Scalar Electroweak Multiplet DM

M.J. Ramsey-Musolf U Mass Amherst / TDLI-SJTU

My pronouns: he/him/his

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

http://tdli.sjtu.edu.cn/web/yjxy/5130001.htm

Collaborators: W. Chao, G-J Ding, X-G He 1812.07829/hep-ph (to appear in JHEP)

FLASY 2019 TDLI/SJTU, July 2019

Particle Physics-Cosmology Interface

Can extensions of the SM scalar sector with EW multiplets address open problems in cosmology ?

This talk: dark matter

Scalar EW Multiplets

- For a suitable choice of parameters, extended scalar sectors with EW multiplets (colorless) can lead to a strong, first order EW phase transition as needed for EW baryogenesis
- To what extent can the neutral component(s) of these multiplets contribute to the DM relic density and what are the phenomenological signatures ?

Scalar EW Multiplets

- For a suitable choice of parameters, extended scalar sectors with EW multiplets (colorless) can lead to a strong, first order EW phase transition as needed for EW baryogenesis
 - To what extent can the neutral component(s) of these multiplets contribute to the DM relic density and what are the phenomenological signatures ?

Outline

- I. Context
- II. Models
- III. DM Dynamics & Pheno
- IV. Collider Probes

V. Outlook

Dark Matter

- What is the dark matter ?
- What are its properties (thermal/non-thermal, density profiles,...) ?
- What are its interactions ?

Dark Matter

Thanks: Z. Liu, T. Lin

Dark Matter

Thanks: Z. Liu, T. Lin

WIMP Dark Matter

WIMP Dark Matter

Abundance & Indirect Detection

Dark Matter Portals

- Gauge sector (SUSY neutralinos)
- Higgs portal (BSM scalars) This Talk
- QCD portal (Axion)
- Yukawa portal (neutrinos)
- Vector Portal

Extended Higgs Sector: EW Multiplets

- To what extent can EW multiplets catalyze a strong 1st order EWPT and contribute to Ω_{DM} ?
- What is interplay between DM mass, Higgs portal coupling, dimension of the representation, $\Omega_{\rm DM}$, and bounds on $\sigma_{\rm SI}$?

Extended Higgs Sector: EW Multiplets

- To what extent can EW multiplets catalyze a strong 1st order EWPT and contribute to Ω_{DM} ?
- What is interplay between DM mass, Higgs portal coupling, dimension of the representation, $\Omega_{\rm DM}$, and bounds on $\sigma_{\rm SI}$?

Cirelli & Strumia '05

Quantu	um num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	I Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2	—	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	_	8.5 ± 0.2	166	$\ll 1$	46

Cirelli & Strumia '05

	Quant	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in	
	$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$	
	2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
	2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino
	3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	Real Triplet
	3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3	Wino Triplet
П	3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7	'
	3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
	4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6	
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6	
	4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5	
	4	-3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5	
	5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12	This study
	5	0	1/2	_	4.4 ± 0.1	166	≪ 1	12	
	7	0	0	_	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

Caveat: "minimality" is a tree-level identification

Luzio et al '15; Nobile et al '15: Loops involving higher dim op's can lead to "fast" DM decay for $\Lambda < M_{Planck}$

Cirelli & Strumia '05

ſ	Quantu	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in	
	$SU(2)_L$	$U(1)_Y$	Sym	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$	
	2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
	2	1/2	1/2	90	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino
	3	0	0	HH	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	Real Triplet
	3	0	1/2	LH	2 4 0 06	166	$0.8 \div 4.0$	1.3	Wino Triplet
Т	3	1	0	HH, LL	1.6 ± 0.0	540	$3.0 \div 10$	1.7	· · · · · ·
	3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
	4	1/2	0	HHH^*	2.4 ± 0.06	0	$0.10 \div 0.6$	1.6	
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	5.3 ÷ 25	1.6	
	4	3/2	0	HHH	2.9 ± 0.07	729	0.01 - 0.10	7.5	
	4	3/2	1/2	(LHH)	2.6 ± 0.07	712	1.1 5	7.5	
	5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12	This study
1	5	0	1/2	_	4.4 ± 0.1	166	$\ll 1$	12	
	7	0	0	—	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

