
Lepton Phenomenology from A₅ and CP FLASY 2019 • María Luisa López-Ibáñez • (ITP-CAS, Beijing) •

Outline

- Flavour symmetries?
 - The SM flavour puzzle.
 - Residual symmetries. Generalised CP Symmetries.
- A_5 and generalised CP
 - ----- Lepton Mixing. Neutrino Masses.
- FLASY + BSM
 - Example: supergravity!
 - —— Slepton Bounds. Interplay neutrino-charged leptons.
- Conclusions

Why flavour symmetries?

U C t d S b e μ au u_{e} u_{μ} $u_{ au}$

1. Why are charged-fermions masses so hierarchical? Why up-type quarks the most hierarchical? Why small mixing among generations?

U C t d S b u_{μ} u u_{e} $u_{ au}$

- 1. Why are charged-fermions masses so hierarchical? Why up-type quarks the most hierarchical? Why small mixing among generations?
- 2. Why are neutrino masses less hierarchical? Why large mixing for leptons? What's their ordering?

U C t b d S e u_{μ} u_{μ} u_{e} $u_{ au}$

- 1. Why are charged-fermions masses so hierarchical? Why up-type quarks the most hierarchical? Why small mixing among generations?
- 2. Why are neutrino masses less hierarchical? Why large mixing for leptons? What's their ordering?
- 3. How are neutrino masses generated? Why are them so small? Are neutrinos mostly Dirac or Majorana?

U C t S u_{e} u_{μ} $u_{ au}$

- 1. Why are charged-fermions masses so hierarchical? Why up-type quarks the most hierarchical? Why small mixing among generations?
- 2. Why are neutrino masses less hierarchical? Why large mixing for leptons? What's their ordering?
- 3. How are neutrino masses generated? Why are them so small? Are neutrinos mostly Dirac or Majorana?
- 4. What's the origin of the three families?

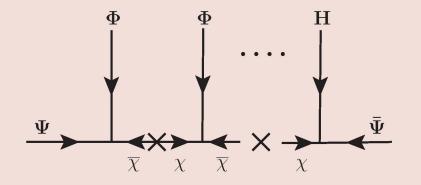
U	С	t
d	S	b
e	μ	$\overline{\tau}$
$ u_{e}$	$ u_{\mu}$	$ u_{ au}$

- 1. Why are charged-fermions masses so hierarchical? Why up-type quarks the most hierarchical? Why small mixing among generations?
- 2. Why are neutrino masses less hierarchical? Why large mixing for leptons? What's their ordering?
- 3. How are neutrino masses generated? Why are them so small? Are neutrinos mostly Dirac or Majorana?
- 4. What's the origin of the three families?
- 5. What's the physics behind CP violation?

U	С	t
d _	S	b
e	μ	τ
$ u_{e}$	$ u_{\mu}$	$ u_{ au}$

Is there any symmetry behind this?

U C t d S b $e \mu au$ $u_{
m e}$ u_{μ} $u_{ au}$ $u_{ au}$


Flavour Symmetries

and generalised CP transformations

Froggatt-Nielsen Mechanism

Flavour Symmetries

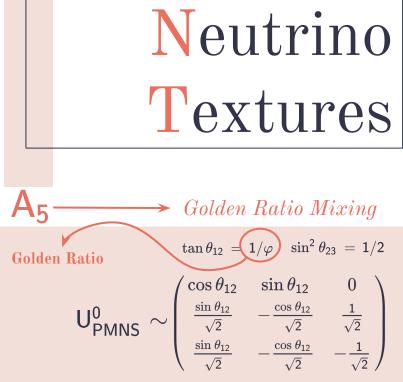
and generalised CP transformations

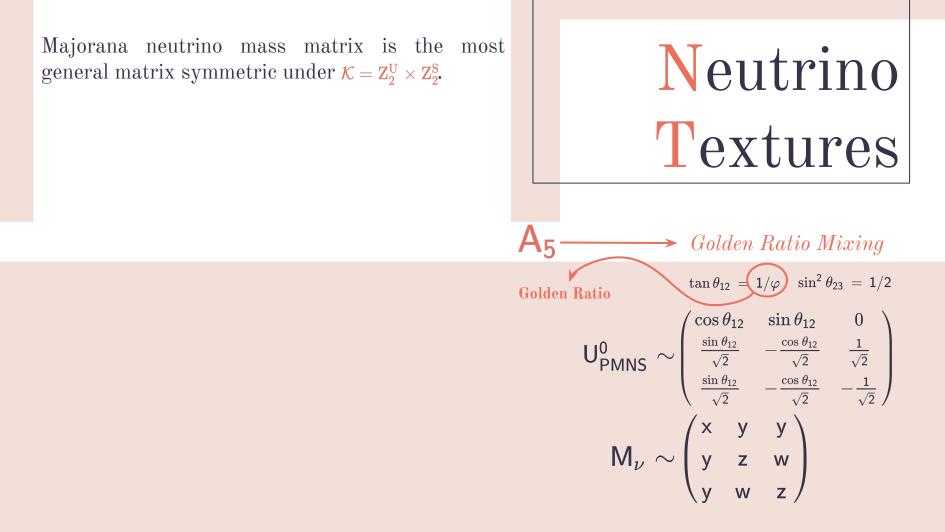
Froggatt-Nielsen Mechanism

Yukawa couplings may be effectively generated after the spontaneous breaking of a flavour symmetry by some scalar fields called flavons.

$$\begin{array}{rcl} \mathsf{L}_{\mathsf{Y}} &= & \bigvee_{ij} \Psi_{i} \ \Psi_{j} \ \mathsf{H} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & &$$

The leptonic sector, where the mixing pattern seems to be specially well defined, the use of discrete symmetries has been particularly popular.


The leptonic sector, where the mixing pattern seems to be specially well defined, the use of discrete symmetries has been particularly popular.


Neutrino Textures

Bimaximal Mixing TriBimaximal Mixing \checkmark Golden Ratio Mixing $\sin^2 heta_{12} = 1/\sqrt{3}$ $\sin^2 heta_{23} = 1/2$ $\tan heta_{12} = 1/arphi$ $\sin^2 heta_{23} = 1/2$ $\sin^2 \theta_{12} = 1/2$ $\sin^2 \theta_{23} = 1/2$ $\mathsf{U}_{\mathsf{PMNS}}^{\mathsf{0}} \sim \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ $S_4 A_4 \Delta(27)$

 A_5

The leptonic sector, where the mixing pattern seems to be specially well defined, the use of discrete symmetries has been particularly popular.

Majorana neutrino mass matrix is the most general matrix symmetric under $\mathcal{K} = \mathbb{Z}_2^U \times \mathbb{Z}_2^s$. Then, one may assume the existence of residual symmetries: Klein group for neutrinos

Neutrinos

$$\mathbf{S}^{\mathsf{T}} \mathbf{M}_{\nu} \mathbf{S} = \mathbf{M}_{\nu} \oplus \mathbf{U}^{\mathsf{T}} \mathbf{M}_{\nu} \mathbf{U} = \mathbf{M}_{\nu}$$

 $\mathcal{K} = \{\mathbf{S}, \mathbf{U}, \mathbf{US}, \mathbf{E}\}$

$$\begin{array}{c} \textbf{Residual} \\ \textbf{Symmetries} \\ \textbf{Symmetries} \\ \textbf{Symmetries} \\ \textbf{M}_{\nu} \sim \begin{pmatrix} cos \theta_{12} & sin \theta_{12} & 0 \\ \frac{sin \theta_{12}}{\sqrt{2}} & -\frac{cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{sin \theta_{12}}{\sqrt{2}} & -\frac{cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{sin \theta_{12}}{\sqrt{2}} & -\frac{cos \theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \\ \textbf{M}_{\nu} \sim \begin{pmatrix} \textbf{X} & \textbf{Y} & \textbf{Y} \\ \textbf{Y} & \textbf{z} & \textbf{W} \\ \textbf{y} & \textbf{w} & \textbf{z} \end{pmatrix} \end{array}$$

Majorana neutrino mass matrix is the most general matrix symmetric under $\mathcal{K} = \mathbb{Z}_2^U \times \mathbb{Z}_2^S$. Then, one may assume the existence of residual symmetries: Klein group for neutrinos and an Abelian group (which distinguish among generations) for the charged sector.

Charged Leptons $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$

Neutrinos

$$\begin{split} \mathsf{S}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{S} &= \mathsf{M}_\nu \ \oplus \ \mathsf{U}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{U} &= \mathsf{M}_\nu \\ \mathcal{K} &= \{\mathsf{S}, \mathsf{U}, \mathsf{US}, \mathsf{E}\} \end{split}$$

Residual
Symmetries
Symmetries
$$M_{2}$$

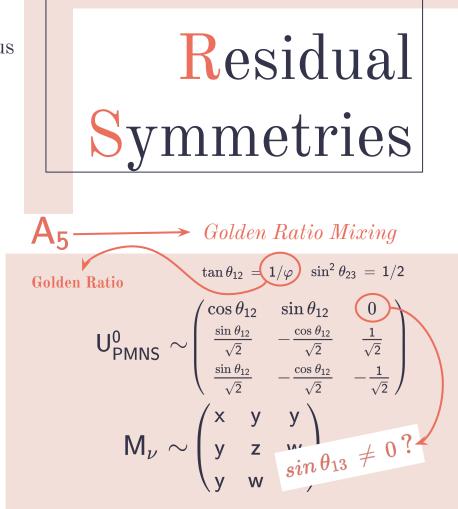
 M_{2}
 $M_{2} \sim \begin{pmatrix} x & y & y \\ y & z & w \\ y & y & z \end{pmatrix}$

Majorana neutrino mass matrix is the most general matrix symmetric under $\mathcal{K} = \mathbb{Z}_2^U \times \mathbb{Z}_2^S$. Then, one may assume the existence of residual symmetries: Klein group for neutrinos and an Abelian group (which distinguish among generations) for the charged sector.

Charged Leptons $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$

Neutrinos

$$\begin{split} \mathsf{S}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{S} &= \mathsf{M}_\nu \ \oplus \ \mathsf{U}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{U} &= \mathsf{M}_\nu \\ \mathcal{K} &= \{\mathsf{S}, \mathsf{U}, \mathsf{US}, \mathsf{E}\} \end{split}$$


$$\begin{array}{c} \textbf{Residual}\\ \textbf{Symmetries}\\ \textbf$$

Solutions: NLO corrections to previous patterns, non diagonal charged leptons,

Charged Leptons $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$

Neutrinos

$$\begin{split} \mathsf{S}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{S} &= \mathsf{M}_\nu \ \oplus \ \mathsf{U}^\mathsf{T} \, \mathsf{M}_\nu \, \mathsf{U} &= \mathsf{M}_\nu \\ \mathcal{K} &= \{\mathsf{S}, \mathsf{U}, \mathsf{US}, \mathsf{E}\} \end{split}$$

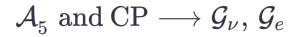
Solutions: NLO corrections to Residual previous diagonal charged leptons, patterns, non decreasing the symmetry neutrino sector Klein Symmetries group $\mathcal{G}_{\nu} = \mathrm{Z}_2 \times \mathrm{CP}$ \longrightarrow Golden Ratio Mixing Charged Leptons $\tan \theta_{12} = (1/\varphi) \sin^2 \theta_{23} = 1/2$ **Golden Ratio** $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$ $\mathsf{U}_{\mathsf{PMNS}}^{\mathsf{0}} \sim \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & \mathbf{0} \\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ $\mathsf{M}_{\nu} \sim \begin{pmatrix} \mathsf{x} & \mathsf{y} & \mathsf{y} \\ \mathsf{y} & \mathsf{z} & \mathsf{w} \\ \mathsf{y} & \mathsf{w} & \sin\theta_{13} \neq 0? \end{cases}$ Neutrinos $\mathsf{S}^\mathsf{T} \mathsf{M}_\nu \mathsf{S} = \mathsf{M}_\nu \ \oplus \ \mathsf{X}^\mathsf{T} \mathsf{M}_\nu \mathsf{X} = \mathsf{M}_\nu^\star$

Solutions: NLO corrections to previous patterns, non diagonal charged leptons, decreasing the symmetry neutrino sector Klein group $\mathcal{G}_{\nu} = \mathbf{Z}_2 \times \mathbf{CP}$ Charged Leptons $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$ Neutrinos $\mathsf{S}^\mathsf{T} \mathsf{M}_\nu \mathsf{S} = \mathsf{M}_\nu \ \oplus \ \mathsf{X}^\mathsf{T} \mathsf{M}_\nu \mathsf{X} = \mathsf{M}^\star_\nu$

Kesidual Symmetries \longrightarrow Golden Ratio Mixing $\tan \theta_{12} = 1/\varphi \sin^2 \theta_{23} = 1/2$ **Golden Ratio** $\Omega \sim \mathsf{U}_{\mathsf{PMNS}}^{0} \sim \begin{pmatrix} \cos heta_{12} & \sin heta_{12} & 0 \ rac{\sin heta_{12}}{\sqrt{2}} & -rac{\cos heta_{12}}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{\sin heta_{12}}{\sqrt{2}} & -rac{\cos heta_{12}}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$ $U_{PMNS} = \Omega R_{\theta} K_{\nu}$ $sin \theta_{13} \neq 0$

Solutions: NLO corrections to previous patterns, non diagonal charged leptons, decreasing the symmetry neutrino sector Klein group $\mathcal{G}_{\prime\prime}=\mathrm{Z}_{2} imes\mathrm{CP}$ Charged Leptons **Golden Ratio** $Q^{\dagger}m_{e}^{\dagger}m_{e}Q = m_{e}^{\dagger}m_{e} \longrightarrow Z_{N} \subset A_{5}$ Neutrinos $\mathsf{S}^\mathsf{T} \mathsf{M}_\nu \mathsf{S} = \mathsf{M}_\nu \ \oplus \ \mathsf{X}^\mathsf{T} \mathsf{M}_\nu \mathsf{X} = \mathsf{M}^\star_\nu$

Residual Symmetries $A_5 \longrightarrow Golden Ratio Mixing$ $\tan \theta_{12} = 1/\varphi \sin^2 \theta_{23} = 1/2$ $\Omega \sim \mathsf{U}_{\mathsf{PMNS}}^{0} \sim \begin{pmatrix} \cos heta_{12} & \sin heta_{12} & 0 \ rac{\sin heta_{12}}{\sqrt{2}} & -rac{\cos heta_{12}}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{\sin heta_{12}}{\sqrt{2}} & -rac{\cos heta_{12}}{\sqrt{2}} & -rac{1}{\sqrt{2}} \end{pmatrix}$ $\begin{array}{c} \mathsf{U}_{\mathsf{PMNS}} = \Omega \, \mathsf{R}_{\theta} \, \mathsf{K}_{\nu} \\ \\ sin \, \theta_{13} \, \neq \, \mathbf{0} \end{array} \overset{\mathsf{R}_{\theta}}{=} \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$


A. Di Iura, C. Hagedorn, D. Meloni hep-ph/1503.04140

Residual symmetries that reproduce U_{PMNS} ?

