trivial for perturbative theory.

Difficult when nonperturbative effects are involved, e.g.,

 Λ_{χ} : Nambu-Goldstone bosons born out of strong quark dynamics;

 $\Lambda_{\rm N}$: nucleus formed out of nucleons.

Appeals to symmetry arguments, *ab initial* calculations, etc

What to do with an EFT

We outline EFT approach by examples.

Start with SMEFT between Λ_{NP} and Λ_{EW} :

- Dynamical degrees of freedom restricted to SM fields;
- Symmetries $SU(3)_C \times SU(2)_L \times U(1)_Y$, no B or L conservation etc;
- Power counting expansion in $p/\Lambda_{\rm NP}$.

SMEFT is an infinite tower of effective interactions involving higher and higher dimensional operators:

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \mathscr{L}_5 + \mathscr{L}_6 + \mathscr{L}_7 + \cdots$$

SMEFT: dim-5

Unique Weinberg operator for Majorana m_{ν} , $\Delta L=2$ Weinberg 1979

```
\varepsilon_{ij}\varepsilon_{mn}(L_p^i C L_r^m) H^j H^n
```

1-loop RGE Babu et al 1993, Antusch et al 2001 Nothing interesting beyond m_{ν} . L: LH lepton doublet H: Higgs doublet i, j, m, n: SU(2) indices p, r, s, t: flavor indices

SMEFT: dim-6

 Long history on basis of operators. Started with Buchmuller-Wyler 1986,

Corrected and improved by efforts by many groups,

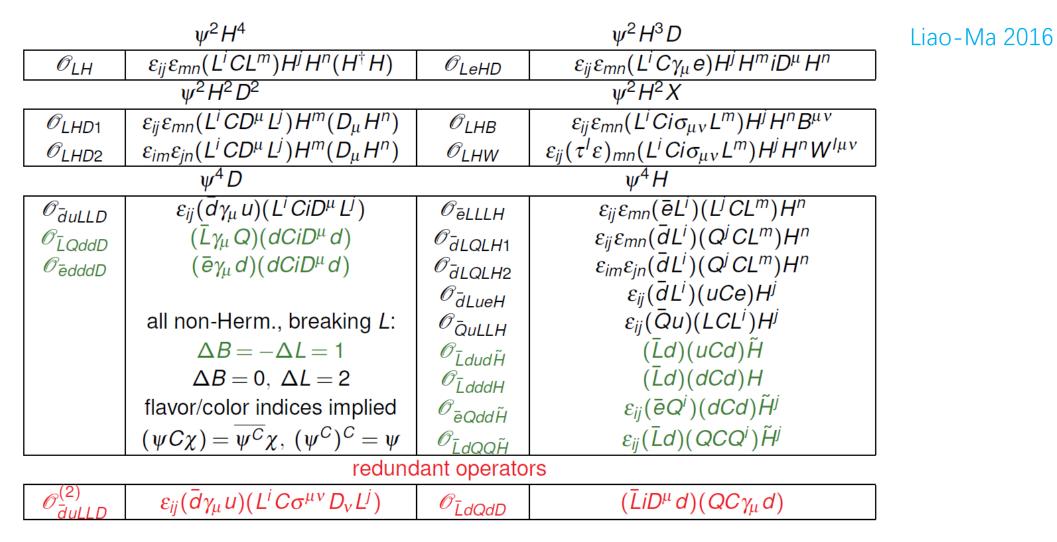
Culminated with Warsaw basis Grzadkowski et al 2010 –

- 63 operators $\begin{cases} 59: \Delta B = \Delta L = 0, \text{ rich pheno} \\ 4: \Delta B = \Delta L = 1, \ p \to e^+ \pi^0, \text{ etc} \end{cases}$

Without counting flavors (easy with trivial flavor relations) and Hermitian conjugate.

• 1-loop RGE, complicated, by UC San Diego group in 2013, 2014 Barcelona group in 2013