Cirelli & Strumia '05

ſ	Quanti	ım num	bers	DM can	DM mass		Events at LHC	$\sigma_{\rm SI}$ in	
	$SU(2)_L$	$U(1)_Y$	Sym	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$	
[2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
	2	1/2	1/2	190	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino
	3	0	0	HH	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	Real Triplet
	3	0	1/2		2 4 50.06	166	$0.8 \div 4.0$	1.3	Wino Triplet
Т	3	1	0	HH, LL	1.6 ± 0.0	540	$3.0 \div 10$	1.7	1
	3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
	4	1/2	0	HHH^*	2.4 ± 0.06		$0.10 \div 0.6$	1.6	
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	5.3 ÷ 25	1.6	
	4	3/2	0	HHH	2.9 ± 0.07	729	0.01 - 0.10	7.5	
	4	-3/2	1/2	(LHH)	2.6 ± 0.07	712	1.1 5.5	7.5	
[5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12	This study
Т	5	0	1/2	_	4.4 ± 0.1	166	≪ 1	12	
	7	0	0	—	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

Impact of Higgs portal?

II. Models

W. Chao, G-J Ding, X-G He, MJRM 1812.07829/hep-ph (to appear in JHEP)

Previous work: Hambye et al '09, Abdus Salaam & Chowdhury '13

General Considerations

- Renormalizable interactions
- Y = 0
 No Z₂ odd operators

General Considerations

- Renormalizable interactions
- Y = 0

 $\sqrt{2}$

No Z_2 – odd operators

General EW Multiplet Φ

$$\overline{\Phi}_{j,m} = (-1)^{j-m} \Phi_{j,-m}^*$$
$$A = \frac{1}{\sqrt{2}} \left(\Phi + \overline{\Phi} \right), \qquad B = \frac{i}{\sqrt{2}} \left(\Phi - \overline{\Phi} \right)$$

Conjugate Rep

Contains 2 real reps: $\Phi = \overline{\Phi}$.

General Considerations

Invariants	
$\left(\left(\Phi\Phi\right)_{J}\left(\overline{\Phi}\ \overline{\Phi}\right)_{J}\right)_{0}, J=0,1,\ldots,2j$	Self-interactions
$\left(\left(\overline{H}H\right)_{L}\left(\overline{\Phi}\Phi\right)_{L}\right)_{0}$ L=0,1	Higgs portal: real or complex ${\pmb \Phi}$
$\left(\overline{H}H\right)_{0}\left(\Phi\Phi\right)_{0}$	Higgs portal: complex Φ (distinct)

Scalar Potential: Higgs Portal

Septuplet case (n=5 similar)

$$V = +M_A^2(\Phi^{\dagger}\Phi) + \left\{ M_B^2(\Phi\Phi)_0 + \text{h.c.} \right\} - \mu^2 H^{\dagger}H \\ +\lambda (H^{\dagger}H)^2 + \lambda_1 (H^{\dagger}H)(\Phi^{\dagger}\Phi) \\ +\lambda_2 [(\overline{H}H)_1(\overline{\Phi}\Phi)_1]_0 + [\lambda_3(\overline{H}H)_0(\Phi\Phi)_0 + \text{h.c.}]$$

Scalar Potential: Higgs Portal

Septuplet case (n=5 similar)

$$V = +M_A^2(\Phi^{\dagger}\Phi) + \left\{ M_B^2(\Phi\Phi)_0 + \text{h.c.} \right\} - \mu^2 H^{\dagger}H + \lambda (H^{\dagger}H)^2 + \lambda_1 (H^{\dagger}H)(\Phi^{\dagger}\Phi) + \lambda_2 (\overline{H}H)_1 (\overline{\Phi}\Phi)_1]_0 + (\lambda_3)\overline{H}H)_0 (\Phi\Phi)_0 + \text{h.c.}]$$

Three portal couplings and three mass terms in general

N.B. Previous work did not include all possible renormalizable interactions

Spectrum

Septuplet case (n=5 similar)

$$\mathcal{L}_{\text{mass}} = \begin{pmatrix} \phi_{3,k} & \phi_{3,-k}^* \end{pmatrix} \begin{pmatrix} M_A^2 + \frac{1}{2}\lambda_1 v^2 + \frac{1}{4\sqrt{42}}k\lambda_2 v^2 & \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2M_B^2 + \frac{1}{\sqrt{2}}\lambda_3 v^2\right\} \\ \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2M_B^{2*} + \frac{1}{\sqrt{2}}\lambda_3^* v^2\right\} & M_A^2 + \frac{1}{2}\lambda_1 v^2 - \frac{1}{4\sqrt{42}}k\lambda_2 v^2 \end{pmatrix} \begin{pmatrix} \phi_{3,k}^* \\ \phi_{3,-k} \end{pmatrix}$$