 $\mathcal{A}_{5} ext{ and CP} \longrightarrow \mathcal{G}_{
u}, \, \mathcal{G}_{e}$

A. Di Iura, C. Hagedorn, D. Meloni hep-ph/1503.04140 $\,$

Residual symmetries that reproduce U_{PMNS} ? Residual Symmetry in the neutrino sector is $\mathcal{G}_{\nu} = \mathbb{Z}_2 \times \mathbb{CP}$ All possibilities for CP transformations: $X = VX_0$, $V \in \mathbb{Z}_2 \times \mathbb{Z}_2$ All possibilities for charged leptons: $\mathbb{Z}_3, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_5$ All possible row and column permutations for $U_{PMNS} = \Omega R_{\theta} K_{\nu}$

A. Di Iura, C. Hagedorn, D. Meloni hep-ph/1503.04140 Only 4 patterns

at 3σ or better

Residual symmetries that reproduce U_{PMNS} ?

Residual Symmetry in the **neutrino** sector is $\mathcal{G}_{\nu} = \mathbb{Z}_2 \times \mathbb{CP}$

All possibilities for CP transformations: $X=V\,X_0,\;V\in {\rm Z}_2\times {\rm Z}_2$

All possibilities for **charged leptons**: $Z_3, Z_2 \times Z_2, Z_5$

	Case I		Cas	se II	Case III Case IV-P1 C		Case	Case IV-P2		
(Q_i, Z, X)	(T, T^2ST)	T^3ST^2, SX_0)	$\left(T,ST^2ST,X_0 ight)$		$\left(T^2ST^2, ST^2ST^3S, X_0\right)$		$\left(\left\{S,T^2ST^3ST^2\right.\right)$		$\left\{ ST^{2}ST, X_{0} \right\}$	
	NO	IO	NO	IO	NO	IO	NO	IO	NO	IO
$\chi^2_{\rm min}$	5.64	3.46	4.04	7.74	8.84	12.56	4.48	11.80	6.19	6.43
$ heta_{ m bf}$	0.174	2.967	$\left\{\begin{array}{c} 0.175\\ 2.967\end{array}\right.$		$\left\{\begin{array}{c} 0.604\\ 0.967\end{array}\right.$	$\left\{\begin{array}{c}0.603\\0.967\end{array}\right.$	0.254	0.258	0.255	0.254
$\sin^2 heta_{12}$	0.283	0.283	0.283	0.283	0.341	0.341	0.331	0.330	0.331	0.331
$\sin^2 heta_{13}$	0.0217	0.0219	0.0218	0.0220	0.0217	0.0218	0.0219	0.0225	0.0220	0.0218
$\sin^2 heta_{23}$	0.408	0.592	0.5		0.5		0.475	0.478	0.524	0.525
J_{CP}	0	0	∓ 0.0325	∓ 0.0326	± 0.0342	± 0.0342	0	0	0	0
$\sin\delta$	0	0	∓ 1		±1		0	0	0	0

 $\mathcal{A}_5 ext{ and CP} \longrightarrow \mathcal{G}_{
u}, \, \mathcal{G}_e$

A. Di Iura, C. Hagedorn, D. Meloni hep-ph/1503.04140 Only 4 patterns

at 3σ or better

Residual symmetries that reproduce U_{PMNS} ?

Residual Symmetry in the **neutrino** sector is $\mathcal{G}_{\nu} = \mathbb{Z}_2 \times \mathbb{CP}$

All possibilities for CP transformations: $X=V\,X_0,\;V\in {\rm Z}_2\times {\rm Z}_2$

All possibilities for **charged leptons**: $Z_3, Z_2 \times Z_2, Z_5$

	Case I		Cas	e II	Case	e III	Case	Case IV-P1 Case		IV-P2
(Q_i, Z, X)	\mathbf{Z}_{5}		\mathbf{Z}_{5}		\mathbf{Z}_3		${ m Z}_2 imes { m Z}_2$			
$\chi^2_{ m min}$	5.64	3.46	4.04	7.74	8.84	12.56	4.48	11.80	6.19	6.43
$ heta_{ m bf}$	0.174	2.967	$\left\{\begin{array}{c} 0.175\\ 2.967\end{array}\right.$		$\left\{\begin{array}{c}0.604\\0.967\end{array}\right.$	$\left\{\begin{array}{c}0.603\\0.967\end{array}\right.$	0.254	0.258	0.255	0.254
$\sin^2 heta_{12}$	0.283	0.283	0.283	0.283	0.341	0.341	0.331	0.330	0.331	0.331
$\sin^2 heta_{13}$	0.0217	0.0219	0.0218	0.0220	0.0217	0.0218	0.0219	0.0225	0.0220	0.0218
$\sin^2 \theta_{23}$	0.408	0.592	0.5		0.5		0.475	0.478	0.524	0.525
J_{CP}	0	0	∓ 0.0325	∓ 0.0326	± 0.0342	± 0.0342	0	0	0	0
$\sin \delta$	0	0			±1		0	0	0	0

 $\mathcal{A}_5 ext{ and CP} \longrightarrow \mathcal{G}_{
u}, \, \mathcal{G}_e$

A. Di Iura, C. Hagedorn, D. Meloni hep-ph/1503.04140 Only 4 patterns

at 3σ or better

Residual symmetries that reproduce U_{PMNS} ?

Residual Symmetry in the **neutrino** sector is: $\mathcal{G}_{\nu} = \mathbb{Z}_2 \times \mathbb{CP}$ All possibilities for CP transformations: X_0

All possibilities for charged leptons: ${f Z_5}$

	С	Case I		e II	Case	Case III Case IV-P1 Cas		Case 2	ase IV-P2	
(Q_i, Z, X) Z ₅		\mathbf{Z}_5	\mathbf{Z}_5		Z_3		${ m Z}_2 imes { m Z}_2$			
$\chi^2_{ m min}$	5.64	3.46	4.04	7.74	8.84	12.56	4.48	11.80	6.19	6.43
$ heta_{ m bf}$	0.174	2.967	$\left\{\begin{array}{c}0.175\\2.967\end{array}\right.$		$\left\{\begin{array}{c}0.604\\0.967\end{array}\right.$	$\left\{\begin{array}{c}0.603\\0.967\end{array}\right.$	0.254	0.258	0.255	0.254
$\sin^2 heta_{12}$	0.283	0.283	0.283	0.283	0.341	0.341	0.331	0.330	0.331	0.331
$\sin^2 heta_{13}$	0.0217	0.0219	0.0218	0.0220	0.0217	0.0218	0.0219	0.0225	0.0220	0.0218
$\sin^2 heta_{23}$	0.408	0.592	0.5		0.5		0.475	0.478	0.524	0.525
J_{CP}	0	0	∓ 0.0325	∓ 0.0326	± 0.0342	± 0.0342	0	0	0	0
$\sin \delta$	0	0			±1		0	0	0	0

$$\mathcal{A}_5 ext{ and CP} \longrightarrow \mathcal{G}_{
u}, \, \mathcal{G}_e$$

$$\mathsf{U}_{\mathsf{PMNS}} = \Omega \, \mathsf{R}_{ heta} \, \mathsf{K}_{
u}$$

$$\sin^2\theta_{23} = 1/2 \qquad \sin^2\theta_{12} = \frac{\sin^2\varphi}{\cos^2\theta_{13}} \qquad \sin^2\theta_{13} = \frac{2+\varphi}{5}\sin^2\theta \left\{\theta_{\mathsf{bf}} = 0.175\right\} \qquad (\mathsf{Z}_5\,,\mathsf{Z}_2\,,\mathsf{X}_0\,)$$

$$\mathcal{A}_5 ext{ and CP} \longrightarrow \mathcal{G}_{
u}, \, \mathcal{G}_e$$

 $\langle \phi_{\nu} \rangle = \mathsf{X}_{\mathsf{0}} \langle \phi_{\nu} \rangle^{\star} \qquad \quad \langle \phi_{\nu} \rangle = \mathsf{Z} \langle \phi_{\nu} \rangle$

Case

$$\mathsf{U}_{\mathsf{PMNS}} = \Omega \,\mathsf{R}_{ heta} \,\mathsf{K}_{
u}$$

$$\sin^2\theta_{23} = 1/2 \qquad \sin^2\theta_{12} = \frac{\sin^2\varphi}{\cos^2\theta_{13}} \qquad \sin^2\theta_{13} = \frac{2+\varphi}{5}\sin^2\theta \left\{\theta_{\mathsf{bf}} = 0.175\right\} \qquad (\mathbf{Z}_5, \mathbf{Z}_2, \mathbf{X}_0)$$

$$\mathcal{A}_{5} \text{ and } CP \longrightarrow \mathcal{G}_{\nu}, \mathcal{G}_{e}$$

$$\langle \phi_{\nu} \rangle = \mathsf{X}_{0} \langle \phi_{\nu} \rangle^{*} \qquad \langle \phi_{\nu} \rangle = \mathsf{Z} \langle \phi_{\nu} \rangle$$

$$\langle \phi_{\nu,1} \rangle = v_{1} \qquad \langle \phi_{\nu,3} \rangle = v \begin{pmatrix} -\sqrt{2}\varphi^{-1} \\ 1 \\ 1 \end{pmatrix} \qquad \langle \phi_{\nu,3'} \rangle = \omega \begin{pmatrix} \sqrt{2}\varphi \\ 1 \\ 1 \end{pmatrix}$$

$$\langle \phi_{\nu,4} \rangle^{\mathrm{T}} = (y_{r} - iy_{i}, (1 + 2\varphi)y_{r} - iy_{i}, (1 + 2\varphi)y_{r} + iy_{i}, y_{r} + iy_{i})$$

$$\langle \phi_{\nu,5} \rangle^{\mathrm{T}} = -\left(\sqrt{\frac{2}{3}}(x_{r} + x_{r,2}), -x_{r} + i\varphi x_{i}, x_{r,2} - ix_{i}, x_{r,2} + ix_{i}, x_{r} + i\varphi x_{i}\right) \qquad Case$$

$$\sin^2 heta_{23} = 1/2 \qquad \sin^2 heta_{12} = rac{\sin^2 arphi}{\cos^2 heta_{13}} \qquad \sin^2 heta_{13} = rac{2+arphi}{5} \sin^2 heta \left\{ heta_{ ext{bf}} = 0.175
ight\} \qquad \left(ext{Z}_5, ext{Z}_2, ext{X}_0
ight)$$

Lepton Masses

100

. 0

0

A

$$\mathsf{X}_0^\mathsf{T} \mathsf{M}_{\nu} \mathsf{X}_0 = \mathsf{M}_{\nu}^\star \qquad \mathsf{Z}^\mathsf{T} \mathsf{M}_{\nu} \mathsf{Z} = \mathsf{M}_{\nu}$$

$$\mathcal{A}_{5} \text{ and } CP \longrightarrow \mathcal{G}_{\nu}, \mathcal{G}_{e}$$

$$\langle \phi_{\nu} \rangle = \mathsf{X}_{0} \langle \phi_{\nu} \rangle^{\star} \qquad \langle \phi_{\nu} \rangle = \mathsf{Z} \langle \phi_{\nu} \rangle$$

$$\langle \phi_{\nu,1} \rangle = v_{1} \qquad \langle \phi_{\nu,3} \rangle = v \begin{pmatrix} -\sqrt{2}\varphi^{-1} \\ 1 \\ 1 \end{pmatrix} \qquad \langle \phi_{\nu,3'} \rangle = \omega \begin{pmatrix} \sqrt{2}\varphi \\ 1 \\ 1 \end{pmatrix}$$

$$\langle \phi_{\nu,4} \rangle^{\mathrm{T}} = (y_{r} - iy_{i}, (1 + 2\varphi)y_{r} - iy_{i}, (1 + 2\varphi)y_{r} + iy_{i}, y_{r} + iy_{i})$$

$$\langle \phi_{\nu,5} \rangle^{\mathrm{T}} = -\left(\sqrt{\frac{2}{3}}(x_{r} + x_{r,2}), -x_{r} + i\varphi x_{i}, x_{r,2} - ix_{i}, x_{r,2} + ix_{i}, x_{r} + i\varphi x_{i}\right) \qquad Case$$

