Scalar Electroweak Multiplet DM

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

http://tdli.sjtu.edu.cn/web/yjxy/5130001.htm

Collaborators: W. Chao, G-J Ding, X-G He 1812.07829/hep-ph (to appear in JHEP)

```
FLASY 2019
TDLI/SJTU, July 2019
```


Particle Physics-Cosmology Interface

Cosmic Energy Budget

Can extensions of the SM scalar sector with EW multiplets address open problems in cosmology?
This talk: dark matter

Scalar EW Multiplets

- For a suitable choice of parameters, extended scalar sectors with EW multiplets (colorless) can lead to a strong, first order EW phase transition as needed for EW baryogenesis
- To what extent can the neutral component(s) of these multiplets contribute to the DM relic density and what are the phenomenological signatures?

Scalar EW Multiplets

- For a suitable choice of parameters, extended scalar sectors with EW multiplets (colorless) can lead to a strong, first order EW phase transition as needed for EW baryogenesis
- To what extent can the neutral component(s) of these multiplets contribute to the DM relic density and what are the phenomenological signatures?

Outline

I. Context

II. Models
III. DM Dynamics \& Pheno
IV. Collider Probes

V. Outlook

I. Context

Dark Matter

- What is the dark matter?
- What are its properties (thermal/non-thermal, density profiles, ...)?
- What are its interactions ?

Dark Matter

Mass scale of dark matter

Dark Matter

WIMP Dark Matter

WIMP Dark Matter

Abundance \& Indirect Detection

Collider Probes
<------------

Dark Matter Portals

- Gauge sector (SUSY neutralinos)
- Higgs portal (BSM scalars)
- QCD portal (Axion)
- Yukawa portal (neutrinos)
- Vector Portal

Extended Higgs Sector: EW Multiplets

- To what extent can EW multiplets catalyze a strong $1^{\text {st }}$ order EWPT and contribute to $\Omega_{D M}$?
- What is interplay between DM mass, Higgs portal coupling, dimension of the representation, $\Omega_{D M}$, and bounds on $\sigma_{S I}$?

Extended Higgs Sector: EW Multiplets

- To what extent can EW multiplets catalyze a strong $1^{\text {st }}$ order EWPT and contribute to $\Omega_{D M}$?
- What is interplay between DM mass, Higgs portal coupling, dimension of the representation, $\Omega_{D M}$, and bounds on $\sigma_{S I}$?

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

Quantum numbers			DM can decay into	$\begin{gathered} \hline \text { DM mass } \\ \text { in } \mathrm{TeV} \end{gathered}$	$\begin{gathered} m_{\mathrm{DM}^{ \pm}-m_{\mathrm{DI}}} \\ \text { in } \mathrm{MeV} \end{gathered}$	$\begin{array}{cc} \hline \text { Events at LHC } & \sigma_{\mathrm{SI}} \text { in } \\ \int \mathcal{L} d t=100 / \mathrm{fb} & 10^{-45} \mathrm{~cm}^{2} \end{array}$	
$\mathrm{SU}(2){ }_{\mathrm{L}}$	$\mathrm{U}(1)_{Y}$	Spin					
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	H^{*}	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^{*}	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	$\left(H H H^{*} H^{*}\right)$	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2	-	4.4 ± 0.1	166	$\ll 1$	12
7	0	0	-	8.5 ± 0.2	166	$\ll 1$	46

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

Quantum numbers		DM can	DM mass	$m_{\mathrm{DM}^{ \pm}}-m_{\text {DM }}$	Events at LHC	$\sigma_{\text {SI }}$ in	
$\mathrm{SU}(2)_{\mathrm{L}} \mathrm{U}(1)_{Y}$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} d t=100 / \mathrm{fb}$	$10^{-45} \mathrm{~cm}^{2}$	
$21 / 2$	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2	
$2 \quad 1 / 2$	$1 / 2$	EH	1.1 ± 0.03	341	$160 \div 330$	0.2	Higgsino Real Triplet Wino Triplet
30	0	H^{*}	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3	
30	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3	
31	0	H H, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7	
$3 \quad 1$	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7	
$4 \quad 1 / 2$	0	HHH*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6	
$41 / 2$	1/2	(LHH*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6	
$4 \quad 3 / 2$	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5	
$4 \quad 3 / 2$	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5	
50	0	$\left(H H H^{*} H^{*}\right)$	5.0 ± 0.1	166	< 1	12	This study
50	1/2	-	4.4 ± 0.1	166	$\ll 1$	12	
7 - 0	0	-	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

