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Particle Physics-Cosmology Interface 

Can extensions of the SM scalar sector with EW 
multiplets address open problems in cosmology ? 

This talk: dark matter  
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Scalar EW Multiplets 

•  For a suitable choice of parameters, extended scalar 
sectors with EW multiplets (colorless) can lead to a 
strong, first order EW phase transition as needed for 
EW baryogenesis 

•  To what extent can the neutral component(s) of these 
multiplets contribute to the DM relic density and what 
are the phenomenological signatures ? 
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Outline 

I.  Context  

II.  Models 

III.  DM Dynamics & Pheno 

IV.  Collider Probes 

V.  Outlook 

Time permitting 
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I. Context 



Dark Matter 

•  What is the dark matter ? 

•  What are its properties (thermal/non-thermal, 
density profiles,…) ? 

•  What are its interactions ? 
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Dark Matter 
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Dark Matter Portals 

•  Gauge sector (SUSY neutralinos) 

•  Higgs portal (BSM scalars) 

•  QCD portal (Axion) 

•  Yukawa portal (neutrinos) 

•  Vector Portal 
12 

This Talk 
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Extended Higgs Sector: EW Multiplets 

•  To what extent can EW multiplets catalyze a 
strong 1st order EWPT and contribute to ΩDM ? 

•  What is interplay between DM mass, Higgs 
portal coupling, dimension of the representation,  
ΩDM , and bounds on σSI  ? 
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EWPT & Dark Sector: EW Multiplets 
Cirelli & Strumia ‘05 
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EWPT & Dark Sector: EW Multiplets 
Cirelli & Strumia ‘05 

Real Triplet 

This study 

This study 

“Minimal Scalar DM” 

Higgsino 

Wino Triplet 
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EWPT & Dark Sector: EW Multiplets 

Caveat: “minimality” is a tree-level identification  

Luzio et al ’15; Nobile et al ‘15: Loops involving higher 
dim op’s can lead to “fast” DM decay for Λ < MPlanck  



18 
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EWPT & Dark Sector: EW Multiplets 
Cirelli & Strumia ‘05 

Real Triplet 

This study 

This study 

“Minimal Scalar DM” 

Higgsino 

Wino Triplet 

Impact of Higgs portal ? 
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II. Models 

W. Chao, G-J Ding, X-G He, MJRM 1812.07829/hep-ph (to appear in JHEP) 

Previous work: Hambye et al ‘09, Abdus Salaam & Chowdhury ‘13  
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General Considerations 

•  Renormalizable interactions 
•  Y = 0 
•  No Z2 – odd operators 
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which it would appear to undersaturate the relic density.
In what follows, we revisit the topic of these ear-

lier studies, taking into account several new features
that may require modifying some of the conclusions in
Refs. [34, 35]:

• We find that the scalar potentials V (H,�) given
in Refs. [34, 35] are not the most general renor-
malizable potentials and that, depending on the
representation of SU(2)L⇥U(1)Y there exist one
or more additional interactions that should be in-
cluded. For the Y = 0 representations, the �-H
interaction relevant for both the relic density and
DD cross section involves an e↵ective coupling �e↵

that is linear combination of two of the three pos-
sible Higgs portal couplings. The specific linear
combination is representation dependent.

• We update the computation of �SI taking into
account the nucleon matrix elements of twist-two
operators generated by gauge boson-mediated box
graph contributions as outlined in Refs. [36–39].
We note that Ref. [35] considered only the Higgs
portal contribution to �SI and did not include the
e↵ect of electroweak gauge bosons. We find that the
gauge boson-mediated box graph contributions are
smaller in magnitude that given in Ref. [34], which
used the expressions given in Ref. [1]. In general,
the Higgs portal contribution dominates the DD
detection cross section except for very small values
of �e↵ .

• The presence of a non-vanishing �e↵ can allow for
a larger maximum dark matter mass, M , to be
consistent with the observed relic density than one
would infer when considering only gauge interac-
tions. For the cases we consider below, this maxi-
mum mass be as larger as O(20) TeV for perturba-
tive values of �e↵ .

• For moderate values of the Higgs portal couplings,
the spin-independent cross section, scaled by the
fraction of the relic density comprised by �0, is a
function �e↵ and M . The present DD bounds on
�SI generally require M . 5 TeV for perturbative
values of �e↵ – well below the maximum mass con-
sistent with the observed relic density.

In what follows, we provide the detailed analysis
leading to these conclusions. For the structure of
V (H,�) we consider � to be a general representation
of SU(2)L⇥U(1)Y . Previous studies have considered in
detail electroweak singlets (n = 1), doublets (n = 2), and
triplets (n = 3). In all three cases, stability of the DM
particle requires that one impose a discrete symmetry on
the Lagrangian. Going to higher dimension representa-
tions, it has been shown in Ref. [1] that for n = 4, sta-
bility of the neutral component also requires imposition
of a discrete symmetry, while for n = 5, the neutral com-
ponent can only decay through a non-renormalizable di-
mension five operator with coe�cient suppressed by one

power of a heavy mass scale ⇤. In the latter case, it is pos-
sible to ensure DM stability on cosmological time scales
by either imposing a discrete symmetry or by choosing
⇤ to be well above the Planck scale. At n = 7, the first
non-renormalizable, decay-inducing operator appears at
higher dimension, and DM stability at tree-level may be
ensured even without imposition of a discrete symmetry
by choosing ⇤ below the Planck scale. It was subse-
quently noted in Refs. [40, 41], however, that there exists
a dimension five operator leading decay of the neutral
component of the septuplet at one-loop level. For a ⇤ at
the Planck scale and septuplet mass of O(10) TeV, the
septuplet would not be su�ciently stable on cosmological
time scales to provide for a viable DM candidate. Conse-
quently, one must again either choose a trans Planckian
cuto↵ or impose a stabilizing discrete symmetry.
With the foregoing considerations in mind, we focus

on the n = 5 and 7 cases for purposes of illustrating
the dark matter phenomenology. Since the group theory
relevant to construction of V (H,�) is rather involved, we
provide a detailed discussion in Appendices A and B. In
Section II, we start with a general formulation, followed
by treatment of specific model cases. Section III gives
the calculation of the relic density, including the e↵ects
of coannihilation and the Sommerfeld enhancement. We
compute �SI in Section IV. We summarize in Section IV.
Along the way, we point out where we find di↵erences
with earlier studies.

