Probing dark matter through cosmic-ray anti-nuclei

Yu-Feng Zhou

Institute of Theoretical Physics,
Chinese Academy of Sciences
Y.C. Ding, N. Li, C.C.Wei, Y.L.Wu, YFZ, 1808.03612, JCAP 1906 (2019) 06, 004

Detecting the non-gravitational interaction of DM

DM may interact with SM particles (weakly)

DM indirect detections

Advantages

- Probe DM annihilation, test the WIMP scenario

■ Tiny signals enhanced by huge volume of the DM halo
■ Many observables: CR leptons, hadrons, photons in multiwave lengths. Both energy spectra and morphology

- Already place stringent constraints on DM

Difficulties

- Hard to distinguish DM "signal" from "background"
- Information lost of charged CRs (after propagation)
- spectrum change du to E-dependent propagation,
- convection, re-acceleration, E-loss
- anisotropic source -->almost isotropic signals

■ Significant uncertainties in theoretical predictions

- models of CR propagation,
- distributions of ISM,
- interaction cross sections,
- Solar modulation

Propagation of CR in the Galaxy

Cosmic-ray transportation equation

Sources of CRs

- Primary sources from SNR, pulsars
- Primary sources from WIMP
- Secondary source from CR fragmentation

Processes in Propagation

- Diffusion (random B field)
- Convection (galactic wind)
- Reacceleration (turbulence)
- Energy loss: Ionization, IC, Synchrotron, bremsstrahlung
- Fragmentation (inelastic scattering)
- Radioactive decay (unstable species)

Uncertainties

- Distribution of primary sources
- Parameters in the diffusion equation
- Cross sections for nuclei fragmentation
- Distribution of B field
- Distribution of gas

Approaches

- Semi-analytical:two-zone diffusion model.
- Numerical solution using realistic astrophysical data.
GALPROP/Dragon code

The CR positron anomaly and its implications

AMS results on the Positron Fraction

Dark Matter model is based on J. Kopp, Phys. Rev. D 88, 076013 (2013).

Implications for DM annihilation
■ large annihilation cross-section
~100-1000 times larger than that favored by DM thermal relic density.

- annihilate/decay dominantly to leptons, not quarks
H.B.Jin, Y.L.Wu, YFZ, 1410.0171,JCAP

Fermi-LAT,1503.0264
Difficulties for thermal DM

- Require velocity-dependent cross-section
- Sommerfeld enhancement
- Annihilation through narrow resonance

Constraints from gamma-rays

- Strong correlation with gamma-ray signals
- FSR photons from all charged leptons
- photons from μ, т decays
- Photons from hadronic (Π^{0}) decays

Stringent constraints on DM interpretations

Galactic halo

$$
\ddot{x x \rightarrow \mu^{+} \mu, N F W}
$$

CR all-electron flux

Fermi-LAT, AMS-02, CALET, "DAMPE (悟空)", not in full agreement

DAMPE "excess"?
X.J.Huang, W.H.Zhang, Y.L.Wu, YFZ, arXiv:1712.00005, PRD(R)

Possible excesses and DM interpretations

10 TeV DM?

H.B.Jin, Y.L.Wu, YFZ arXiv:1504.04601, PRD

Low-energy excess: $40-50 \mathrm{GeV}$ DM to 2 b , thermal cross section, consistent with GC High-energy excess: 10 TeV DM annihilation into 2 W , 2b, boost factor $\sim 10-100$

Giesen, 1504.04276; Ibe 1504.05554;
Hamaguchi, 1404.05937; Lin, 1504.07230
Chen, 1504.07848; Chen,1505.00134

Low-energy "excess": theoretical uncertainties

Uncertainties in antiproton production cross sections

Other uncertainties: diffusion models, solar modulation,

High-energy "excess ": origins of a sharp spectrum

Lorentz boost for finite ϵ_{0} When $\phi \approx 2 m_{p} \quad$ small β^{\prime}

Lorentz Boost

$$
\begin{gathered}
E=\gamma_{B} E^{\prime} \\
\Delta E / E=2 \beta_{B} \beta^{\prime}
\end{gathered}
$$

In the case with light mediators, sharp antiproton spectral can arise in the threshold limit

Huang, Wei, Wu ,YFZ, Zhang,1611.01983,PRD

Sharp spectrum possible in four-body final sates

Light mediator scenario can explain the structure without violating the Fermi gamma-ray limits