EWPT \& Dark Sector: EW Multiplets

Caveat: "minimality" is a tree-level identification

Luzio et al '15; Nobile et al '15: Loops involving higher dim op's can lead to "fast" DM decay for $\Lambda<M_{\text {Planck }}$

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

Quantum numbers		DM can	DM mass	$m_{\mathrm{DM}^{ \pm}}-m_{\mathrm{DM}}$	Events at LHC	$\sigma_{\text {SI }}$ in	Higasino
$\mathrm{SU}(2)_{\mathrm{L}} \mathrm{U}(1)_{Y} \mathrm{Sr}$		decay into	in TeV	in MeV	$\int \mathcal{L} d t=100 / \mathrm{fb}$	$10^{-45} \mathrm{~cm}^{2}$	
$21 / 2$	0	\square CL	0.54 ± 0.01	350	$320 \div 510$	0.2	
$21 / 2$	$1 / 2$	0	1.1 ± 0.03	341	$160 \div 330$	0.2	
30	0	HH-	30 ± 0.05	166	$0.2 \div 1.0$	1.3	Real Triplet
30	1/2	LH	2 c 006	166	$0.8 \div 4.0$	1.3	Wino Triplet
31	0	H H, LL	1.64 . ${ }^{\text {a }}$	540	$3.0 \div 10$	1.7	
311	1/2	LH	1.8 ± 00.05	C 625	$27 \div 90$	1.7	
$41 / 2$	0	HHH^{*}	2.4 ± 0.06	『『\%	$0.10 \div 0.6$	1.6	
$41 / 2$	1/2	(LHH*)	2.4 ± 0.06	C347 5	$5.3 \div 25$	1.6	
$4 \quad 3 / 2$	0	HHH	2.9 ± 0.07	729	2) 0.10	7.5	
$4 \quad 3 / 2$	1/2	(LHH)	2.6 ± 0.07	712	1×15.5	7.5	
50	0	$\left(H H H^{*} H^{*}\right)$	5.0 ± 0.1	166	< 1	12	This study
50	1/2	-	4.4 ± 0.1	166	$\ll 1$	12	
7 - 0	0	-	8.5 ± 0.2	166	$\ll 1$	46	This study

"Minimal Scalar DM"

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

"Minimal Scalar DM"

Impact of Higgs portal ?

II. Models

W. Chao, G-J Ding, X-G He, MJRM 1812.07829/hep-ph (to appear in JHEP)

Previous work: Hambye et al '09, Abdus Salaam \& Chowdhury '13

General Considerations

- Renormalizable interactions
- $Y=0$
- No Z_{2} - odd operators

General Considerations

- Renormalizable interactions
- $Y=0$
- No Z_{2} - odd operators

General EW Multiplet Φ
$\bar{\Phi}_{j, m}=(-1)^{j-m} \Phi_{j,-m}^{*}$
$A=\frac{1}{\sqrt{2}}(\Phi+\bar{\Phi}), \quad B=\frac{i}{\sqrt{2}}(\Phi-\bar{\Phi})$
Contains 2 real reps: $\Phi=\bar{\Phi}$.

General Considerations

```
Invariants
    ((\Phi\Phi)}\mp@subsup{J}{J}{(\Phi\overline{\Phi}\mp@subsup{)}{J}{\prime}\mp@subsup{)}{0}{},\quadJ=0,1,\ldots,2j\quad Self-interactions
    ((\overline{H}H\mp@subsup{)}{L}{}(\overline{\Phi}\Phi\mp@subsup{)}{L}{}\mp@subsup{)}{0}{}\quadL=0,1
    (\overline{H}H)\mp@subsup{)}{0}{(\Phi\Phi)}\mp@subsup{)}{0}{}
```

Self-interactions

Higgs portal: real or complex Φ

Higgs portal: complex Φ (distinct)