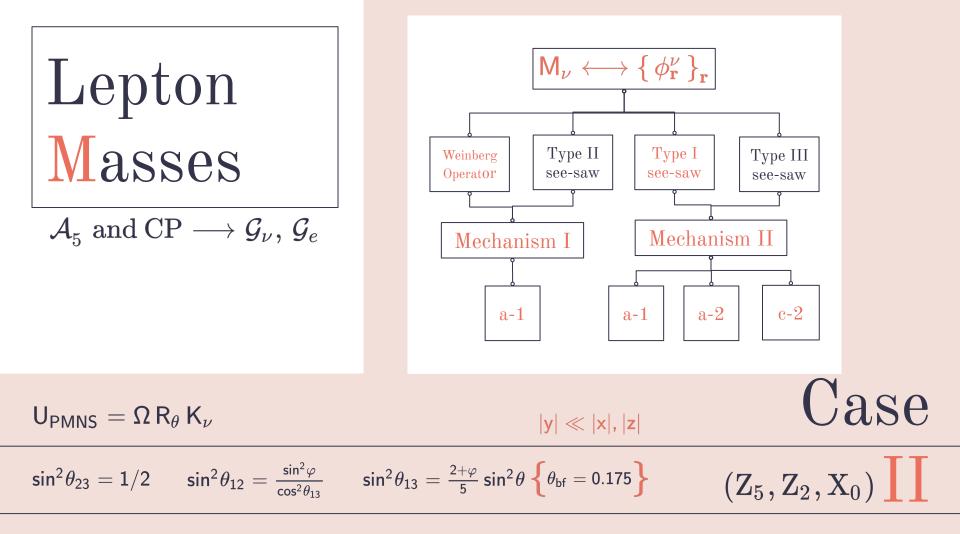
$$\sin^2\theta_{23} = 1/2 \qquad \sin^2\theta_{12} = \frac{\sin^2\varphi}{\cos^2\theta_{13}} \qquad \sin^2\theta_{13} = \frac{2+\varphi}{5}\sin^2\theta \left\{\theta_{\mathsf{bf}} = 0.175\right\} \qquad \qquad \left(\mathsf{Z}_5\,,\mathsf{Z}_2\,,\mathsf{X}_0\,\right) = 1$$

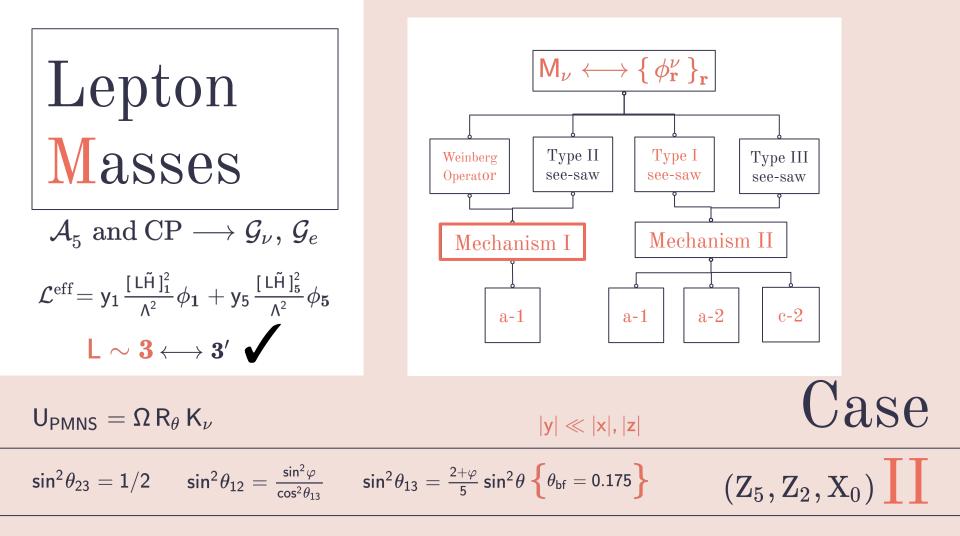
Lepton Masses

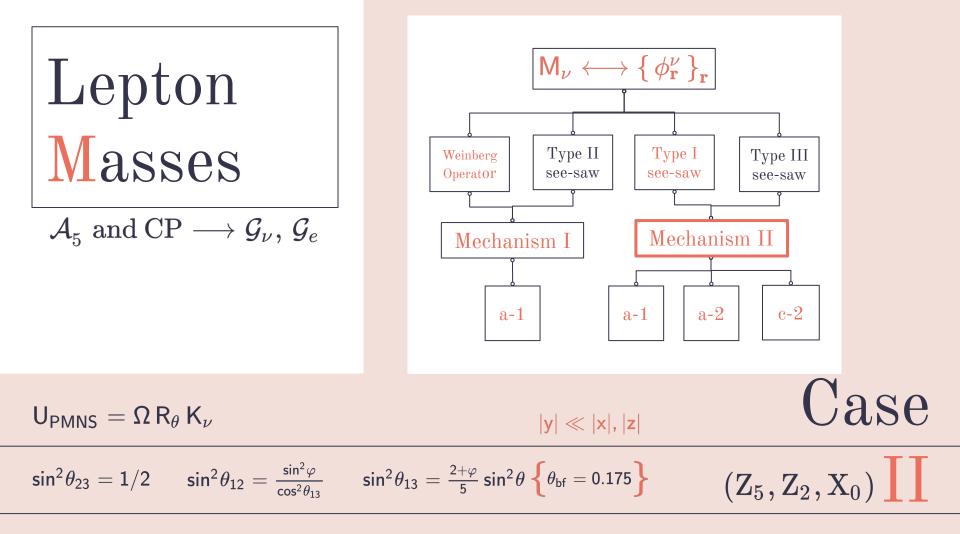
 $A \text{ and } CP \longrightarrow G \quad G$

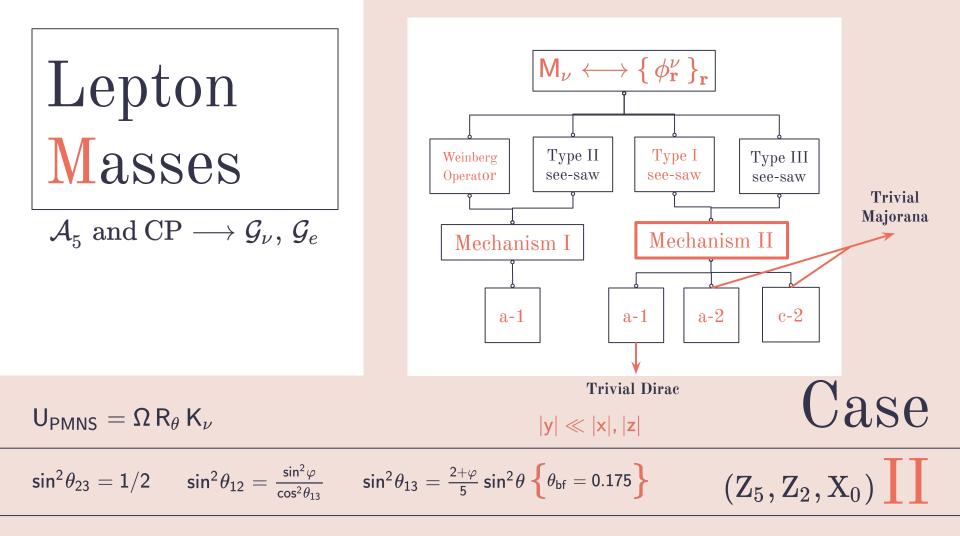
$$\begin{split} X_0^{\mathsf{T}} \ \mathsf{M}_{\nu} \ \mathsf{X}_0 &= \mathsf{M}_{\nu}^{\star} \qquad \mathsf{Z}^{\mathsf{T}} \ \mathsf{M}_{\nu} \ \mathsf{Z} &= \mathsf{M}_{\nu} \\ \\ \mathsf{M}_{\nu} &= \mathsf{m}_0 \begin{pmatrix} \mathsf{s} + \mathsf{x} + \mathsf{z} & \frac{3}{2\sqrt{2}}(\mathsf{z} + \mathsf{i}\varphi\mathsf{y}) & \frac{3}{2\sqrt{2}}(\mathsf{z} - \mathsf{i}\varphi\mathsf{y}) \\ \frac{3}{2\sqrt{2}}(\mathsf{z} + \mathsf{i}\varphi\mathsf{y}) & \frac{3}{2}(\mathsf{x} + \mathsf{i}\mathsf{y}) & \mathsf{s} - \frac{\mathsf{x} + \mathsf{z}}{2} \\ \frac{3}{2\sqrt{2}}(\mathsf{z} - \mathsf{i}\varphi\mathsf{y}) & \mathsf{s} - \frac{\mathsf{x} + \mathsf{z}}{2} & \frac{3}{2}(\mathsf{x} - \mathsf{i}\mathsf{y}) \end{pmatrix} \end{split}$$

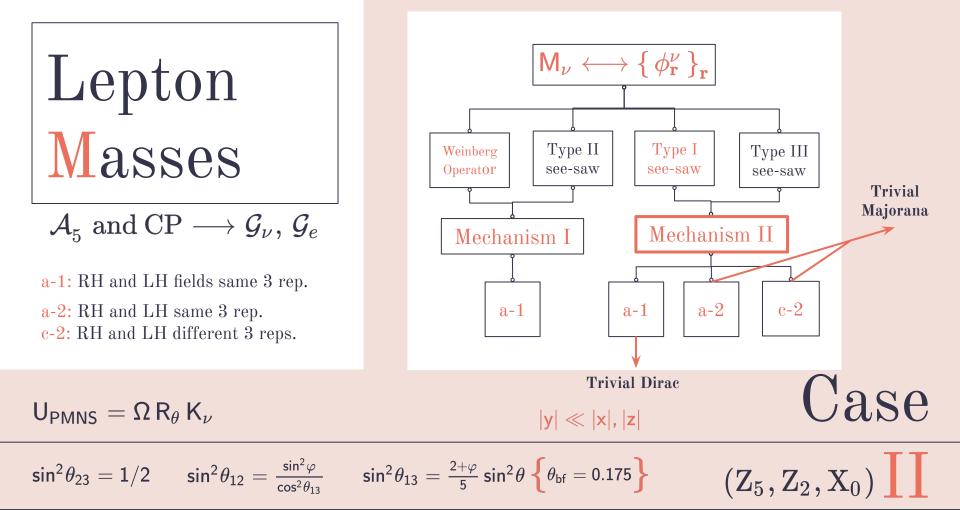
$$V_{9\nu}, y_{e} = X_{0} \langle \phi_{\nu} \rangle^{*} \qquad \langle \phi_{\nu} \rangle = Z \langle \phi_{\nu} \rangle$$


$$\langle \phi_{\nu,1} \rangle = v_{1} \qquad \langle \phi_{\nu,3} \rangle = v \begin{pmatrix} -\sqrt{2}\varphi^{-1} \\ 1 \\ 1 \end{pmatrix} \qquad \langle \phi_{\nu,3'} \rangle = \omega \begin{pmatrix} \sqrt{2}\varphi \\ 1 \\ 1 \end{pmatrix}$$


$$\langle \phi_{\nu,3'} \rangle^{T} = (y_{r} - iy_{i}, (1 + 2\varphi)y_{r} - iy_{i}, (1 + 2\varphi)y_{r} + iy_{i}, y_{r} + iy_{i})$$


$$\langle \phi_{\nu,5} \rangle^{T} = -\left(\sqrt{\frac{2}{3}}(x_{r} + x_{r,2}), -x_{r} + i\varphi x_{i}, x_{r,2} - ix_{i}, x_{r,2} + ix_{i}, x_{r} + i\varphi x_{i}\right) \quad Case$$


$$\sin^2\theta_{23} = 1/2 \qquad \sin^2\theta_{12} = \frac{\sin^2\varphi}{\cos^2\theta_{13}} \qquad \sin^2\theta_{13} = \frac{2+\varphi}{5}\sin^2\theta \left\{\theta_{\mathsf{bf}} = 0.175\right\} \qquad \qquad \left(\mathsf{Z}_5\,,\mathsf{Z}_2\,,\mathsf{X}_0\,\right)$$


$$\begin{split} & \begin{array}{c} \begin{array}{c} Lepton\\ Masses\\ \hline M_{2} \\ \hline M_$$

hep-ph/1811.09662

→ Three free parameters: setting one or two vevs equal to zero.