Favored DM mass ~ 800 GeV with thermal cross section

	Model	$m_{\chi}[\mathrm{GeV}]$	$\langle\sigma v\rangle(\eta)$	κ	χ^{2}	TS
	MIN	765_{-153}^{+166}	$18.6_{-8.0}^{+10.7}$	1.12 ± 0.01	12.5	11.6
A	MED	808_{-164}^{+185}	$5.18_{-2.34}^{+3.04}$	1.13 ± 0.01	13.8	9.0
	MAX	826_{-168}^{+185}	$2.29_{-1.06}^{+1.31}$	1.13 ± 0.01	15.5	8.5
	MIN	20000	1200 ± 410	1.12 ± 0.01	15.5	8.6
B	MED	20000	291 ± 123	1.13 ± 0.01	17.2	5.6
	MAX	20000	117 ± 54	1.12 ± 0.01	19.3	4.7
	MIN	-	(0.262 ± 0.103)	1.08 ± 0.02	17.6	6.5
C	MED	-	(0.195 ± 0.104)	1.10 ± 0.02	19.2	3.5
	MAX	-	$\left(0.172_{-0.105}^{+0.104}\right)$	1.10 ± 0.02	21.4	2.7

Fermi gamma-ray limits

Huang, Wei, Wu ,YFZ, Zhang, 1611.01983,PRD

Formation of CR heavy anti-nuclei

High production threshold: $17 m_{p}$ (antideuteron), $31 m_{p}$ (antihelium) for fixed targets

heavy anti-nuclei

Spectra feature of secondary anti-nuclei

- Highly boosted after production
production threshold: $17 \mathrm{~m}_{\mathrm{p}}$ (antideuteron), $31 \mathrm{~m}_{\mathrm{p}}$ (antihelium)
low binding energy \rightarrow less energy loss
leave a low-energy window (<GeV) for exotic contributions
- Low production rate towards high energy fast falling of primary CRs $\sim E^{-2.7}$ leave a high-energy window (>100 GeV) for exotic contributions Major source of uncertainties
■ DM profiles (NFW, Einasto, Isothermal, ...)
■ CR propagation models (MIN, MED, MAX, ...)
- Models for anti-nuclei formation
- potential models
- coalescence models
- thermal models

Low-energy window

Formation of CR heavy anti-nuclei: the coalescence model

The coalescence model: the case of $A=2$

- no dynamics (phase-space model)
- extremely simple, only one parameter p_{0}
\square coalescence rate $\sim p_{0}{ }^{3(A-1)}$

Energy spectrum

$$
\frac{\mathrm{d} N_{\bar{d}}}{\mathrm{~d} T_{\bar{d}}}=\frac{p_{0}^{3}}{6} \frac{m_{\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^{2}+2 m_{\bar{d}} T_{\bar{d}}}} \frac{\mathrm{~d} N_{\bar{n}}}{\mathrm{~d} T_{\bar{n}}} \frac{\mathrm{~d} N_{\overline{\bar{n}}}}{\mathrm{~d} T_{\bar{p}}},
$$

Caution: correlations are significant !

Formation of CR heavy anti-nuclei: the coalescence model

Determination of p^{0} for anti-deuteron
Fitting p_{0} to data on \bar{d} production

CR anti-deuteron and maximal DM contribution

DM induced antideuteron flux can be reach by AMS-02 and GAPS

Current status of anti-deuteron detection

AMO2 (2016)

Formation of CR heavy anti-nuclei: the coalescence model

The coalescence model: the case of $A=3$

Definitions of p0
P_{0} ?

■ minimal circle

$$
d_{\text {circ }}=\frac{l_{1} l_{2} l_{3}}{\sqrt{\left(l_{1}+l_{2}+l_{3}\right)\left(-l_{1}+l_{2}+l_{3}\right)\left(l_{1}-l_{2}+l_{3}\right)\left(l_{1}+l_{2}-l_{3}\right)}}<p_{0}^{\overline{\mathrm{He}}} .
$$

- absolute difference for all relative momenta

$$
\left\|k_{i}-k_{j}\right\|<p_{0}^{\overline{\mathrm{He}}}, \quad(i \neq j) .
$$