Eigenvalues:

$$M_{\hat{\phi}_{3;\pm k}}^{2} = M_{A}^{2} + \frac{1}{2}\lambda_{1}v^{2} \pm \sqrt{\left|\frac{2M_{B}^{2}}{\sqrt{7}} + \frac{\lambda_{3}v^{2}}{\sqrt{14}}\right|^{2} + \frac{k^{2}\lambda_{2}^{2}v^{4}}{672}} \checkmark \qquad M^{+} - M^{0} = |EW| loops + \lambda_{2} contribution$$
$$M_{\hat{\phi}_{3;(0,\pm)}}^{2} = M_{A}^{2} + \frac{1}{2}\lambda_{1}v^{2} \pm \left|\frac{2M_{B}^{2}}{\sqrt{7}} + \frac{\lambda_{3}v^{2}}{\sqrt{14}}\right|$$

Spectrum

Septuplet case (n=5 similar)

$$\mathcal{L}_{\text{mass}} = \begin{pmatrix} \phi_{3,k} & \phi_{3,-k}^* \end{pmatrix} \begin{pmatrix} M_A^2 + \frac{1}{2}\lambda_1 v^2 + \frac{1}{4\sqrt{42}}k\lambda_2 v^2 & \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2M_B^2 + \frac{1}{\sqrt{2}}\lambda_3 v^2\right\} \\ \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2M_B^{2*} + \frac{1}{\sqrt{2}}\lambda_3^* v^2\right\} & M_A^2 + \frac{1}{2}\lambda_1 v^2 - \frac{1}{4\sqrt{42}}k\lambda_2 v^2 \end{pmatrix} \begin{pmatrix} \phi_{3,k}^* \\ \phi_{3,-k} \end{pmatrix}$$

Eigenvalues:

$$\begin{split} M_{\hat{\phi}_{3;\pm k}}^2 = & M_A^2 + \frac{1}{2}\lambda_1 v^2 \pm \sqrt{\left|\frac{2M_B^2}{\sqrt{7}} + \frac{\lambda_3 v^2}{\sqrt{14}}\right|^2 + \frac{k^2 \lambda_2^2 v^4}{672}} \\ & M_{\hat{\phi}_{3;(0,\pm)}}^2 = & M_A^2 + \frac{1}{2}\lambda_1 v^2 \pm \left|\frac{2M_B^2}{\sqrt{7}} + \frac{\lambda_3 v^2}{\sqrt{14}}\right| \end{split}$$

- Set λ₂ = 0 : no stable charged scalars
- If set M_B = 0: two degenerate multiplets (can be real)

Scalar Potential: Higgs Portal

Septuplet case (n=5 similar)

$$V = +M_A^2(\Phi^{\dagger}\Phi) + \{M_B^2(\Phi\Phi)_0 + \text{h.c.}\} - \mu^2 H^{\dagger}H + \lambda(H^{\dagger}H)^2 + \lambda_1 H^{\dagger}H)(\Phi^{\dagger}\Phi) + \lambda_2(\overline{H}H)_1(\overline{\Phi}\Phi)_1]_0 + \lambda_3(\overline{H}H)_0(\Phi\Phi)_0 + \text{h.c.}]$$

Three portal couplings and three mass terms in general

- Set $\lambda_2 = 0$ for DM stability
- All dynamics affected by λ_{eff}

$$\lambda_{\rm eff} = \begin{cases} \lambda_1 \pm \sqrt{\frac{2}{7}} \lambda_3 , & \text{septuplet} \\ \lambda_1 \mp \sqrt{\frac{2}{5}} \lambda_3 , & \text{quintuplet} \end{cases}$$