Mecha	nism I	VEVs	$[\alpha,\beta]$	N	fechanis	m II a-1	VEVs	$[\alpha,\beta]$	
z = 0	NO	$y \simeq \pm 0.19 x$ $s \simeq -20 x$	[0, 0]		Z=0	NO	$Y \simeq \pm 0.19 X$ $S \simeq X, \ 44X$	$[0,\pi/0]$	
x = 0	ΙΟ	$y \simeq \pm 0.16 z$ $s \simeq -0.3 z$	$[\pi,\pi]$		X = 0	Ю	$Y \simeq \pm 0.16 X$ $S \simeq -Z/4, Z/3, 2Z$	$[\pi, \pi/\pi/0]$ Z/3	
s=0	ΙΟ	$y \simeq \pm 0.10 z$ $s \simeq -0.3 z$	$[\pi,0]$		S=0	Ю	×	×	
	Mechanism II a-2								
<i>g</i> =	= 0	VE	ZVs	_	$h_i =$	= 0	VI	EVs	
f=0	$\begin{cases} NO\\ IO \end{cases}$	$g \simeq \pm h_{r,2}/10$ $g \simeq \pm h_{r,2}/2$	$h_r \simeq 0$ $h_r \simeq -4h_{r,2}$		f = 0	$\begin{cases} NO\\ IO \end{cases}$	$h_i \simeq \pm h_{r,2}/5$ $h_i \simeq \pm 2h_{r,2}/5$	$h_r \simeq 0$ $h_r \simeq -4h_{r,2}$	
$h_r=0$	NO	$g \simeq \pm h$ $f \simeq -7$	$r_{r,2}/100$		$h_r = 0$	NO	$h_i \simeq \pm 0.19 h_{r,2}$ $f \simeq 20 h_{r,2}$		
$h_{r,2}=0$	Ю	-	$g \simeq \pm 7 \sqrt{6} h_r / 40$ $f \simeq h_r / (2 \sqrt{6})$ $h_{r,2} = 0$		Ю	O $h_i \simeq \pm 0.16h_r$ $f \simeq h_r / (2\sqrt{6})$			
			${ m Me}$	chai	nism II o	-2			
f_r :	= 0	VE	Vs		$h_i =$	= 0	VI	EVs	
$f_i = 0$	{NO IO	$f_r \simeq \pm h_r/25$ $f_r \simeq \pm h_r/10$	$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$		$f_i = 0$	$\begin{cases} NO\\ IO \end{cases}$	$h_i \simeq \pm h_r / 10$ $h_i \simeq \pm h_r / 10$	$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$	
$h_r=0$	NO	$f_r \simeq \pm f_i \simeq -h_r$.,=,	1	$h_r = 0$	NO	$h_i \simeq \pm 0$ $f_i \simeq -h_{r,2/2}$		
$h_{r,2}=0$	ΙΟ	$f_r \simeq \pm f_i \simeq h_r$	- /	h	$r_{r,2} = 0$	Ю	$h_i \simeq \pm$ $f_i \simeq h_r$	- 1	

- → Three free parameters: setting one or two vevs equal to zero.
- → Allowed ordering

Mechan	ism I	VEVs	$[\alpha,\beta]$	Mechanisn	ı II a-1	VEVs	$[\alpha,\beta]$		
z = 0	NO	$y \simeq \pm 0.19 x$ $s \simeq -20 x$	[0, 0]	Z=0	NO	$Y \simeq \pm 0.19 X$ $S \simeq X, 44X$	$[0, \pi/0]$		
x = 0	ю	$y \simeq \pm 0.16 z$ $s \simeq -0.3 z$	$[\pi,\pi]$	X = 0	ю	$Y \simeq \pm 0.16 X$ $S \simeq -Z/4, Z/3, 2Z/$	$[\pi, \pi/\pi/0]$		
s = 0	Ю	$y \simeq \pm 0.10 z$ $s \simeq -0.3 z$	$[\pi,0]$	S=0	Ю	×	×		
	Mechanism II a-2								
g =	0	VE	ZVs	$h_i =$	0	VEV	/s		
f=0	$\begin{cases} NO\\ IO \end{cases}$	$g \simeq \pm h_{r,2}/10$ $g \simeq \pm h_{r,2}/2$	$h_r \simeq 0$ $h_r \simeq -4h_{r,\cdot}$	f=0	{NO IO	$h_i \simeq \pm h_{r,2}/5$ $h_i \simeq \pm 2h_{r,2}/5$			
$h_r=0$	NO	$g \simeq \pm h$ $f \simeq -7$		$h_r = 0$	NO	$h_i \simeq \pm 0.19 h_{r,2}$ $f \simeq 20 h_{r,2}$			
$h_{r,2}=0$	Ю	$g \simeq \pm 7 \chi$ $f \simeq h_r$		$h_{r,2}=0$	ΙΟ	$h_i \simeq \pm 0.$ $f \simeq h_r/(2)$			
			Me	echanism II c-	2				
$f_r =$	0	VE	ZVs	$h_i =$	0	VEVs			
$f_i = 0$	{NO IO	$f_r \simeq \pm h_r/25$ $f_r \simeq \pm h_r/10$		$f_i=0$	{NO IO		$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$		
$h_r = 0$	NO	$f_r \simeq \pm f_i \simeq -h_r$		$h_r = 0$	NO	$h_i \simeq \pm 0.0$ $f_i \simeq -h_{r,2}/(2$			
$h_{r,2}=0$	Ю	$f_r \simeq \pm f_i \simeq h_r$		$h_{r,2}=0$	Ю	$h_i \simeq \pm h_i$ $f_i \simeq h_r/(2)$,		

hep-ph/1811.09662

→ Three free parameters: setting one or two vevs equal to zero.

 $[\,\alpha,\,\beta\,]\,=\,[\,0,$

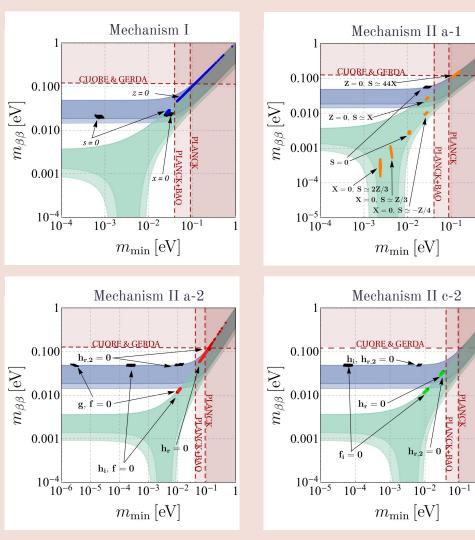
→ Allowed ordering and Majorana phases.

			ism I	VEVs	$[\alpha,\beta]$	Mechanisn	n II a-1	VEVs	[<i>α</i> , <i>β</i>]		
		z = 0	NO	$y \simeq \pm 0.19 x$ $s \simeq -20 x$	[0, 0]	Z=0	NO	$Y \simeq \pm 0.19 X$ $S \simeq X, \ 44X$	$[0,\pi/0]$		
		x = 0	Ю	$y \simeq \pm 0.16 z$ $s \simeq -0.3 z$	$[\pi,\pi]$	X = 0	ΙΟ	$Y \simeq \pm 0.16 X$ $S \simeq -Z/4, Z/3, 2Z$	$[\pi, \pi/\pi/0]$		
		s = 0	Ю	$y \simeq \pm 0.10 z$ $s \simeq -0.3 z$	$[\pi, 0]$	S=0	ю	×	×		
		Mechanism II a-2									
		g =	8	VE	Vs	$h_i =$	0	VE	EVs		
		f = 0	{NO IO	$g \simeq \pm h_{r,2}/10$ $g \simeq \pm h_{r,2}/2$		f=0	{NO IO	$h_i \simeq \pm h_{r,2}/5$ $h_i \simeq \pm 2h_{r,2}/5$			
	/	$h_r=0$	NO	$g \simeq \pm h$ $f \simeq -7$.,_/	$h_r=0$	NO	$h_i \simeq \pm 0.19 h_{r,2}$ $f \simeq 20 h_{r,2}$			
01		$h_{r,2}=0$	Ю	$g \simeq \pm 7 \sqrt{f}$ $f \simeq h_{r/r}$		$h_{r,2}=0$	Ю	$h_i \simeq \pm 0$ $f \simeq h_r/$			
, 0]					Ν	lechanism II c-	chanism II c-2				
		$f_r =$: 0	VE	Vs	$h_i =$	0	VE	EVs		
		$f_i = 0$	{NO IO	$f_r \simeq \pm h_r/25$ $f_r \simeq \pm h_r/10$			{NO IO	$h_i \simeq \pm h_r/10$ $h_i \simeq \pm h_r/10$	$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$		
		$h_r=0$	NO	$f_r \simeq \pm h_r$ $f_i \simeq -h_r$	$_{,2}/(2\sqrt{6})$	$h_r = 0$	NO	$h_i \simeq \pm 0$ $f_i \simeq -h_{r,2}/$	$(2\sqrt{6})$		
		$h_{r,2}=0$	ΙΟ	$f_r \simeq \pm f_i \simeq h_r$	10-11 COMPANY	$h_{r,2}=0$	ΙΟ	$h_i \simeq \pm$ $f_i \simeq h_r /$			

- → Three free parameters: setting one or two vevs equal to zero.
- → Allowed ordering and Majorana phases.
- → Correlations between vevs: ratio mass splittings and reactor angle.

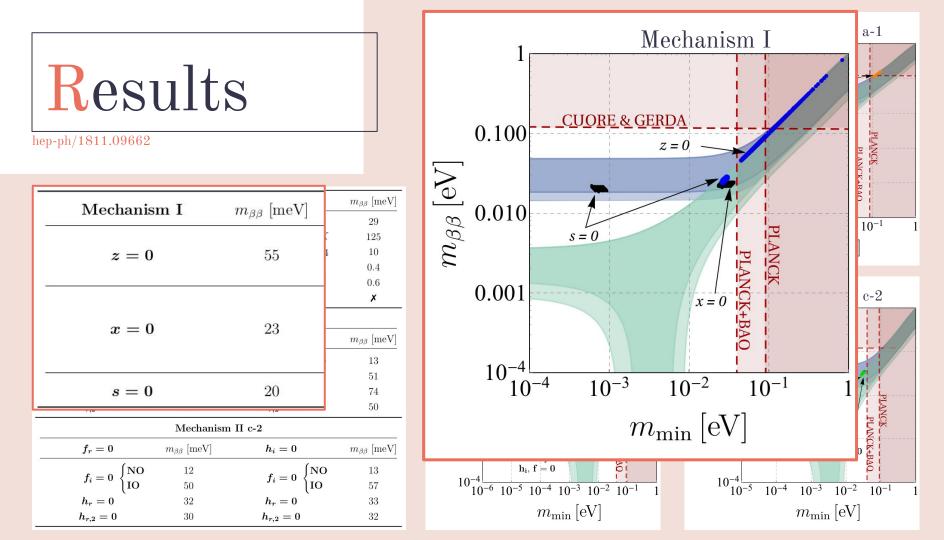
Mechanism I	VEVs	[lpha, eta]	Mechanis	m II a-1	VEVs	$[\alpha,\beta]$		
z = 0 NO	$y \simeq \pm 0.19 x$ $s \simeq -20 x$	[0, 0]	Z=0	NO	$Y \simeq \pm 0.19 X$ $S \simeq X, 44X$	$[0,\pi/0]$		
x = 0 IO	$y \simeq \pm 0.16 z$ $s \simeq -0.3 z$	$[\pi, \pi]$	X = 0	Ю	$Y \simeq \pm 0.16 X$ $S \simeq -Z/4, Z/3, 2Z/3$	$[\pi, \pi/\pi/0]$		
s = 0 IO	$y \simeq \pm 0.10 z$ $s \simeq -0.3 z$	$[\pi, 0]$	S=0	IO	×	×		
Mechanism II a-2								
g = 0	V	EVs	h_i =	= 0	VEV	S		
$f = 0$ $\begin{cases} NO \\ IO \end{cases}$	$g \simeq \pm h_{r,2}/10$ $g \simeq \pm h_{r,2}/2$	$g \simeq \pm h_{r,2}/10 h_r \simeq 0$ $g \simeq \pm h_{r,2}/2 \qquad h_r \simeq -4h_{r,2}$		$\begin{cases} NO\\ IO \end{cases}$	$h_i \simeq \pm h_{r,2}/5$ $h_i \simeq \pm 2h_{r,2}/5$	$h_r \simeq 0$ $h_r \simeq -4h_{r,2}$		
$h_r = 0$ NO		$h_{r,2}/100$ $7h_{r,2}/20$	$h_r=0$	NO	$h_i \simeq \pm 0.19$ $f \simeq 20 h_{r,2}$			
$h_{r,2} = 0$ IO	0	$\sqrt{6}h_r/40$ $r/(2\sqrt{6})$	$h_{r,2}=0$	ΙΟ	$h_i \simeq \pm 0.1$ $f \simeq h_r/(2$			
		${ m Mec}$	chanism II	c-2				
$f_r = 0$	V	EVs	h_i =	= 0	VEV	s		
$f_i = 0 \begin{cases} \mathrm{NO} \\ \mathrm{IO} \end{cases}$	$f_r \simeq \pm h_r/25$ $f_r \simeq \pm h_r/10$	$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$	$f_i = 0$	$\begin{cases} NO\\ IO \end{cases}$	$h_i \simeq \pm h_r/10$ $h_i \simeq \pm h_r/10$	$h_r \simeq -h_{r,2}$ $h_r \simeq h_{r,2}$		
$h_r = 0$ NO		$h_{r,2}/50$ $h_{r,2}/(2\sqrt{6})$	$h_r=0$	NO	$h_i \simeq \pm 0.03$ $f_i \simeq -h_{r,2}/(2$			
$h_{r,2} = 0$ IO		$h_r/100$ $h_r/(2\sqrt{6})$	$h_{r,2}=0$	ΙΟ	$h_i \simeq \pm h_r,$ $f_i \simeq h_r/(2$			

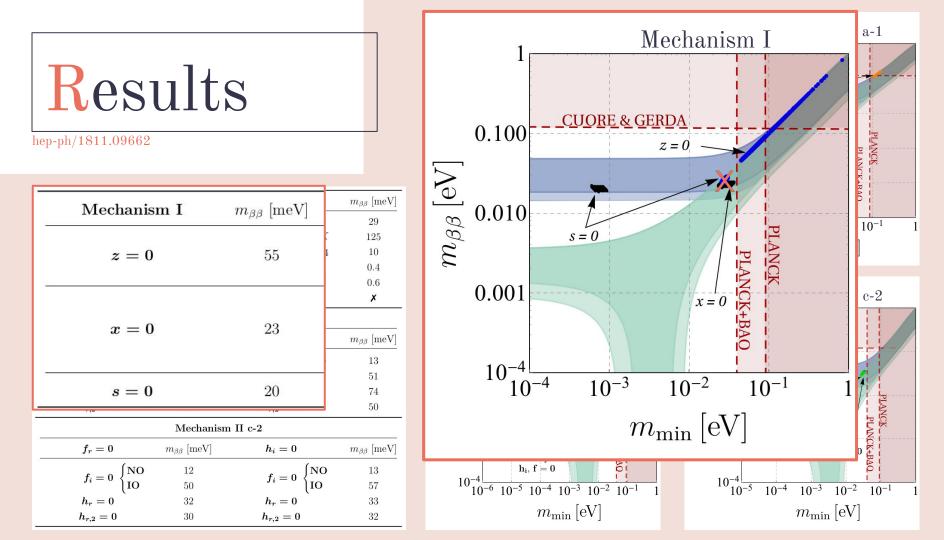
- → Three free parameters: setting one or two vevs equal to zero.
- → Allowed ordering and Majorana phases.
- Correlations between vevs:
 ratio mass splittings and reactor angle.
- → Perturbation Theory: (x/, /z)<u>sum rules</u>, total sum masses, $m_{\beta\beta}$ and m_{β} .