Scalar Potential: Higgs Portal

Septuplet case ($n=5$ similar)

$$
\begin{aligned}
V= & +M_{A}^{2}\left(\Phi^{\dagger} \Phi\right)+\left\{M_{B}^{2}(\Phi \Phi)_{0}+\text { h.c. }\right\}-\mu^{2} H^{\dagger} H \\
& +\lambda\left(H^{\dagger} H\right)^{2}+\lambda_{1}\left(H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right) \\
& +\lambda_{2}\left[(\bar{H} H)_{1}(\bar{\Phi} \Phi)_{1}\right]_{0}+\left[\lambda_{3}(\bar{H} H)_{0}(\Phi \Phi)_{0}+\text { h.c. }\right]
\end{aligned}
$$

Scalar Potential: Higgs Portal

Septuplet case ($n=5$ similar)

$$
\begin{aligned}
V= & +M_{A}^{2}\left(\Phi^{\dagger} \Phi\right)+\left\{M_{B}^{2}(\Phi \Phi)_{0}+\text { h.c. }\right\}-\mu^{2} H^{\dagger} H \\
& \left.+\lambda\left(H^{\dagger} H\right)^{2}+\lambda_{1} H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right) \\
& \left.\left.\left.+\lambda_{2}\right)(\bar{H} H)_{1}\left(\bar{\Phi}()_{1}\right]_{0}+\lambda_{3} \bar{H} H\right)_{0}(\Phi \Phi)_{0}+\text { h.c. }\right]
\end{aligned}
$$

Three portal couplings and three mass terms in general
N.B. Previous work did not include all possible renormalizable interactions

Spectrum

Septuplet case ($n=5$ similar)

$$
\mathcal{L}_{\text {mass }}=\left(\begin{array}{ll}
\phi_{3, k} & \phi_{3,-k}^{*}
\end{array}\right)\left(\begin{array}{cc}
M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2}+\frac{1}{4 \sqrt{42}} k \lambda_{2} v^{2} & \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2 M_{B}^{2}+\frac{1}{\sqrt{2}} \lambda_{3} v^{2}\right\} \\
\frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2 M_{B}^{2 *}+\frac{1}{\sqrt{2}} \lambda_{3}^{*} v^{2}\right\} & M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2}-\frac{1}{4 \sqrt{42}} k \lambda_{2} v^{2}
\end{array}\right)\binom{\phi_{3, k}^{*}}{\phi_{3,-k}}
$$

Eigenvalues:

$$
\begin{array}{c|c}
M_{\dot{\phi}_{3, \pm k}}^{2}=M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2} \pm \sqrt{\left|\frac{2 M_{B}^{2}}{\sqrt{7}}+\frac{\lambda_{3} v^{2}}{\sqrt{14}}\right|^{2}+\frac{k^{2} \lambda_{2}^{2} v^{4}}{672}} \leftarrow & \boldsymbol{M}^{+}-\boldsymbol{M}^{0}=\mid \text { EW loops } \mid \\
M_{\phi_{3,(0, \pm)}}^{2}=M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2} \pm\left|\frac{2 M_{B}^{2}}{\sqrt{7}}+\frac{\lambda_{3} v^{2}}{\sqrt{14}}\right| &
\end{array}
$$

Spectrum

Septuplet case ($n=5$ similar)

$$
\mathcal{L}_{\text {mass }}=\left(\begin{array}{ll}
\phi_{3, k} & \phi_{3,-k}^{*}
\end{array}\right)\left(\begin{array}{cc}
M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2}+\frac{1}{4 \sqrt{42}} k \lambda_{2} v^{2} & \frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2 M_{B}^{2}+\frac{1}{\sqrt{2}} \lambda_{3} v^{2}\right\} \\
\frac{\sqrt{7}}{7}(-1)^{k+1}\left\{2 M_{B}^{2 *}+\frac{1}{\sqrt{2}} \lambda_{3}^{*} v^{2}\right\} & M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2}-\frac{1}{4 \sqrt{42}} k \lambda_{2} v^{2}
\end{array}\right)\binom{\phi_{3, k}^{*}}{\phi_{3,-k}}
$$

