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Massive Neutrinos: Dirac vs. Majorana

Neutrinos are massive particles, either Dirac or Majorana

Massive Dirac neutrinos
Lepton number conservation

Difficult to verify

Paul Dirac

Massive Majorana neutrinos

Lepton number violation

 Theoretical aspect: a natural
way to understand tiny v
masses (See-Saw mechanism)

Ettore Majorana  Ov[3[} searches: a feasible and sensitive
probe to the Majorana nature of v
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The EXO-200 liquid 136Xe Time Projection Chamber

175nm scintillation
light detecting APDs

~110kg
Lig-136Xe (80.6%
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EXO-200 timeline
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Operation concluded in Dec 2018, with 1181.3 days of live-time
Phase | from Sep 2011 to Feb 2014

* Most precise 2v[ [ measurement, Phys. Rev. C 89, 015502 (2013)
e Stringent limit for OV search, Nature 510, 229 (2014)

Phase Il operation begins on Jan 31, 2016 with system upgrades
e First results with Phase |l data, Phys. Rev. Lett. 120, 072701 (2018)
e This talk, new results with complete dataset!



Energy Resolution

e Energy meas. 2 Combine Light and lonization

*E. Conti et al. Phys. Rev. B 68 (2003) 054201

‘u’ wireplane ‘v’ wireplane Cathode

Schematic plot of EXOQ-200 Time Drift Chamber

While no one really understands the
energy resolution in LXe, scintillation
and ionization are anti-correlated and
this can be exploited to improve the
energy resolution

Counts/(10 keV)

Scintillation energy [keV]

350

3000}
2500}

2000

1500}

100

1500 2000 2500
lonization energy [keV]

50800 1600

3500~ Reconstructed Energy, 22Th calibration

— Scintillation: 4.80%
3000} — lonization: 2.84% | | £ 1
— Rotated: 1.15% &
2500} >
(o/E resolution) j‘j
2000} ©
™~
®
1500 i
10001 b
500 E

3000 3500

Energy [keV]

800 1000 1500 2000 2500 3000

0 . . . . . . . .
Scintillation vs. ionization, 222Th calibration

7



Improved Resolution in Phase-lI

e (Cathode HV increased from -8 kV to -12 kV
>ol . Phasel, 8kV || Phase II, 12kV |
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Front end readout electronics
— Reduce APD readout excess noise

Software De-noising to
optimize energy calibration
De-noising adapted for Phase
Il as well in new analysis
Proper Modeling of mixed
collection/induction wire
signals

Energy resolution (o /E) at Qgp value (design goal 1.6%)

Phase I: 1.35+-0.09%
Phase Il: 1.15+-0.02%



Vertex reconstruction and SS/MS classification

Side 1 Side?2

(1]

vV §120
2 100
2

X/Y (U/V) position determined by the signals in
cross wire planes with 9 mm pitch

Z position determined by the time delay
between light signal and collection signals in
wires with ~ 6 mm resolution

BB mostly deposits energy at single location (SS)

y backgrounds deposits at multiple locations
(MS)

SS/MS classification: Powerful in background
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Relaxed 3D cut

Previous analyses " av7h catibration ”
— Require all events having full 3D position 4000 data
- I t cathod
— Partial 3D events are due to small energy & of at cathode
deposit having complete collectionon U- £ Data
wire, but having no V signals because of S | Monte Carlo
higher threshold ool
ThlS new analyS|S ok 7000 1500 Ené?ogoy [ke\lism 3000 3500

— Require >60% of energy deposits having
3D position, only recovering MS events

5000

MS

I
—

- 228Th calibration data
— Recovers almost all previously cut OvSf oo at cathode

events (10%) in MS due to small
bremsstrahlung deposit
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Light/charge Diagonal cut

Powerful to reject «, as well as
poorly reconstructed [ /y with
anomalous light/charge ratio

Requires 2D light/charge energy
calibration and good
understanding of detector

Light/charge ratio distributions
validated by data/MC comparison
using source and 2vf [ data
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Improved OvBB detection efficiency

e Event coincidence cut

— Originally designed to remove time-
correlated events, e.g. Bi-Po cascade,
potential muon induced long-lived
decay products ...