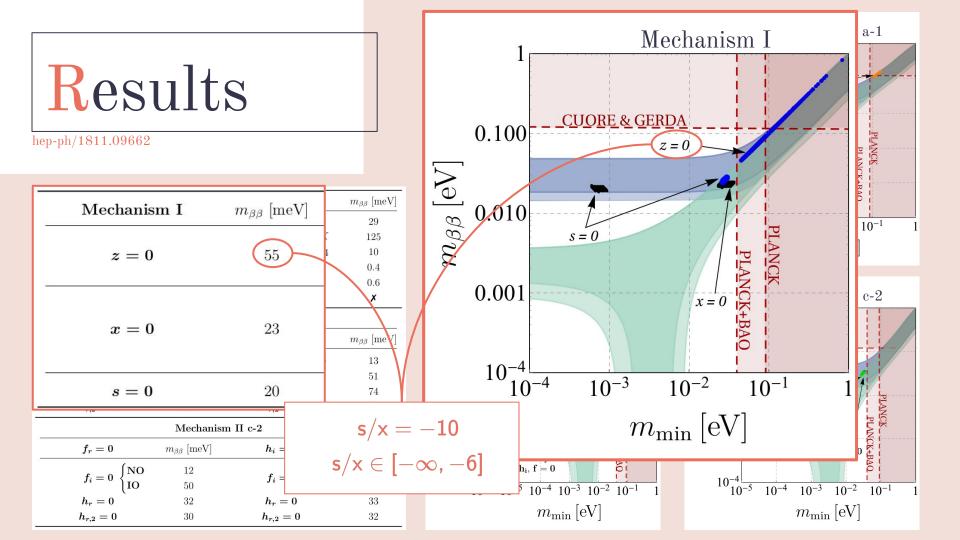

	-										
	Mecha	nism I	VEVs	$[\alpha,\beta]$	Mechanism	n II a-1	VEVs	$[\alpha, \beta]$			
	z = 0	NO	$y \simeq \pm 0.19 x$ $s \simeq -20 x$	[0, 0]	Z = 0	NO	$Y \simeq \pm 0.19 X$ $S \simeq X, 44X$	$[0, \pi/0]$			
	x = 0	ΙΟ	$y \simeq \pm 0.16 z$ $s \simeq -0.3 z$	$[\pi,\pi]$	X = 0	ΙΟ	$Y \simeq \pm 0.16 X$ $S \simeq -Z/4, Z/3, 2Z/$	$[\pi, \pi/\pi/0]$			
Mech	anism I	Σ	$\Sigma(ilde{m}_1, ilde{m}_2, ilde{m}_3)$)	Mechanism 1	II a-1	$\Sigma(ilde{m}_1,r$	$ ilde{m}_2, ilde{m}_3)$			
z :	= 0	$\widetilde{m}_1 - \widetilde{m}_2 +$	$-(3-arphi)(\widetilde{m}_3-\widetilde{n}_3)$	$\widetilde{n}_2)\sin^2\theta_{13}$	Z=0		$\frac{1}{\widetilde{m}_1} - \frac{1}{\widetilde{m}_2} + (3 - \varphi)$	$\left(\frac{1}{\widetilde{m}_3}-\frac{1}{\widetilde{m}_2}\right)\sin^2 heta_{13}$			
$oldsymbol{x}$:	$\boldsymbol{x} = \boldsymbol{0}$ $\widetilde{m}_1 + (\varphi + 1)\widetilde{m}_2 - (\varphi + 2)\widetilde{m}_3$				X = 0		$\frac{1}{\widetilde{m}_1} + \frac{\varphi +}{\widetilde{m}_2}$	$\frac{1}{2} - \frac{\varphi + 2}{\widetilde{m}_3}$			
s :	$oldsymbol{s} = oldsymbol{0}$ $\widetilde{m}_1 + \widetilde{m}_2 + \widetilde{m}_3$				S=0		,	(
	Mechanism II a-2					$\Sigma(ilde{m}_1, ilde{m}_2, ilde{m}_3)$					
$f=0=(g,h_i)$					$(\widetilde{m}_1 + \widetilde{m}_2 - \widetilde{m}_3)^2 - 4\widetilde{m}_1\widetilde{m}_2$						
	ŀ	$a_r = 0 = 0$	(g,h_i)		$\begin{aligned} (\widetilde{m}_1 - \widetilde{m}_2)^2 + 2 (3 - \varphi) (\widetilde{m}_1 - 3\widetilde{m}_2) (\widetilde{m}_1 - \widetilde{m}_2) \sin^2 \theta_{13} \\ + 20 (\varphi - 2) (\widetilde{m}_1 - 2\widetilde{m}_2 + \widetilde{m}_3) \widetilde{m}_2 \sin^4 \theta_{13} \end{aligned}$						
	h	$_{r,2} = 0 =$	(g,h_i)		$\left(\widetilde{m}_1+(3)\right)$	$(3\varphi + 2)\widetilde{m}$	$\tilde{m}_2 - 5\left(\varphi + 1\right)\tilde{m}_3\Big)^2 - 40$	$(3\varphi+2)\widetilde{m}_1\widetilde{m}_2$			
	N	lechanism	1 II c-2		$\Sigma(ilde{m}_1, ilde{m}_2, ilde{m}_3)$						
	f	$\hat{c}_i = 0 = (1 - 1)$	$f_r,h_i)$		$(\widetilde{m}_1 + \widetilde{m}_2 - \widetilde{m}_3)^2 - 4\widetilde{m}_1\widetilde{m}_2$						
	$h_r=0=(f_r,h_i)$					$\left(\widetilde{m}_1 + \left(21\varphi + 13\right)\widetilde{m}_2 - 5(3\varphi + 2)\widetilde{m}_3\right)^2 - \left(84\varphi + 52\right)\widetilde{m}_1\widetilde{m}_2$					
	$h_{r,2} = 0 = (f_r,h_i)$					$-21\varphi)\hat{n}$	$\widetilde{m}_2 + 5 \left(3\varphi - 5\right) \widetilde{m}_3 \Big)^2 +$	$(84-136)\widetilde{m}_1\widetilde{m}_2$			
	$h_{r,2}=0$	ΙΟ	$f_i \simeq h_r$	$/(2\sqrt{6})$	$h_{r,2}=0$	ΙΟ	$f_i \simeq h_r/(1-r)$	$2\sqrt{6}$)			
	-										

- → Three free parameters: setting one or two vevs equal to zero.
- → Allowed ordering and Majorana phases.
- Correlations between vevs:
 ratio mass splittings and reactor angle.
- → Perturbation Theory: |x|, |z|sum rules, <u>total sum masses</u>, $m_{\beta\beta}$ and m_{β} .

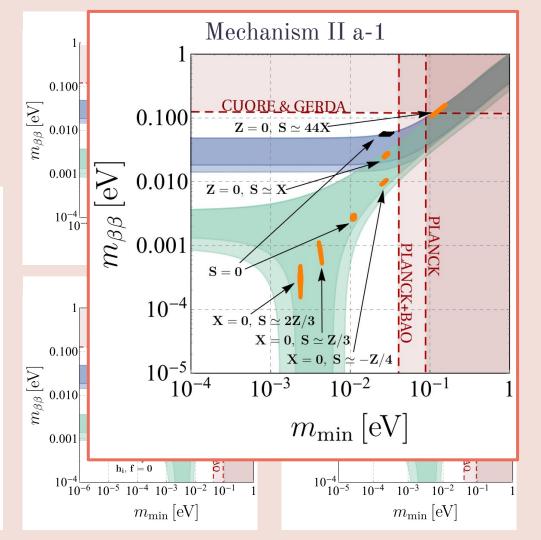
	$\left\{\sum_{j} m_{j}, m_{\beta}, m_{\beta\beta}\right\} \equiv \sqrt{(-1)^{\ell+1} \Delta m_{3\ell}^{2}} \left[a + b \sin^{2} \theta_{13} + \mathcal{O}(\sin^{4} \theta_{13})\right]$										
[Mechanism I	$\sum m_j$	m_eta	m_{etaeta}	Mecha	nism II a-1	$\sum m_j$	m_eta	m_{etaeta}		
Mech	z = 0	[3.8, 5.2]	[1.1, -1.6]	[1.1, -1.6]	Z=0	$\begin{cases} S \simeq X \\ S \simeq 44X \end{cases}$	[2.3, 5.2] [8, -10]	[0.6, -0.2] [2.6, -1.8]	[0.6, 2.8] [2.5, -1.8]		
z = x =	x = 0	[3.8, 5.2]	[1.1, -1.6]	[1.1,-1.6]		$\left\{egin{array}{l} S\simeq -Z/4 \ S\simeq Z/3 \ S\simeq 2Z/3 \end{array} ight.$		[0.6, -0.2] [2.6, -1.8]	[0.6, 2.8] [2.5, -1.8]		
<i>s</i> =	s = 0	[3.8,5.2]	[1.1,-1.6]	[1.1, -1.6]	S=0	$(S\simeq 2Z/3)$	[8, -10] X	[2.6, -1.8] X	[2.5, -1.8] x		
	Mechanism II a-2										
	g=0	$\sum m_j$	m_eta	m_{etaeta}	h_i	= 0	$\sum m_j$	m_eta	m_{etaeta}		
	$f = 0 \begin{cases} NO \\ IO \end{cases}$	[1.6, -1.9] [2.0, 2.8]	[0.3, 1.0] [1.0, 1.5]	[0.3, -0.2] [1.0, 1.0]		$= 0 \begin{cases} NO \\ IO \end{cases}$	[1.6, -1.9] [2.0, 2.8]	[0.3, 1.0] [1.0, 1.0]	[0.3, -0.2] [1.0, 1.5]		
	$h_r=0$ $h_{r,2}=0$	[4.7, 0.04] [2.3, 6.8]	[1.5, 0.05] [1.0, 2.8]	[1.5, 0.05] [1.0, 2.5]		= 0 $_{2} = 0$	[4.2, 0.06] [2.3 - 0.2]	[1.3, -1.7] [1.0, -0.8]	[1.3, -1.8] [1.0, 0.5]		
				Med	chanism II c-:	2					
	$f_r = 0$	$\sum m_j$	m_eta	m_{etaeta}	h_i	= 0	$\sum m_j$	m_eta	m_{etaeta}		
	$f_i = 0 \begin{cases} NO \\ IO \end{cases}$	[1.6, -2.6] [2.0, 1.6]	[0.3, 0.7] [1.0, 0.7]	[0.3, -0.5] [1.0, 0.2]	f_i	$= 0 \begin{cases} NO \\ IO \end{cases}$	[1.6, -0.5] [2, 11]	[0.3, 1.7] [1.0, 7.4]	[0.3, 0.6] [1.0, 6.9]		
	$egin{aligned} h_r &= 0 \ h_{r,2} &= 0 \end{aligned}$	[2.5, -3.9] [2.5, -7.6]	[0.7, -0.9] [0.7, -2.3]			x = 0 $x_2 = 0$	[2.5, -2.0] [2.5 - 3.3]		[0.7, -0.3] [0.7, -2.5]		
Ŀ	$h_{r,2}=0$	IO	$f_i \simeq h_r /$	$(2\sqrt{6})$	$h_{r,2}=0$	Ю	$f_i \simeq$	$h_r/(2\sqrt{6})$			