Coalescence momentum of anti-Helium

Indirect approaches
■ Use the relation between nuclei: $p_{0 A}^{\overline{\mathrm{He}}}=\left\langle p_{0}^{\mathrm{He}} / p_{0}^{\mathrm{D}}\right\rangle p_{0}^{\overline{\mathrm{D}}}=1.28 p_{0}^{\overline{\mathrm{D}}}=0.246 \pm 0.038 \mathrm{GeV}$.
■ Use binding energy:

$$
p_{0 B}^{\overline{\mathrm{He}}}=\sqrt{E_{b}^{3 \overline{\mathrm{He}}} / E_{b}^{\overline{\mathrm{D}}}} p_{0}^{\overline{\mathrm{D}}}=0.357 \pm 0.059 \mathrm{GeV} .
$$

Direct approaches
■ Use Exp. data (e.g. ALICE, STAR)

ALICE, 1709.08522 (assuming rate $\sim\left(p_{0}\right)^{6}$)

Coalescence parameters determined from ALICE data

Y.C. Ding, N. Li, C.C.Wei, Y.L.Wu, YFZ, 1808.03612

The best-fit B_{3} value of different MC generators

Typically
$\mathrm{O}\left(10^{11}\right)$ event simulations required for each MC-
generator

Without assuming rate $\sim\left(p_{0}\right)^{6}$

MC generators:	PYTHIA 8.2	EPOS-LHC	DPMJET-III
$p_{0}^{\overline{\mathrm{He}}}(\mathrm{MeV})$	$224_{-16}^{+12}(254 \pm 14)$	$227_{-16}^{+11}(254 \pm 14)$	212_{-13}^{+10}
$p_{0}^{\overline{\mathrm{T}}}(\mathrm{MeV})$	$234_{-29}^{+17}(266 \pm 22)$	$245_{-30}^{+17}(268 \pm 22)$	222_{-26}^{+16}

Significant uncertainties arise when extrapolating to low energies

Using the limits derived from antiproton data

Importance of using antiproton limits for predicting anti-nuclei

Advantages:
DM profile (also propagation) dependence cancels out in deriving the anti-helium limits

Y.C. Ding, N. Li, C.C.Wei, Y.L.Wu, YFZ, 1808.03612

Projected maximal anti-helium flux @AMS-02

EPOS-LHC based predictions

DPMJET based predictions

The most optimistic case for antihelium@AMS-02

The most optimistic case (using EPOS-LHC)

Expected anti-helium events (after 18 yrs of data collecting)

	$m_{\chi}(\mathrm{GeV})$	$\chi \chi \rightarrow q \bar{q}$	$\chi \chi \rightarrow b \bar{b}$	$\chi \chi \rightarrow W^{+} W^{-}$
	30	$0.084_{-0.040}^{+0.038}\left(0.153_{-0.073}^{+0.070}\right)$	$0.041_{-0.018}^{+0.020}\left(0.073_{-0.032}^{+0.036}\right)$	-
DM	100	$0.153_{-0.072}^{+0.065}\left(0.269_{-0.127}^{+0.114}\right)$	$0.227_{-0.103}^{+0.107}\left(0.419_{-0.190}^{+0.198}\right)$	$0.164_{-0.076}^{+0.077}\left(0.304_{-0.141}^{+0.143}\right)$
	300	$0.122_{-0.056}^{+0.055}\left(0.179_{-0.082}^{+0.081}\right)$	$0.160_{-0.074}^{+0.074}\left(0.256_{-0.118}^{+0.118}\right)$	$0.054_{-0.025}^{+0.025}\left(0.084_{-0.039}^{+0.039}\right)$
	1000	$0.106_{-0.048}^{+0.048}\left(0.138_{-0.063}^{+0.063}\right)$	$0.131_{-0.061}^{+0.058}\left(0.179_{-0.083}^{+0.079}\right)$	$0.015_{-0.007}^{+0.007}\left(0.019_{-0.009}^{+0.09}\right)$

Secondary

$$
0.986_{-0.455}^{+0.437}\left(0.054_{-0.021}^{+0.021}\right)
$$

The expected anti-helium events is O(1), dominated by backgrounds NOT DM annihilation

Comparison with previous analysis

preliminary anti-Helium candidate events at AMS-02

AMS-02 so far find 8 anti-helium candidate events with 2 coincide with anti-helium-4
anti- ${ }^{4} \mathrm{He}$ track in $\mathrm{Y}-\mathrm{Z}$ bending plane

Thank you for your attention!

