Probing dark matter through cosmic-ray anti-nuclei

Yu-Feng Zhou

Institute of Theoretical Physics, Chinese Academy of Sciences

Y.C. Ding, N. Li, C.C.Wei, Y.L.Wu, YFZ, 1808.03612, JCAP 1906 (2019) 06, 004

2019-07-26, FLASY2019, UCST

Detecting the non-gravitational interaction of DM

DM may interact with SM particles (weakly)

Direct searches

sin p e f

Indirect searches

Collider searches

Yu-Feng Zhou ITP-CAS

DM indirect detections

Advantages

- Probe DM annihilation, test the WIMP scenario
- Tiny signals enhanced by huge volume of the DM halo
- Many observables: CR leptons, hadrons, photons in multiwave lengths. *Both* energy spectra and morphology
- Already place stringent constraints on DM

Difficulties

- Hard to distinguish DM "signal" from "background"
- Information lost of charged CRs (after propagation)
 - spectrum change du to E-dependent propagation,
 - convection, re-acceleration, E-loss
 - anisotropic source -->almost isotropic signals
- Significant uncertainties in theoretical predictions
 - models of CR propagation,
 - distributions of ISM,
 - interaction cross sections,
 - Solar modulation

3

Propagation of CR in the Galaxy

Cosmic-ray transportation equation

Sources of CRs

- Primary sources from SNR, pulsars
- Primary sources from WIMP
- Secondary source from CR fragmentation

Processes in Propagation

- Diffusion (random B field)
- Convection (galactic wind)
- Reacceleration (turbulence)
- Energy loss: Ionization, IC, Synchrotron, bremsstrahlung
- Fragmentation (inelastic scattering)
- Radioactive decay (unstable species)

Solar modulation

Uncertainties

- Distribution of primary sources
- Parameters in the diffusion equation
- Cross sections for nuclei fragmentation
- Distribution of B field
- Distribution of gas

Approaches

- Semi-analytical:two-zone diffusion model.
- Numerical solution using realistic astrophysical data. GALPROP/Dragon code

The CR positron anomaly and its implications

2τ Fermi-Limit 2µ 2µ(Fermi-LAT 95% 2τ(Fermi-LAT Fermi-Limit: 2_T m_x[GeV]¹⁰⁰⁰ 1500 2000 2500 3000

Implications for DM annihilation

- large annihilation cross-section ~100-1000 times larger than that favored by DM thermal relic density.
- annihilate/decay dominantly to leptons, *not* quarks

Fermi-LAT, 1503.0264

Difficulties for thermal DM

- Require velocity-dependent cross-section
 - Sommerfeld enhancement
 - Annihilation through narrow resonance

Constraints from gamma-rays

- Strong correlation with gamma-ray signals
 - FSR photons from all charged leptons
 - photons from μ , τ decays
 - Photons from hadronic (π^0) decays

Stringent constraints on DM interpretations

Yu-Feng Zhou ITP-CAS

CR all-electron flux

Fermi-LAT, AMS-02, CALET, "DAMPE (悟空)", not in full agreement

DAMPE "excess"?

X.J.Huang, W.H.Zhang, Y.L.Wu, YFZ, arXiv:1712.00005, PRD(R)

Possible excesses and DM interpretations

H.B.Jin, Y.L.Wu, YFZ arXiv:1504.04601, PRD

Low-energy excess: 40-50 GeV DM to 2b, thermal cross section, consistent with GC High-energy excess: 10 TeV DM annihilation into 2W, 2b, boost factor ~10-100

Giesen, 1504.04276; Ibe 1504.05554; Hamaguchi, 1404.05937; Lin, 1504.07230 Chen, 1504.07848; Chen,1505.00134

Low-energy "excess": theoretical uncertainties

Uncertainties in antiproton production cross sections

Other uncertainties: diffusion models, solar modulation,

High-energy "excess ": origins of a sharp spectrum

11

Sharp spectrum possible in four-body final sates

Light mediator scenario can explain the structure without violating the Fermi gamma-ray limits

Favored DM mass ~800 GeV with thermal cross section

	Model	$m_{\chi} [{ m GeV}]$	$\langle \sigma v angle (\eta)$	κ	χ^2	\mathbf{TS}
Α	MIN	765^{+167}_{-153}	$18.6\substack{+10.7 \\ -8.0}$	$1.12{\pm}0.01$	12.5	11.6
	MED	808^{+184}_{-165}	$5.18\substack{+3.04\\-2.37}$	$1.13{\pm}0.01$	13.8	9.0
	MAX	$826\substack{+185 \\ -168}$	$2.29\substack{+1.31 \\ -1.06}$	$1.13{\pm}0.01$	15.5	8.5
В	MIN	20000	$1200{\pm}410$	$1.12{\pm}0.01$	15.5	8.6
	MED	20000	$291{\pm}123$	$1.13{\pm}0.01$	17.2	5.6
	MAX	20000	$117{\pm}54$	$1.12{\pm}0.01$	19.3	4.7
С	MIN	—	(0.262 ± 0.103)	$1.08{\pm}0.02$	17.6	6.5
	MED	—	(0.195 ± 0.104)	$1.10{\pm}0.02$	19.2	3.5
	MAX	_	$(0.172^{+0.104}_{-0.105})$	$1.10{\pm}0.02$	21.4	2.7

Fermi gamma-ray limits

Huang, Wei, Wu ,YFZ, Zhang,1611.01983,PRD

12

Formation of CR heavy anti-nuclei

High production threshold: $17m_p$ (antideuteron), $31m_p$ (antihelium) for fixed targets

heavy anti-nuclei

Spectra feature of secondary anti-nuclei

 ■ Highly boosted after production production threshold: 17m_p (antideuteron), 31m_p (antihelium) low binding energy → less energy loss leave a low-energy window (<GeV) for exotic contributions