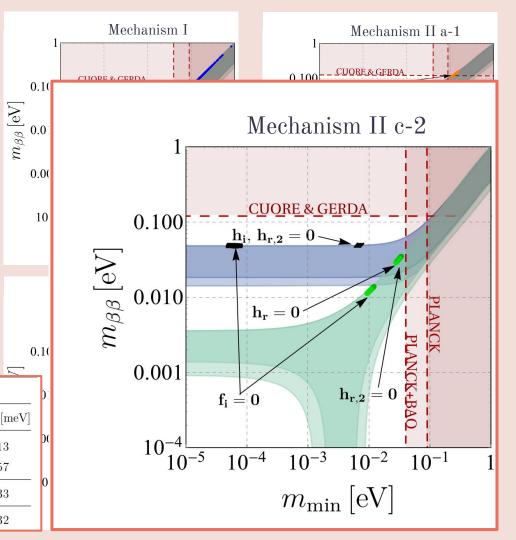

hep-ph/1811.09662


Mechanism I	$m_{\beta\beta} \; [{\rm meV}]$	Mechanism II a-1	$m_{\beta\beta} \; [{\rm meV}]$							
z = 0	55	$\boldsymbol{Z} = \boldsymbol{0} \begin{cases} S \simeq \pm X \\ S \simeq \pm 44X \end{cases}$	29 125							
x = 0	23	$Z = 0 \begin{cases} S \simeq \pm X \\ S \simeq \pm 44X \\ \end{bmatrix}$ $X = 0 \begin{cases} S \simeq -Z/4 \\ S \simeq Z/3 \\ S \simeq 2Z/3 \end{cases}$	$10 \\ 0.4 \\ 0.6$							
s=0	20	S=0 X	×							
Mechanism II a-2										
g=0	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	$m_{\beta\beta} \; [{\rm meV}]$							
$f=0 \ \begin{cases} \mathrm{NO} \ \mathrm{IO} \end{cases}$	$\frac{14}{51}$	$f=0 egin{cases} { m NO} \ { m IO} \end{array}$	$13 \\ 51$							
$h_r=0$	62	$h_r=0$	74							
$h_{r,2}=0$	53	$h_{r,2}=0$	50							
	Mechanis	m II c-2								
$f_r = 0$	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	$m_{\beta\beta} \; [{\rm meV}]$							
$f_i = 0 \ \begin{cases} \mathrm{NO} \ \mathrm{IO} \end{cases}$	12 50	$f_i = 0 egin{cases} { m NO} \ { m IO} \ { m IO} \end{cases}$	13 57							
$h_r=0$	32	$h_r=0$	33							
$h_{r,2}=0$	30	$h_{r,2}=0$	32							



PLANCK


PLANCK



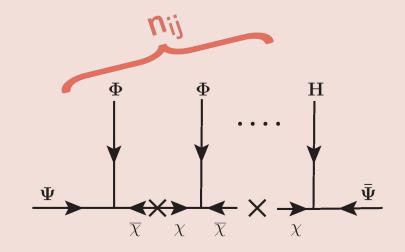
N	Mecha	nism II a	n-1 m_{eta}	$_{\beta} [\mathrm{meV}]$
	$\mathbf{Z} = 0$	$\begin{cases} S \simeq \pm 2\\ S \simeq \pm 4 \end{cases}$	X	29
	L = 0	$\int S \simeq \pm 4$	4X	125
		$\int S \simeq -A$	Z/4	10
	X=0	$\begin{cases} S \simeq -Z \\ S \simeq Z \\ S \simeq 2Z \end{cases}$	/3	0.4
		$S \simeq 2Z$	Z/3	0.6
	S=0	×		x
	$J_r = 0$	m _{ββ} [mev]	$n_i = 0$	m _{ββ} [mev]
	NO	12	(NO	13
	$f_i = 0 \; egin{cases} { m NO} \ { m IO} \ { m IO} \end{cases}$	50	$f_i = 0 \ egin{cases} { m NC} { m NC} { m IO} { m IO} \end{array}$	57
	$h_r = 0$	32	$h_r=0$	33
	$h_{r,2}=0$	30	$h_{r,2}=0$	32

F	Res		S			Mechanism I CHOPE & CEPDA Mechanism II a-1 0 100 CUORE & GEBDA Mechanism II a-2 1
	Mechanism I	$m_{\beta\beta} [{\rm meV}]$	Mechanism II a-1	$m_{\beta\beta} \; [\mathrm{meV}]$		CUORE & GERDA
	z = 0	55	$\boldsymbol{Z} = \boldsymbol{0} \begin{cases} S \simeq \pm X \\ S \simeq \pm 44X \end{cases}$	29 125		0.100 $h_{r,2} = 0$
	x = 0	23	$\mathbf{X} = 0 \begin{cases} S \simeq -Z/4 \\ S \simeq Z/3 \\ S \simeq 2Z/2 \end{cases}$	10 0.4	$m_{\scriptscriptstyle AA} [\mathrm{eV}]$	
		Mechanism	II a-2		C C	$\mathbf{g}, \mathbf{f} = 0$
	g=0	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	$m_{\beta\beta} [{\rm meV}]$	n e	
f =	$= 0 \begin{cases} h_r \simeq 0\\ h_r \simeq -4h_{r,2} \end{cases}$	$^{14}_{51}$ f	$\mathbf{f} = 0 \qquad \begin{cases} h_r \simeq 0\\ h_r \simeq -4h_{r,2} \end{cases}$	13 51	ľ	$\begin{array}{c} 0.010 \\ g, f = 0 \end{array} \begin{array}{c} 2 \\ 0.001 \\ h_r = 0 \end{array}$
	$h_r=0$	62	$h_r=0$	74		$\mathbf{h_r} = 0$
_	$h_{r,2}=0$	53	$h_{r,2}=0$	50		$\mathbf{h_i}, \mathbf{f} = 0$
		Mechanis	m 11 c-2			
	$f_r = 0$	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	$m_{\beta\beta} \; [\mathrm{meV}]$		$10^{-4} \\ 10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$
	$f_i = 0 \ egin{cases} { m NO} { m IO} { m IO} \end{array}$	12 50	$f_i = 0 \ egin{cases} \mathrm{NO} \ \mathrm{IO} \ \end{array}$	13 57		
	$h_r=0$	32	$h_r=0$	33		$m_{\min} [\mathrm{eV}]$
	$h_{r,2}=0$	30	$h_{r,2}=0$	32		

	Mechanism I	$m_{\beta\beta} [{\rm meV}]$	Mechanism II a-1	$m_{\beta\beta} \; [{\rm meV}]$	
	z = 0	55	$\boldsymbol{Z} = \boldsymbol{0} \begin{cases} S \simeq \pm X \\ S \simeq \pm 44X \end{cases}$	29	
	~	00	$\int S \simeq \pm 44X$	125	
			$\mathbf{X} = 0 \begin{cases} S \simeq -Z/4 \\ S \simeq Z/3 \\ S \simeq 2Z/3 \end{cases}$	10	
	x = 0	23	$X = 0 \begin{cases} S \simeq Z/3 \end{cases}$	0.4	
			× ·		
	s = 0	20	S=0 X	×	
		Mechanisn	n II a-2		
	g=0	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	$m_{\beta\beta} \; [{\rm meV}]$	
	$f = 0 \begin{cases} NO \\ IO \end{cases}$	14	$f = 0 \begin{cases} NO \\ IO \end{cases}$	13	7
		Mecha	nism II c-2		
	$f_r=0$	$m_{\beta\beta} [{\rm meV}]$	$h_i=0$	m	$_{\beta\beta}$ [me
£	$\int h_r \simeq -h_{r,2}$	12	$f = 0$ $\int h_r \simeq$	$k - h_{r,2}$	13
$J_i =$	$0 \begin{cases} h_r \simeq -h_{r,2} \\ h_r \simeq +h_{r,2} \end{cases}$	50	$f_i = 0 \qquad egin{cases} h_r \simeq \ h_r \simeq \ h_r \simeq \end{cases}$	$x + h_{r,2}$	57
	$h_r=0$	32	$h_r=0$		33
	$h_{r,2}=0$	30	$h_{r,2}=0$		32

BSM + FLASY

Flavour Symmetries

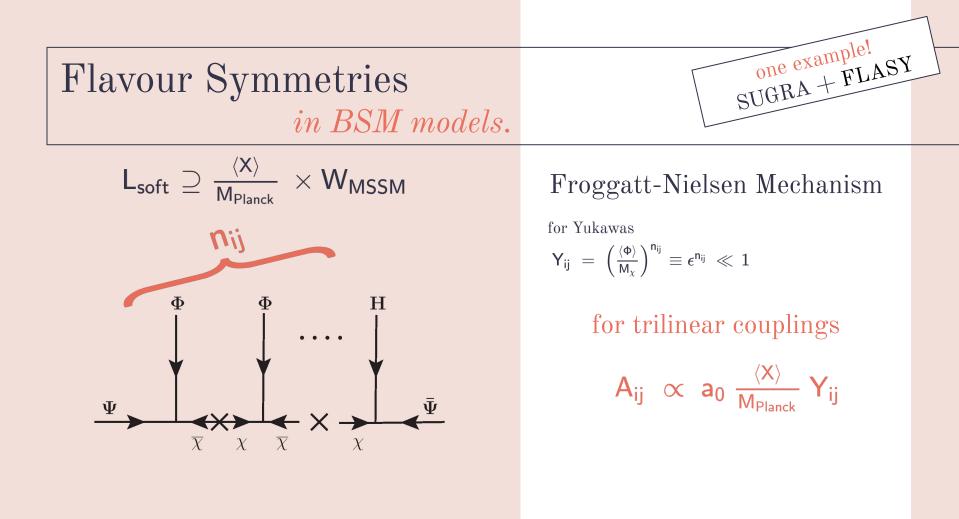

in BSM models.