D. Fudenberg, PhD thesis (2017)

2vpp rate
Poisson coincidence

o
]

Efficiency,

AT
—

— Later, no evidence of contributions 098~
from such cosmogenic isotopes was 0%__
found (JCAP 1604 (2016) no.04, 029) i

*“” BiPo ~0.2 ms {
— recover ~7% of events cut ’

— Reducing time cut window from 1sto .0
. . « . . . . SR T TN T T SN T SN AN ST SO SRR TS SO S S ST S S
0.1 s is still sufficient for rejecting Bi-Po ¢ 200 400 §00 B0 000

 0vf[ detection efficiency increases
from ~80% t0 97.8+3.0%
(96.41+3.0%) for Phase | (ll) .



Improved background rejection for SS

o S o LXe self-shielding:
Additional discrimination in SS:

spatial distribution and cluster size

2.5MeVy

Standoff-distance attenuation
length: 8.5cm = W

— Entering y-rays rate is exponentially
reduced by LXe self-shielding,
provides independent measurement Long rise time
of y-backgrounds

Collection

—
V \* } signal in 2 wires

e Size of individual cluster

— pulse rise time (longitudinal)
— number of wires with collection B } Collection
. * signal in 1 wire
signal (transverse) x/y - z/time

—

Short rise time

Techniques already used in Phys. Rev. Lett. 120, 072701 (2018) 13



OvBp in MS:

Small energy deposits

due to bremsstrahlung
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Improved background rejection for MS

background rejection than in
Single-Site, to compensate
the fact that Multi-Site is
dominated by backgrounds.
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Improved background discrimination with DNN

 Deep neural network (DNN) training:

= All Signal

images built from U-wire waveforms  _ 15,00l
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e Using MC data to train DNN, S/B 3
discrimination power correlates with the &
true event size i ~
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—> DNN can pick up correct features True event size [mm]

on the waveforms for reconstruction
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Data/MC agreement for DNN

Data/MC agreement validated with
different data
— Y¥:Ra-226, Th-228, Co-60
calibration sources

— B:2vff data

Differences in data/MC are used to
evaluate systematic uncertainties
on normalization of backgrounds
within Qgp £ 20
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Analysis Strategy

e Blinded analysis performed
e 3-Dimension fit in both SS and MS

A ‘SS fraction‘ A
DNN < v DNN
Ener
EEergy -4 gY
Standoff Standoff
distance distance
SS MS

— Energy, event topology and spatial information
— Make the most use of multi-parameters for background rejection
— SS, MS relative contributions constrained by SS fraction

* Improvement of ¥25% in Qv half-life sensitivity compared with using
energy spectra + SS/MS alone
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Results

No statistical significant signal observed Background contributionto Q + 20
Phase I+l1: 234.1 kg-yr 136Xe exposure Counts Phasel Phasell
imi OvpB 25 0 238U 12.6 12.0
Limit : T, ,OF > 3.5 x 10*> yr (90% C.L.)
232
<mBB> < (93 - 286) meV Th 10.0 8.2
137Xe 8.7 9.3

Sensitivity : 5.0 x 102> yr (90% C.L.)

Total 32.3+2.3 30.9%2.4

e sensitivity
68% C.I. of limits Data 39 26
e data limit
Phasel ¢ °
Phase Il ° °
Combined ° °
| | | | |
0 2 4 6 8 10

T, [10%° yr] "



A history of EXO-200 Results

2012: Phys.Rev.Lett. 109 (2012) 032505
2014: Nature 510 (2014) 229-234

x10%* 2018: Phys. Rev. Lett. 120, 072701 (2018)
100 _— ° Sensitivity 2019: arXiv 1906.02723 2019
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The sensitivity is the correct way to estimate the capability of an experiment,
because it contains all the information that can be / is used.
If one wants to use the incomplete picture of a single parameter, then

the “background index” is ~ (0.113 +0.008)*10-3 / (kg-yr-FWHM) .
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Limits on OvBB half-life
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Because of the uncertainties in the Ovff decay mechanism and the NME,
accurate comparisons between different isotopes are non-trivial.
Example using 136Xe, 7Ge and 13°Te (and assuming standard See-Saw)
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Summary

e EXO-200 was the first 100-kg class experiment searching for
Ovp [, and successfully concluded after 7 years of stable
operation

e EXO-200 produced a lot of important physics results

— One of the most sensitive searches for OvS S, with full dataset giving a
half-life limit of 3.5 x 102 yr and a sensitivity of 5.0 x 10% yr at 90%
C.L. for 13%Xe Qv

— The first to observe the 2vf decay from 13¢Xe and made the most
precise measurement on its half-life

— Many other searches/tests of exotic models
— Expecting more analyses on other physics topics with full EXO-200
dataset
 The planned 5-ton next generation experiment (nEXO) will
have a OvB half-life sensitivity reaching ~102% yr half-life

22
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Thanks!
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