Low production rate towards high energy fast falling of primary CRs ~E^{-2.7} leave a high-energy window (>100 GeV) for exotic contributions

Major source of uncertainties

- DM profiles (NFW, Einasto, Isothermal, ...)
- CR propagation models (MIN, MED, MAX, ...)
- Models for anti-nuclei formation
 - potential models
 - coalescence models
 - thermal models

14

Formation of CR heavy anti-nuclei: the coalescence model

The coalescence model: the case of A=2

- no dynamics (phase-space model)
- extremely simple, only one parameter p₀
- coalescence rate $\sim p_0^{3(A-1)}$

Energy spectrum

$$\frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}T_{\bar{d}}} = \frac{p_0^3}{6} \, \frac{m_{\bar{d}}}{m_{\bar{n}}m_{\bar{p}}} \, \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \, \frac{\mathrm{d}N_{\bar{n}}}{\mathrm{d}T_{\bar{n}}} \, \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}T_{\bar{p}}} \, ,$$

Caution: correlations are significant !

Formation of CR heavy anti-nuclei: the coalescence model

Determination of p⁰ for anti-deuteron

Fitting p_0 to data on \overline{d} production

CR anti-deuteron and maximal DM contribution

DM induced antideuteron flux can be reach by AMS-02 and GAPS

S.J. Lin et al, 1801.00997

Current status of anti-deuteron detection

AM02 (2016)

Formation of CR heavy anti-nuclei: the coalescence model

The coalescence model: the case of A=3

absolute difference for all relative momenta

$$||k_i - k_j|| < p_0^{\overline{\text{He}}}, \quad (i \neq j).$$

Coalescence momentum of anti-Helium

Indirect approaches

- Use the relation between nuclei:
- Use binding energy:

$$p_{0A}^{\overline{\text{He}}} = \langle p_0^{\text{He}}/p_0^{\text{D}} \rangle \ p_0^{\overline{\text{D}}} = 1.28 \ p_0^{\overline{\text{D}}} = 0.246 \pm 0.038 \text{ GeV}$$
$$p_{0B}^{\overline{\text{He}}} = \sqrt{E_b^{^3\overline{\text{He}}}/E_b^{\overline{\text{D}}}} \ p_0^{\overline{\text{D}}} = 0.357 \pm 0.059 \text{ GeV}.$$

1 00

Ē

Ē

Direct approaches

Use Exp. data (e.g. ALICE, STAR)

He

ALICE, 1709.08522 (assuming rate ~ $(p_0)^6$)

Coalescence parameters determined from ALICE data

Y.C. Ding, N. Li, C.C.Wei, Y.L.Wu, YFZ, 1808.03612

MC generators:	PYTHIA 8.2	EPOS-LHC	DPMJET-III
$p_0^{\overline{\text{He}}} (\text{MeV})$	$224^{+12}_{-16} \ (254 \pm 14)$	$227^{+11}_{-16} \ (254 \pm 14)$	212^{+10}_{-13}
$p_0^{\bar{\mathrm{T}}} \; (\mathrm{MeV})$	$234^{+17}_{-29}\ (266\pm22)$	$245^{+17}_{-30}~(268\pm22)$	222_{-26}^{+16}

Significant uncertainties arise when extrapolating to low energies

energy scale relevant to CR anti-helium production

Using the limits derived from antiproton data

Importance of using antiproton limits for predicting anti-nuclei

Advantages:

DM profile (also propagation) dependence cancels out in deriving the anti-helium limits

Projected maximal anti-helium flux @AMS-02

EPOS-LHC based predictions

DPMJET based predictions

The most optimistic case for antihelium@AMS-02

The most optimistic case (using EPOS-LHC)

Expected anti-helium events (after 18 yrs of data collecting)

	$m_{\chi}~({ m GeV})$	$\chi\chi o q \bar{q}$	$\chi\chi o b ar{b}$	$\chi\chi\to W^+W^-$		
	30	$0.084^{+0.038}_{-0.040} \ (0.153^{+0.070}_{-0.073})$	$0.041^{+0.020}_{-0.018} \ (0.073^{+0.036}_{-0.032})$			
DM	100	$0.153^{+0.065}_{-0.072} \ (0.269^{+0.114}_{-0.127})$	$0.227^{+0.107}_{-0.103} \ (0.419^{+0.198}_{-0.190})$	$0.164^{+0.077}_{-0.076} \ (0.304^{+0.143}_{-0.141})$		
DM	300	$0.122_{-0.056}^{+0.055} \ (0.179_{-0.082}^{+0.081})$	$0.160^{+0.074}_{-0.074} \ (0.256^{+0.118}_{-0.118})$	$0.054_{-0.025}^{+0.025} \ (0.084_{-0.039}^{+0.039})$		
	1000	$0.106^{+0.048}_{-0.048} \ (0.138^{+0.063}_{-0.063})$	$0.131^{+0.058}_{-0.061}\ (0.179^{+0.079}_{-0.083})$	$0.015^{+0.007}_{-0.007}\ (0.019^{+0.009}_{-0.009})$		
Secondary	$0.986^{+0.437}_{-0.455} \ (0.054^{+0.021}_{-0.021})$					

The expected anti-helium events is O(1), dominated by backgrounds NOT DM annihilation

Comparison with previous analysis

preliminary anti-Helium candidate events at AMS-02

AMS-02 so far find 8 anti-helium candidate events with 2 coincide with anti-helium-4

Thank you for your attention !