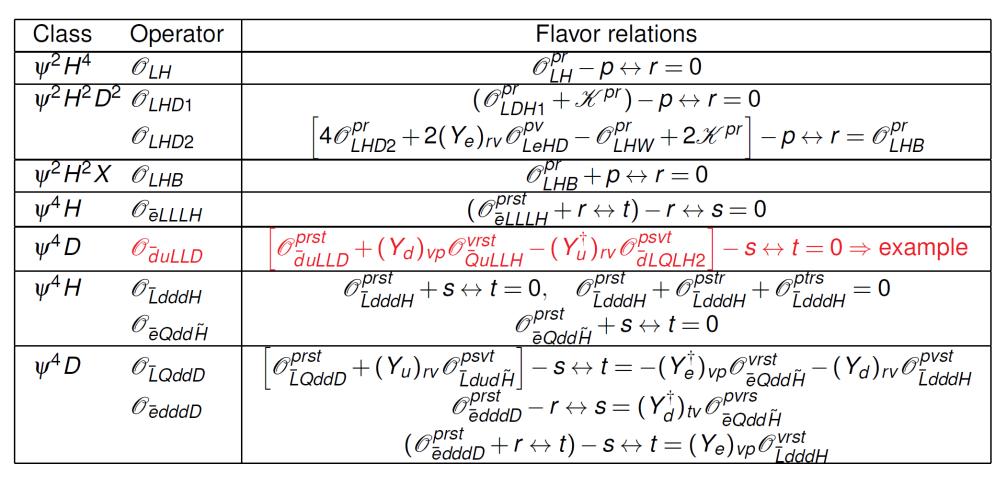
SMEFT: dim-7


- Early partial analysis by Weinberg 1980 Weldon-Zee 1980
- 1st systematic analysis by Lehman 2014
- Final answer by Liao-Ma 2016:

18 operators
$$\begin{cases} 12: \Delta B = 0, \ \Delta L = 2, \\ 6: -\Delta B = \Delta L = 1, p \rightarrow \nu \pi^+, \text{etc} \end{cases}$$

All violating *L* and thus non-Hermitian, Hermitian conjugate not counted.

• Consistent with independent counting by Hilbert series approach Henning et al 2015.


SMEFT: 18 dim-7 operators

SMEFT: basis of dim-7 operators

- For physical applications:
 - 18 complete and independent *structures* are not enough; Must specify operators with respect to *fermion flavors* – *B* phys., *K* phys., etc.
- *Trivial* for dim-5 and dim-6 operators: (anti)symmetric in like-charge flavors
- Nontrivial flavor relations first appear at dim 7 involving Yukawas Liao-Ma 2019
- Count of basis operators including flavors:
 1 family: 15
 - 3 families: 771

SMEFT: flavor relations of dim-7 operators

 $\mathscr{K}^{pr} = (Y_u)_{vw} \mathscr{O}_{\bar{Q}uLLH}^{vwpr} - (Y_d^{\dagger})_{vw} \mathscr{O}_{\bar{d}LQLH2}^{vpwr} - (Y_e^{\dagger})_{vw} \mathscr{O}_{\bar{e}LLLH}^{vwpr}.$

SMEFT: why flavor relations relevant?

- Operators mix under renormalization Redundant operators reappear due to renormalization and have to be expressed back in terms of basis operators.
- This reexpression employs flavor relations Must not involve inverse Yukawas to avoid artificial singularities.
- It is possible to choose a good basis without involving inverse Yukawas for which anomalous dimension matrix is well-defined. Liao-Ma 2019

LEFT: Low-energy EFT below $\Lambda_{\rm EW}$ UC San Diego group 2017

- Dynamical degrees of freedom SM fields with heavy particles integrated out;
- Symmetries $SU(3)_C \times U(1)_Q$;
- Power counting expansion in $p/\Lambda_{\rm EW}$.
- Basis of operators up to dim-6, their 1-loop RGE finished.
- Basis of dim-7 operators Liao-Ma in preparation

Matching between SMEFT and LEFT at $\Lambda_{\rm EW}$

- Important: dims of operators in two EFTs not necessarily comparable Guide: *L* and *B* numbers together with dims
- SMEFT operators up to dim-6 and LEFT operators up to dim-6
 UC San Diego group 2017
- Matching up to dim-7 operators on both sides Liao-Ma in preparation
- Comments:

Whether *b* or *c* is integrated out depends on your processes; Dim-9 operators in LEFT studied by several groups aiming at $0\nu\beta\beta$ related processes. Savage 1999, Prezeau et al 2003, Cirigliano et al 2017, Graesser 2017, …

LNV B and D decays

Status: vacuum insertion, form factors, etc, to calculate matrix elements of LEFT operators

Drawback: unable to estimate errors

• Better to work with EFT:

 $B^- \to D^+ \ell_{\alpha}^- \ell_{\beta}^-$: combine with heavy quark symmetry $B^- \to K^+ \ell_{\alpha}^- \ell_{\beta}^-, D^- \to K^+ \ell_{\alpha}^- \ell_{\beta}^-$: ?