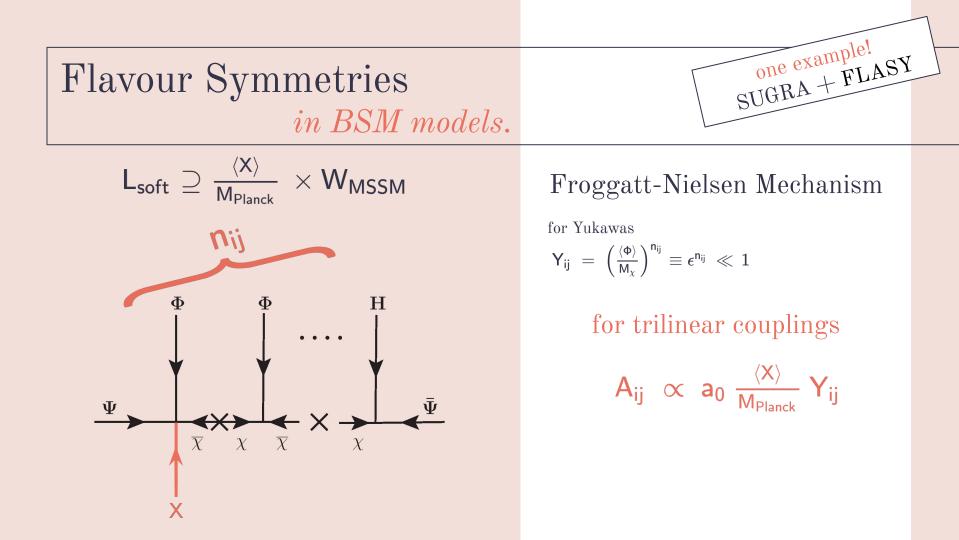
Froggatt-Nielsen Mechanism

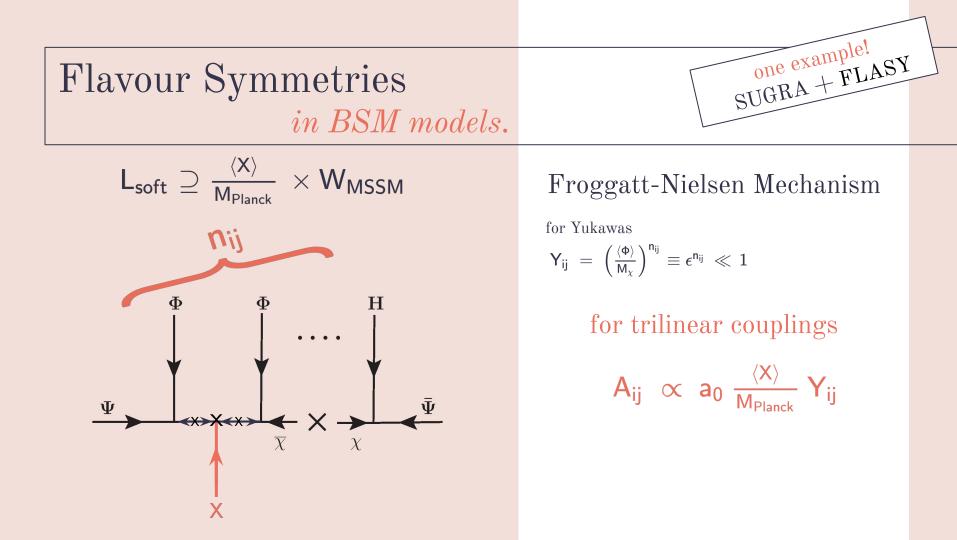
one example! SUGRA + FLASY

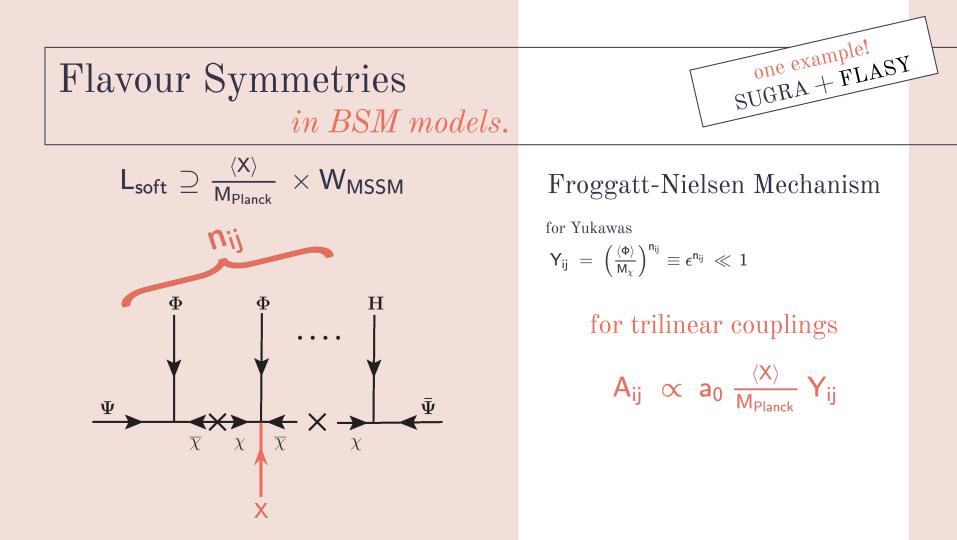
Flavour Symmetries

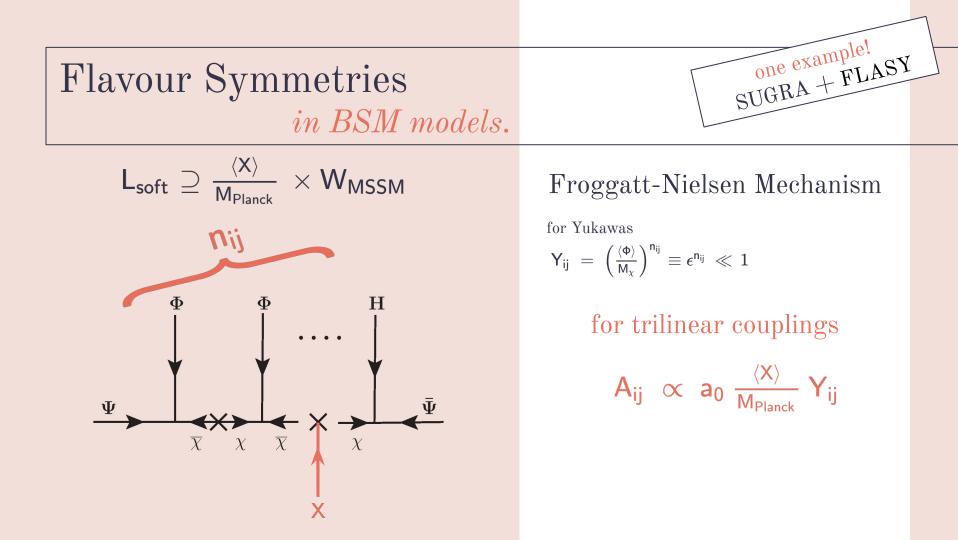
in BSM models.

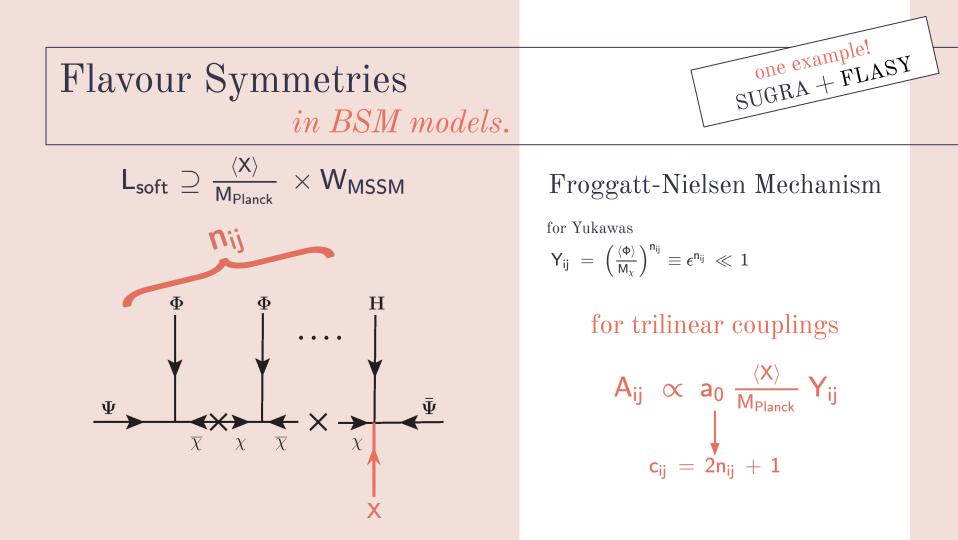


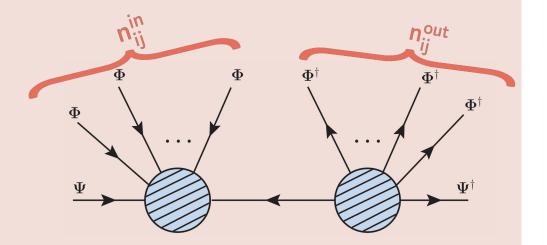

Froggatt-Nielsen Mechanism


one example! SUGRA + FLASY


for Yukawas

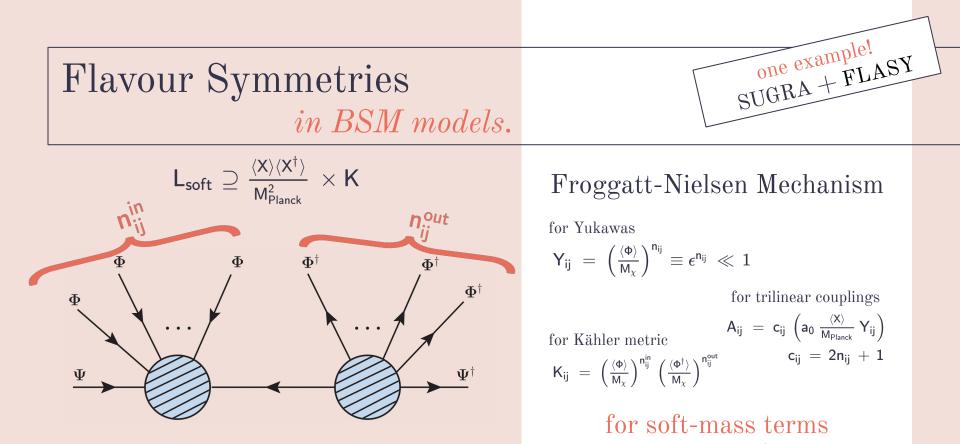

$$\mathsf{Y}_{\mathsf{ij}} \;=\; \left(rac{\langle \mathsf{\Phi}
angle}{\mathsf{M}_{\chi}}
ight)^{\mathsf{n}_{\mathsf{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathsf{ij}}} \,\ll\, 1$$



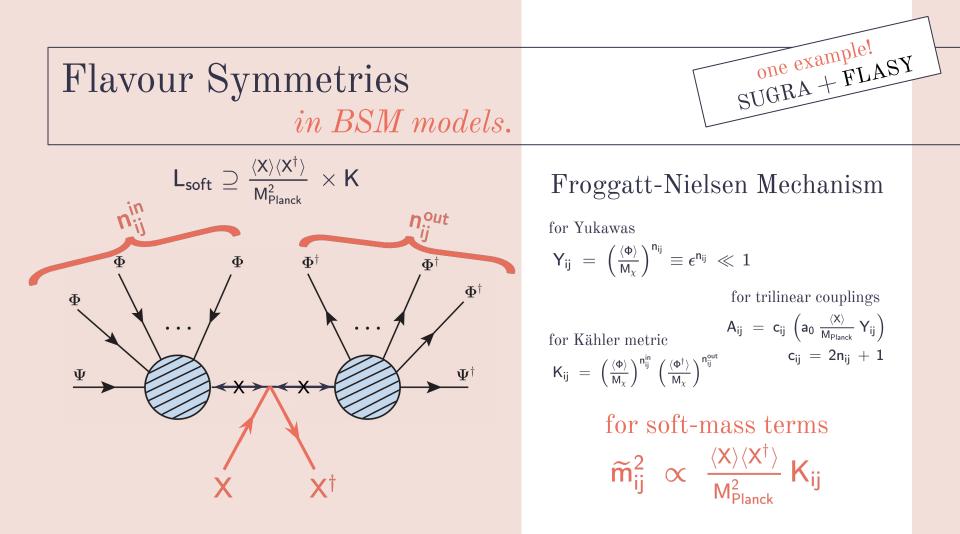


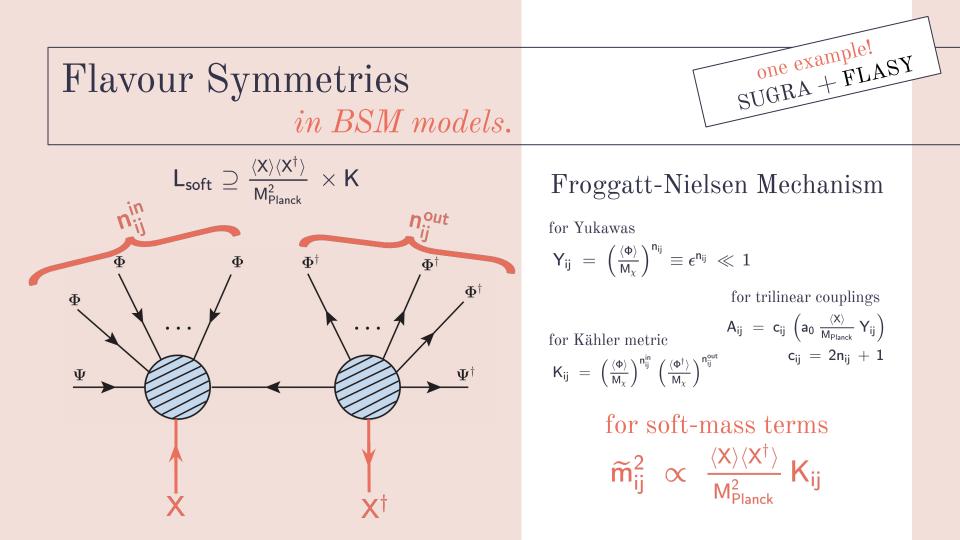
Flavour Symmetries *in BSM models.*

Froggatt-Nielsen Mechanism


for Yukawas

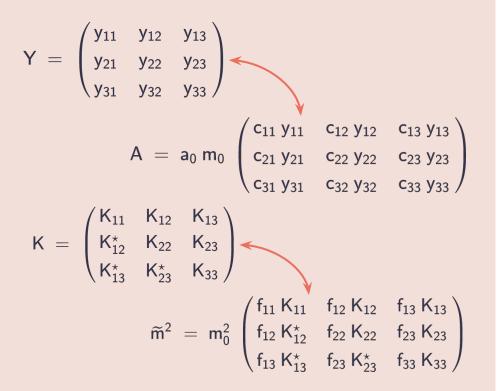
$$\mathsf{Y}_{\mathrm{ij}} \;=\; \left(rac{\langle \Phi
angle}{\mathsf{M}_{\chi}}
ight)^{\mathsf{n}_{\mathrm{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathrm{ij}}} \,\ll\, 1$$


 $\begin{array}{l} \mbox{for trilinear couplings} \\ A_{ij} \;=\; c_{ij} \; \left(a_0 \; \frac{\langle X \rangle}{M_{Planck}} \; Y_{ij} \right) \\ c_{ij} \;=\; 2 n_{ij} \;+\; 1 \end{array}$


one example! SUGRA + FLASY

for Kähler metric $K_{ij} = \left(\frac{\langle \Phi \rangle}{M_{\chi}}\right)^{n_{ij}^{in}} \left(\frac{\langle \Phi^{\dagger} \rangle}{M_{\chi}}\right)^{n_{ij}^{out}}$

 $\widetilde{m}_{ij}^2 \propto rac{\langle X
angle \langle X^{\dagger}
angle}{M_{\text{planel}}^2} \, \mathsf{K}_{ij}$


one example! SUGRA + FLASY Flavour Symmetries in BSM models. $L_{soft} \supseteq \frac{\langle X \rangle \langle X^{\dagger} \rangle}{M_{Planck}^2} \times K$ Froggatt-Nielsen Mechanism for Yukawas $\mathsf{Y}_{\mathsf{ij}} = \left(rac{\langle \Phi angle}{\mathsf{M}_{\star}} ight)^{\mathsf{n}_{\mathsf{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathsf{ij}}} \ll 1$ Φ Φ for trilinear couplings Φ $A_{ij} = c_{ij} \left(a_0 \frac{\langle X \rangle}{M_{Planck}} Y_{ij} \right)$ for Kähler metric . . . $\mathsf{c}_{ij}\,=\,2\mathsf{n}_{ij}\,+\,1$ ${\sf K}_{ij} \; = \; \left(rac{\langle \Phi angle}{{\sf M}_{ m v}} ight)^{n^{in}_{ij}} \; \left(rac{\langle \Phi^{\dagger} angle}{{\sf M}_{ m v}} ight)^{n^{out}_{ij}}$ Ψ $\overline{\chi}$ $\overline{\chi}$ for soft-mass terms $\widetilde{m}_{ij}^2 \propto rac{\langle X angle \langle X^{\dagger} angle}{M_{ m pl}^2} \, {\sf K}_{ij}$

one example! SUGRA + FLASY Flavour Symmetries in BSM models. $L_{soft} \supseteq \frac{\langle X \rangle \langle X^{\dagger} \rangle}{M_{Planck}^2} \times K$ Froggatt-Nielsen Mechanism for Yukawas $\mathsf{Y}_{\mathsf{ij}} = \left(rac{\langle \Phi angle}{\mathsf{M}_{\star}} ight)^{\mathsf{n}_{\mathsf{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathsf{ij}}} \ll 1$ Φ Φ for trilinear couplings Φ $A_{ij} = c_{ij} \left(a_0 \frac{\langle X \rangle}{M_{Planck}} Y_{ij} \right)$ for Kähler metric . . . $\mathsf{c}_{ij}\,=\,2\mathsf{n}_{ij}\,+\,1$ ${\sf K}_{ij} \; = \; \left(rac{\langle \Phi angle}{{\sf M}_{ m v}} ight)^{n^{in}_{ij}} \; \left(rac{\langle \Phi^{\dagger} angle}{{\sf M}_{ m v}} ight)^{n^{out}_{ij}}$ Ψ for soft-mass terms $\widetilde{m}_{ij}^2 \propto rac{\langle X angle \langle X^{\dagger} angle}{M_{ m pl}^2} \, {\sf K}_{ij}$

one example! SUGRA + FLASY Flavour Symmetries in BSM models. $L_{soft} \supseteq \frac{\langle X \rangle \langle X^{\dagger} \rangle}{M_{Planck}^2} \times K$ Froggatt-Nielsen Mechanism for Yukawas $\mathsf{Y}_{\mathsf{ij}} = \left(rac{\langle \Phi \rangle}{\mathsf{M}_{\mathsf{v}}} ight)^{\mathsf{n}_{\mathsf{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathsf{ij}}} \ll 1$ Φ Φ for trilinear couplings Φ $A_{ij} = c_{ij} \left(a_0 \frac{\langle X \rangle}{M_{Planck}} Y_{ij} \right)$ for Kähler metric . . . $\mathsf{c}_{ij}~=~2\mathsf{n}_{ij}~+~1$ $K_{ij} \; = \; \left(\frac{\langle \Phi \rangle}{M_{\star}} \right)^{n^{in}_{ij}} \; \left(\frac{\langle \Phi^{\dagger} \rangle}{M_{\star}} \right)^{n^{out}_{ij}}$ Ψ $\overline{\chi}$ for soft-mass terms $\widetilde{m}_{ij}^2 \propto rac{\langle X angle \langle X^{\dagger} angle}{M_{ m pl}^2} \, {\sf K}_{ij}$ Х Х