Eigenvalues:

$$
\begin{gathered}
M_{\hat{\phi}_{3 ; \pm k}}^{2}=M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2} \pm \sqrt{\left|\frac{2 M_{B}^{2}}{\sqrt{7}}+\frac{\lambda_{3} v^{2}}{\sqrt{14}}\right|^{2}+\frac{k^{2} \lambda_{2}^{2} v^{4}}{672}} \\
M_{\hat{\phi}_{3 ;(0, \pm)}^{2}}^{2}=M_{A}^{2}+\frac{1}{2} \lambda_{1} v^{2} \pm\left|\frac{2 M_{B}^{2}}{\sqrt{7}}+\frac{\lambda_{3} v^{2}}{\sqrt{14}}\right|
\end{gathered}
$$

- Set $\lambda_{2}=0$: no stable charged scalars
- If set $M_{B}=0$: two degenerate multiplets (can be real)

Scalar Potential: Higgs Portal

Septuplet case ($n=5$ similar)

$$
\begin{aligned}
V= & +M_{A}^{2}\left(\Phi^{\dagger} \Phi\right)+\left\{M_{B}^{2}(\Phi \Phi)_{0}+\text { h.c. }\right\}-\mu^{2} H^{\dagger} H \\
& \left.+\lambda\left(H^{\dagger} H\right)^{2}+\lambda_{1} H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right) \\
& \left.\left.\left.\left.+\lambda_{2}\right)(\bar{H} H)_{1}(\bar{\Phi})_{1}\right]_{0}+\lambda_{3} \bar{H} H\right)_{0}(\Phi \Phi)_{0}+\text { h.c. }\right]
\end{aligned}
$$

Three portal couplings and three mass terms in general

- Set $\lambda_{2}=0$ for DM stability
- All dynamics affected by $\lambda_{\text {eff }}$

$$
\lambda_{\mathrm{eff}}= \begin{cases}\lambda_{1} \pm \sqrt{\frac{2}{7}} \lambda_{3}, & \text { septuplet } \\ \lambda_{1} \mp \sqrt{\frac{2}{5}} \lambda_{3}, & \text { quintuplet }\end{cases}
$$

Scalar Potential: DM Self Interactions

Septuplet case ($n=5$ similar)

$$
\begin{aligned}
V_{\text {quartic }}= & \sum_{J=0}^{2 J} \kappa_{k}\left((\Phi \Phi)_{k}(\bar{\Phi} \bar{\Phi})_{k}\right)_{0}+\sum_{k=0}^{2 J}\left\{\kappa_{k}^{\prime}\left((\Phi \Phi)_{k}(\Phi \Phi)_{k}\right)_{0}\right. \\
& \left.+\kappa_{k}^{\prime \prime}\left((\bar{\Phi} \Phi)_{k}(\Phi \Phi)_{k}\right)_{0}+\text { h.c. }\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathcal{L}_{\chi}^{\text {self }}=-\tilde{\lambda}_{\text {self }} \chi^{4} \\
\begin{aligned}
4 \tilde{\lambda}_{\text {self }}=+ & \frac{1}{7}\left[\kappa_{0}+2 \operatorname{Re}\left(\kappa_{0}^{\prime}\right)+2 \operatorname{Re}\left(\kappa_{0}^{\prime \prime}\right)\right] \\
& +\frac{6}{77}\left[\kappa_{4}+2 \operatorname{Re}\left(\kappa_{4}^{\prime}\right)+2 \operatorname{Re}\left(\kappa_{4}^{\prime \prime}\right)\right] \\
& +\frac{4}{21 \sqrt{5}}\left[\kappa_{2}+2 \operatorname{Re}\left(\kappa_{2}^{\prime}\right)+2 \operatorname{Re}\left(\kappa_{2}^{\prime \prime}\right)\right] \\
& +\frac{100}{231 \sqrt{13}}\left[\kappa_{6}+2 \operatorname{Re}\left(\kappa_{6}^{\prime}\right)+2 \operatorname{Re}\left(\kappa_{6}^{\prime \prime}\right)\right]
\end{aligned}
\end{array}
$$

III. DM Dynamics \& Phenomenology

Relic Density \& Higgs Portal Coupling

EW Multiplet DM: Direct Detection

Gauge interactions

Higgs portal interactions

$$
\mathcal{L}_{\text {eff }}=\frac{1}{2} \lambda_{\mathrm{eff}} \frac{1}{m_{h}^{2}} \Phi_{n, 0}^{2} \bar{q} m_{q} q+\frac{f_{T}}{M_{\Phi}^{2}} \Phi_{n, 0}\left(i \partial^{\mu}\right)\left(i \partial^{\nu}\right) \Phi_{n, 0} \mathcal{O}_{\mu \nu}^{q}
$$