LNV K, τ , and $0\nu\beta\beta$ decays

- Matching LEFT with Chiral EFT {without nucleons N with nucleons N
- Without N:

 $K^- \to \pi^+ \ell_{\alpha}^- \ell_{\beta}^-, \ \tau^- \to \pi^- K^- \ell^+$ Liao-Ma-Wang *in preparation* $\pi^- \pi^- \to e^- e^-$ (for $0\nu\beta\beta$) Savage 1999, Cirigliano et al 2017, Nicholson et al 2018, Feng et al 2019

• With N: aiming at nucleon potential for $0\nu\beta\beta$ Cirigliano et al 2017, 2018, Horoi-Neacsu 2017 to be applied to many-body systems of nuclei

Dim-7 in SMEFT: RGE effects on 0 uetaeta Liao-Ma 2019

• Status on $0\nu\beta\beta$:

Experiment – best half lifetime for 136 Xe > 1.07×10^{26} yr KamLAND-Zen 2016 Theory – most recent and comprehensive analysis, with hadronic+nuclear uncertainties of a factor of few, under control Cirigliano et al 2017, 2018, Horoi-Neacsu 2017

Complete theory analysis involves a sequence of EFTs:
 LNV underlying theory/EFT → SMEFT → LEFT → chiral EFT → nuclear theory

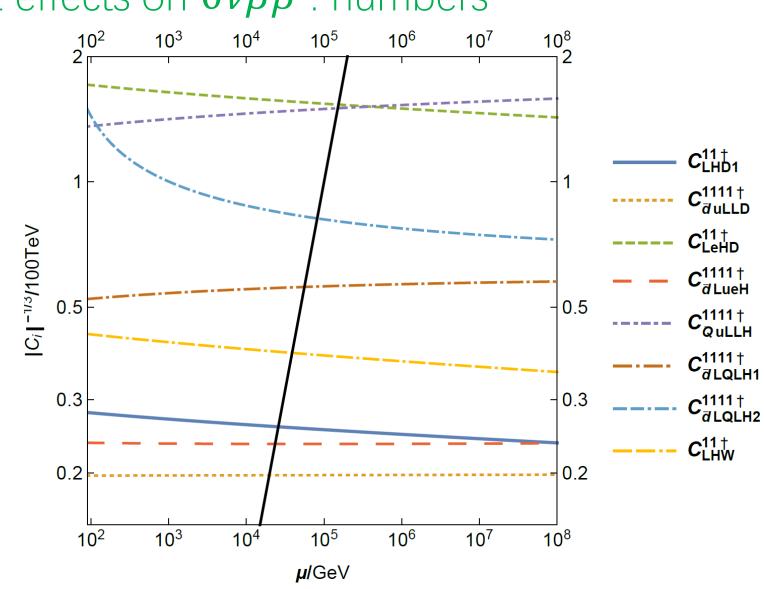
Dim-7 in SMEFT: RGE effects on $0\nu\beta\beta$

Our slight improvement focuses on complete 1-loop RGE in SMEFT while employing many shortcuts by other groups:

Bounds on couplings($\mu = m_p$) in LEFT by Horoi-Neacsu 2017 (LEFT \leftarrow chiral EFT \leftarrow nuclear theory)

 \Rightarrow Bounds on couplings($\mu = \Lambda_{EW}$) in LEFT using QCD-RGE of Cirigliano et al 2017

- \Rightarrow Matching LEFT to SMEFT at tree level at $\mu = \Lambda_{\rm EW}$ Liao-Ma 2019
- \Rightarrow Bounds on couplings($\Lambda_{\rm NP} > \mu > \Lambda_{\rm EW}$) in SMEFT Liao-Ma 2019


RGE effects on $0 u\beta\beta$: numbers

Bounds on couplings($\mu = \Lambda_{EW}$) in SMEFT, in units of $(100 \text{ TeV})^{-3}$, ¹³⁶Xe data Liao-Ma 2019

$\left C_{LHD1}^{11}\right $	$ C_{\bar{d}uLLD}^{1111}$	$ C_{LeHD}^{11} $	$ C_{\bar{d}LueH}^{1111} $	$ C_{\bar{Q}uLLH}^{1111}$	$ C_{\bar{d}LQLH}^{1111}$	$ C_{\bar{d}LQLH}^{1111}$	$\left C_{LHW}^{11}\right $
46	131	0.2	76	0.4	0.7	0.3	12

RGE effects on $0\nu\beta\beta$: numbers

This is how RGEs look like, on dropping small terms: Liao-Ma 2019

RGE effects on $0\nu\beta\beta$: numbers

Bounds on $\Lambda_{\rm NP}$: ~20 – 200 TeV

Yi Liao, FLASY2019, USTC, Jul 23-27 2019

Conclusions

- Neutrinos as a Majorana fermion are theoretically well motivated.
- Experimental and theoretical investigations on LNV are very active.
- EFT offers a proper means to link pheno from low to high energy processes.
- Theoretical analysis on $0\nu\beta\beta$ remains to be refined on several aspects: RGE, matching between EFTs, short-distance vs long-distance physics in hadronic and nuclear physics.
- Theoretical study on LNV meson and τ decays in EFT has just started, much to be done.