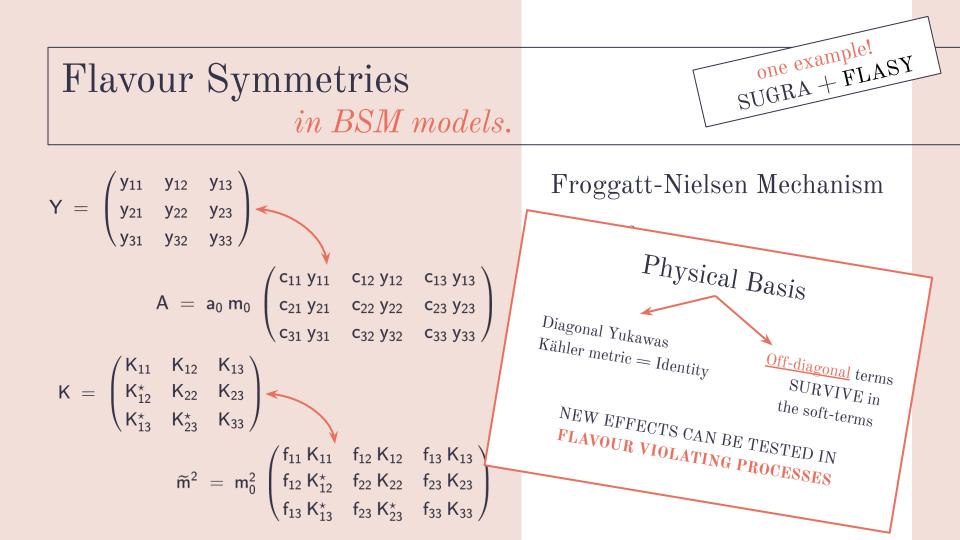
one example! SUGRA + FLASY Flavour Symmetries in BSM models. $L_{soft} \supseteq \frac{\langle X \rangle \langle X^{\dagger} \rangle}{M_{Planck}^2} \times K$ Froggatt-Nielsen Mechanism for Yukawas $Y_{ij} = \left(\frac{\langle \Phi \rangle}{M_{\star}}\right)^{n_{ij}} \equiv \epsilon^{n_{ij}} \ll 1$ Φ Φ for trilinear couplings Φ $A_{ij} = c_{ij} \left(a_0 \frac{\langle X \rangle}{M_{Planck}} Y_{ij} \right)$ for Kähler metric . . . $\mathsf{c}_{ij}\,=\,2\mathsf{n}_{ij}\,+\,1$ $K_{ij} \; = \; \left(\frac{\langle \Phi \rangle}{M_{ii}} \right)^{n^{in}_{ij}} \; \left(\frac{\langle \Phi^{\dagger} \rangle}{M_{\cdot}} \right)^{n^{out}_{ij}}$ Ψ $\overline{\chi}$ χ for soft-mass terms $$\begin{split} \overbrace{} \widetilde{m}_{ij}^2 \propto \frac{\langle X \rangle \langle X^{\dagger} \rangle}{\Lambda^2} \mathsf{K}_{ij} \\ \widecheck{} f_{ij} = (2\mathsf{n}_{ij}^{in} - 1)(2\mathsf{n}_{ij}^{out} - 1) + 1 \end{split}$$ X Х

Flavour Symmetries *in BSM models.*

Froggatt-Nielsen Mechanism

for Yukawas

$$\mathsf{Y}_{\mathsf{ij}} \;=\; \left(rac{\langle\Phi
angle}{\mathsf{M}_{\mathsf{ij}}}
ight)^{\mathsf{n}_{\mathsf{ij}}} \equiv \epsilon^{\mathsf{n}_{\mathsf{ij}}} \,\ll\, 1$$

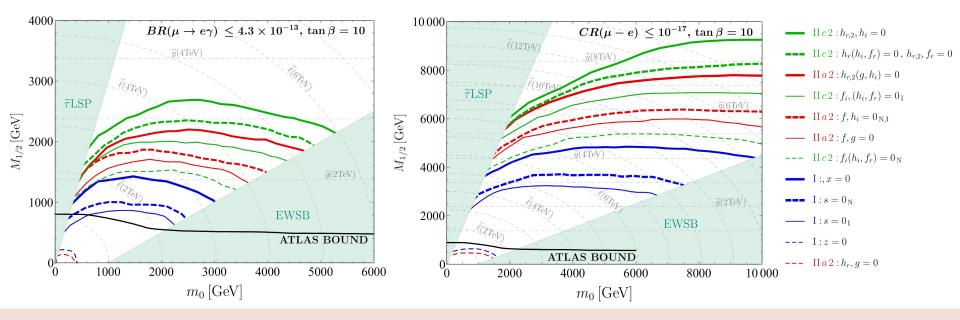

for trilinear couplings

one example! SUGRA + FLASY

 $\begin{array}{lll} \mbox{for Kähler metric} & A_{ij} \ = \ c_{ij} \ \left(a_0 \ \frac{F_X}{\Lambda} \ Y_{ij} \right) \\ K_{ij} \ = \ \left(\frac{\langle \Phi \rangle}{M_{ij}} \right)^{n_{ij}^{in}} \ \left(\frac{\langle \Phi^{\dagger} \rangle}{M_{ij}} \right)^{n_{ij}^{out}} & c_{ij} \ = \ 2n_{ij} \ + \ 1 \end{array}$

for soft-mass terms

$$\begin{split} \widetilde{m}_{ij}^2 \;\;=\;\; f_{ij} \; \frac{\langle X \rangle \langle X^{\dagger} \rangle}{\Lambda} \; K_{ij} \\ f_{ij} \;\;=\; (2n_{ij}^{in} \;-\; 1) \left(2n_{ij}^{out} - 1\right) + 1 \end{split}$$



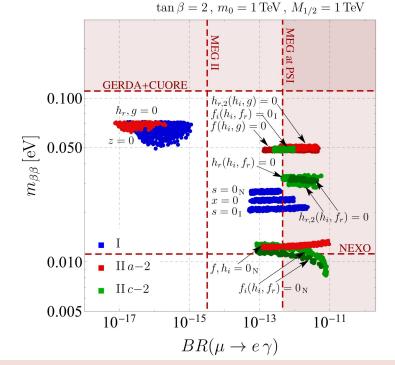
$$\begin{aligned} & Flavour Symmetries \\ & in BSM models. \end{aligned} \\ & \kappa_{L} = \begin{bmatrix} 1 + \frac{1}{M_{x}^{c}} \sum_{r} \left(\phi_{r}^{e\dagger} \phi_{r}^{e} + \phi_{r}^{v\dagger} \phi_{r}^{v} \right) \end{bmatrix} \times \\ & \left[t^{\dagger} L + \frac{1}{M_{x}^{c}} \sum_{r} \left((t^{\dagger} \phi_{r}^{e\dagger})_{1} [L \phi_{r}^{e\dagger}]_{1} + [t^{\dagger} \phi_{r}^{v\dagger}]_{1} [L \phi_{r}^{v}]_{1} + ... \right] \\ & \kappa_{L} = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22}^{*} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22}^{*} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned} \\ & \tilde{m}_{L}^{2} = 2 m_{0}^{2} \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} \\ \kappa_{12}^{*} & \kappa_{22} & \kappa_{23} \\ \kappa_{13}^{*} & \kappa_{23}^{*} & \kappa_{33} \end{pmatrix} \end{aligned}$$

Results

JHEP 06 (2019) 047

Flavour violating effects from soft terms can set bounds over the SUSY spectrum, even in the most conservative scenario where SUSY breaking is due to one universal spurion field. Condition: $\Lambda_{SUSY} > \Lambda_{f}$

Relations among LFV observables in the charged sector and the neutrino mass observables. This allows to disentangle cases that initially were not distinguishable.


JHEP 06 (2019) 047 $\tan \beta = 2, m_0 = 1 \text{ TeV}, M_{1/2} = 1 \text{ TeV}$ $s = 0_{\rm N}$ x = 0 $h_r, g = 0$ 0.100 $h_{\bar{r}}(h_i, f_{\bar{r}}) = 0$ 0.010 $h_{r,2}(h_i, f_r) = 0$

■ II *a*−2

■ II c−2

 10^{-17}

 $f_i(h_i, f_r) = 0_N$

s = 0

 $f_i(h_i, f_r) = 0_{\mathrm{I}}$

 $BR(\mu \to e \gamma)$

MEG II

 10^{-15}

at PSI

MEG

 10^{-13}

PLANCK PLANCK+BAO

 $h_{r,2}(\vec{h_i}, \vec{g}) = 0$

 $f, h_i = 0_{\mathrm{N}}$

 $h_i = 0_{\mathrm{I}}$

 10^{-11}

f, g = 0

Results

 $m_{\rm min} \, [{\rm eV}]$

0.001

 10^{-4}

 10^{-5}

 10^{-6}

• The flavour sector remains one of the most puzzling legacies of the SM. Family symmetries may help to disentangle the origin masses and mixing.

- The flavour sector remains one of the most puzzling legacies of the SM. Family symmetries may help to disentangle the origin masses and mixing.
- We have performed a global analysis for A_5 and CP broken to Z_5 and Z_2 x CP residual symmetries considering all possible ways for the generation of neutrino masses.

- The flavour sector remains one of the most puzzling legacies of the SM. Family symmetries may help to disentangle the origin masses and mixing.
- We have performed a global analysis for A_5 and CP spontaneously broken to Z_5 and Z_2 x CP residual symmetries considering all possible ways for the generation of neutrino masses.
- In SUSY, the introduction of family symmetries may help to explore the susy mass spectrum **beyond LHC sensitivity** and give related predictions for different sectors.

Thank you!

- The flavour sector remains one of the most puzzling legacies of the SM. Family symmetries may help to disentangle the origin masses and mixing.
- We have performed a global analysis for A5 and CP spontaneously broken to Z5 and Z2 x CP residual symmetries considering all possible ways for the generation of neutrino masses.
- In SUSY, the introduction of family symmetries may help to explore the susy mass spectrum **beyond LHC sensitivity** and give related predictions for different sectors.

JHEP 06 (2019) 047

```
SUSY breaking transmission ~ M<sub>Planck</sub>
Flavour scale ~ GUT scale ~ M<sub>f</sub>
```

[evolution ~ RGE] (SARAH, SPheno)

★EW scale ~ observables

LFV process	Current Bound	Future Bound
${\rm BR}(\mu \to e \gamma)$	$4.2\times 10^{-13}\;({\rm MEG}\;{\rm at}\;{\rm PSI})$	$6\times 10^{-14}~({\rm MegII})$
${\rm BR}(\mu \to eee)$	$1.0\times 10^{-12}~({\rm SINDRUM})$	$10^{-16}\;({\tt Mu3e})$
$\operatorname{CR}(\mu - e)_{A_l}$	_	$10^{-17}~({\tt Mu2e},~{\tt COMET})$
${\rm BR}(\tau \to e \gamma)$	$3.3 imes 10^{-8} \; (\texttt{BaBar})$	$5 \times 10^{-9} \; ({\tt BelleII})$
$\mathrm{BR}(\tau \to \mu \gamma)$	$4.4\times 10^{-8}~({\tt BaBar})$	$10^{-9}\;({\tt BelleII})$
$\mathrm{BR}(\tau \to eee)$	$2.7\times 10^{-8}\;({\rm Belle})$	$5\times 10^{-10}\;({\tt BelleII})$
$\mathrm{BR}(\tau \to \mu \mu \mu)$	$2.1\times 10^{-8}~({\rm Belle})$	$5\times 10^{-10}\;({\rm BelleII})$