EW Multiplet DM: Direct Detection

Gauge interactions

Higgs portal interactions

$$
\mathcal{O}_{\mu \nu}^{q}=\frac{1}{2} \bar{q} i\left(D_{\mu} \gamma_{\nu}+D_{\nu} \gamma_{\mu}-\frac{1}{2} g_{\mu \nu} \not D\right) q
$$

EW Multiplet DM: Direct Detection

EW Multiplet DM: Direct Detection

EW Multiplet DM: Direct Detection

IV. Collider Probes

EWPT \& Dark Sector: EW Multiplets

Cirelli \& Strumia '05

"Minimal Scalar DM"
Signature: Disappearing charge track

$$
S^{+} \rightarrow S_{D M}+\pi^{+}(\text {soft })
$$

WIMP Dark Matter Probes

Mono-X + MET

WIMP Dark Matter Probes

Disappearing Charged Track

DCT: Real Triplet DM

Basic signature: Charged track disappearing after~5 cm

$x_{0}=0: H^{ \pm} \rightarrow H_{2} \pi^{ \pm}$

Fileviez Perez, Patel, MRM, Wang '08

Trigger: Monojet $(I S R)+$ large Z_{T}

SM Background: QCD jZ and jW w/ $Z \rightarrow v v \& W \rightarrow I v$
$\begin{array}{ll}\text { Cuts: } & \text { large } \text { HT }_{T} \text { hard } \\ \text { jet } & \text { One } 5 \mathrm{~cm} \text { track }\end{array}$
$\begin{array}{ll}\text { Cuts: } & \text { large } \text { HT }_{T} \text { hard } \\ \text { jet } & \text { One } 5 \mathrm{~cm} \text { track }\end{array}$

DCT: Real Triplet DM @ LHC

Basic signature: Charged track disappearing after $\sim 5 \mathrm{~cm}$
$x_{0}=0: H^{ \pm} \rightarrow H_{2} \pi^{ \pm}$
Fileviez Perez, Patel, MRM, Wang '08
Cirelli et al:

$M_{\Sigma}=500 \mathrm{GeV}:$
$\Omega_{\Sigma} / \Omega_{\text {CDM }} \sim 0.1$

DCT: 100 TeV pp Collider

Mono-jet, DCT, Mono-Z
J.F. Zurita

The parameter space

- Xenon I-T forces splittings below 2-5 GeV.
- LHC 95\% C.L bounds give $\mathrm{m}_{\mathrm{x}}>200 \mathrm{GeV}$.
- FCC monojet bounds: $m_{x}>600 \mathrm{GeV}$ for nominal splitting.
- Relic density forces $m_{x}<1100 \mathrm{GeV}$.
- Scanned region: $|\mu|=600,750,900,1000,1100 ; \mathrm{t}_{\beta}=15, M_{\mathrm{I}}$ scans Δ_{+}.

Dark Sector EW Multiplets @ FCC-hh

Wino-like (minimal 3plet) Dark Matter:
summary of constraints (solid edge) and reaches (dashed edge)

$\chi_{i}=\alpha_{i} \widetilde{\boldsymbol{B}}+\beta(\widetilde{\boldsymbol{W}})+\gamma_{i} \widetilde{\boldsymbol{H}}_{1}+\delta_{i} \widetilde{\boldsymbol{H}}_{2}$

Dark Sector EW Multiplets @ FCC-hh

Work in progress: C-W Chiang, G. Cotton, Y. Du, MJRM

- For a general EW multiplet, what is the DCT reach for a 100 TeV pp collider?
- If a DCT signature observed, what fraction of the relic density would it correspond to ?

Stay tuned!

IV. Outlook

- Extended scalar sectors provide an interesting avenue for addressing open problems in cosmology
- Scalar EW multiplet DM ("minimal" or otherwise) can provide a viable DM scenario while potentially catalyzing a first order EW phase transition as needed for EW baryogenesis
- There exists a rich interplay involving the Higgs portal coupling, gauge interactions, and the EW multiplet mass - and the phenomenological consequences for the DM relic density, direct detection, collider probes, and the possibility of a first order EWPT
- A definitive test of this scenario may await the next generation of experiments