Scalar Potential: DM Self Interactions

Septuplet case (n=5 similar)

$$\begin{split} \mathbf{V}_{quartic} = & \sum_{J=0}^{2J} \kappa_k \left((\Phi \Phi)_k (\overline{\Phi} \ \overline{\Phi})_k \right)_0 + \sum_{k=0}^{2J} \left\{ \kappa'_k \left((\Phi \Phi)_k (\Phi \Phi)_k \right)_0 + \kappa''_k \left((\overline{\Phi} \ \Phi)_k (\Phi \Phi)_k \right)_0 + \text{h.c.} \right\} \end{split}$$

$$\begin{aligned} \mathcal{L}_{\chi}^{\text{self}} &= -\tilde{\lambda}_{\text{self}} \,\chi^4 \\ 4\tilde{\lambda}_{\text{self}} &= +\frac{1}{7} \left[\kappa_0 + 2\text{Re}(\kappa'_0) + 2\text{Re}(\kappa''_0) \right] &\quad +\frac{6}{77} \left[\kappa_4 + 2\text{Re}(\kappa'_4) + 2\text{Re}(\kappa''_4) \right] \\ &\quad +\frac{4}{21\sqrt{5}} \left[\kappa_2 + 2\text{Re}(\kappa'_2) + 2\text{Re}(\kappa''_2) \right] &\quad +\frac{100}{231\sqrt{13}} \left[\kappa_6 + 2\text{Re}(\kappa'_6) + 2\text{Re}(\kappa''_6) \right] \end{aligned}$$

III. DM Dynamics & Phenomenology

Relic Density & Higgs Portal Coupling

Gauge interactions

Higgs portal interactions

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \lambda_{\text{eff}} \frac{1}{m_h^2} \Phi_{n,0}^2 \bar{q} m_q q + \frac{f_T}{M_\Phi^2} \Phi_{n,0} (i\partial^\mu) (i\partial^\nu) \Phi_{n,0} \mathcal{O}_{\mu\nu}^q$$

32

80

Gauge interactions

Higgs portal interactions

IV. Collider Probes

Cirelli & Strumia '05

ſ	Quanti	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in	
	$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}\mathrm{cm}^2$	
	2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
	2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino
	3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	Real Triplet
	3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3	Wino Triplet
Т	3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7	- · ·
	3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
	4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6	
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6	
	4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5	
	4	-3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5	
	5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12	This study
	5	0	1/2	_	4.4 ± 0.1	166	≪ 1	12	
	7	0	0	_	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

Signature: Disappearing charge track $S^+ \rightarrow S_{DM} + \pi^+$ (soft)

WIMP Dark Matter Probes

Mono-X + MET

WIMP Dark Matter Probes

Disappearing Charged Track

Thanks: J.M. No

DCT: Real Triplet DM

Basic signature:

Charged track disappearing after ~ 5 cm

 $x_0 = 0: H^\pm \to H_2 \, \pi^\pm$

Fileviez Perez, Patel, MRM, Wang '08

DCT: Real Triplet DM @ LHC

Basic signature: Charged track d

Charged track disappearing after ~ 5 cm

 $x_0 = 0: H^\pm \to H_2 \, \pi^\pm$

Fileviez Perez, Patel, MRM, Wang '08

DCT: 100 TeV pp Collider

Mono-jet, DCT, Mono-Z

J.F. Zurita

- Xenon I-T forces splittings below 2-5 GeV.
- LHC 95% C.L bounds give m_x > 200 GeV.
- FCC monojet bounds: m_x > 600 GeV for nominal splitting.
- Relic density forces m_X < 1100 GeV.
- Scanned region: $|\mu| = 600, 750, 900, 1000, 1100$; $t_{\beta} = 15, M_1$ scans Δ_{+} .

Dark Sector EW Multiplets @ FCC-hh

Dark Sector EW Multiplets @ FCC-hh

Work in progress: C-W Chiang, G. Cotton, Y. Du, MJRM

- For a general EW multiplet, what is the DCT reach for a 100 TeV pp collider ?
- If a DCT signature observed, what fraction of the relic density would it correspond to ?

Stay tuned !

IV. Outlook

- Extended scalar sectors provide an interesting avenue for addressing open problems in cosmology
- Scalar EW multiplet DM ("minimal" or otherwise) can provide a viable DM scenario while potentially catalyzing a first order EW phase transition as needed for EW baryogenesis
- There exists a rich interplay involving the Higgs portal coupling, gauge interactions, and the EW multiplet mass and the phenomenological consequences for the DM relic density, direct detection, collider probes, and the possibility of a first order EWPT
- A definitive test of this scenario may await the next generation of experiments