II. MODELS

We consider the renormalizable Higgs portal interac-
tions involving H and � for two illustrative cases. We
restrict our attention to � being a complex scalar with
Y = 0. The form of the potential for � being a real
representation of SU(2)L with Y = 0 is relatively simple.
The corresponding features have been illustrated in pre-
vious studies wherein � is either an SU(2)L singlet or real
triplet. Consequently, we focus on complex representa-
tions, using the n = 5 and n = 7 examples, to illustrate
the new features not considered in earlier work.
To proceed, we first introduce some notation. It is con-

venient to consider both � and the associated conjugate
�, whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (1)

where j refers to the isospin of the scalar multiplet �.
As we discuss in Appendix A, � and � transform in
the same way under SU(2)L. The scalar multiplet � of
integer isospin can be either real or complex. If � is a
real multiplet, there is a redundancy � = � such that the
constraint �j,m = (�1)j�m

�
⇤
j,�m should be fulfilled. For

complex multiplet, each component represents a unique
field, and it can be decomposed into two real multiplets
as follows

A =
1
p
2

�
�+ �

�
, B =

i
p
2

�
�� �

�
. (2)
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It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,

�
��

�
0
=

(�1)2j
p
2j + 1

�†�, (3)

which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. We shall denote with (. . .)J a contraction into
the irreducible representation with isospin J throughout
this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
of ways, such as

�
(��)J

�
��

�
J

�
0
, J = 0, 1, . . . , 2j (4)

for � self-interactions or

��
HH

�
L

�
��

�
L

�
0

(5)

with L = 0, 1 for the Higgs portal interactions. Note that
there exists a third such interaction

�
HH

�
0
(��)0 (6)

that is distinct from the L = 0 operator in Eq. (5) for
� being a complex integer representation. We note that
previous studies have not in generally included all three of
the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as

V=+M
2
A(�

†�) +
�
M

2
B(��)0 + h.c.

 
� µ

2
H

†
H

+�(H†
H)2 + �1(H

†
H)(�†�) (7)

+�2

�
(HH)1(��)1

�
0
+ [�3(HH)0(��)0 + h.c.] ,

where H is the Higgs doublet and � is a complex elec-
troweak septuplet with
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p
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After electroweak symmetry breaking, wherein
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one obtains the � mass term
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Invariants 

Self-interactions 

Higgs portal: real or complex Φ 

3

It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,

�
��

�
0
=

(�1)2j
p
2j + 1

�†�, (3)

which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. We shall denote with (. . .)J a contraction into
the irreducible representation with isospin J throughout
this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
of ways, such as

�
(��)J

�
��

�
J

�
0
, J = 0, 1, . . . , 2j (4)

for � self-interactions or

��
HH

�
L

�
��

�
L

�
0

(5)

with L = 0, 1 for the Higgs portal interactions. Note that
there exists a third such interaction

�
HH

�
0
(��)0 (6)

that is distinct from the L = 0 operator in Eq. (5) for
� being a complex integer representation. We note that
previous studies have not in generally included all three of
the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as

V=+M
2
A(�

†�) +
�
M

2
B(��)0 + h.c.

 
� µ

2
H

†
H

+�(H†
H)2 + �1(H

†
H)(�†�) (7)

+�2

�
(HH)1(��)1

�
0
+ [�3(HH)0(��)0 + h.c.] ,

where H is the Higgs doublet and � is a complex elec-
troweak septuplet with

(��)0=
1
p
7

3X

m=�3

(�1)3�m
�3,m�3,�m

=
1
p
7

�
2�3,3�3,�3�2�3,2�3,�2

+2�3,1�3,�1��3,0�3,0

�
(8)

(HH)0=
1
p
2

⇥
(H+)⇤H+ + (H0)⇤H0

⇤
(9)

and

(HH)1=

0

@
(H0)⇤H+

1p
2

⇥
(H0)⇤H0

� (H+)⇤H+
⇤

�(H+)⇤H0

1

A (10)

(��)1=

0

@
1
14A

�

p
7

14

P3
m=�3 m�

⇤
3,m�3,m

1
14B

1

A (11)

with

A=+
p
21�⇤

3,�3�3,�2 +
p
35�⇤

3,�2�3,�1 +
p
42�⇤

3,�1�3,0

+
p
42�⇤

3,0�3,1 +
p
35�⇤

3,1�3,2 +
p
21�⇤

3,2�3,3 (12)

B=�
p
21�⇤

3,�2�3,�3 �
p
35�⇤

3,�1�3,�2 �
p
42�⇤

3,0�3,�1

�
p
42�⇤

3,1�3,0 �
p
35�⇤

3,2�3,1 �
p
21�⇤

3,3�3,2 (13)

After electroweak symmetry breaking, wherein

ReH0
! (v + h) /

p
2 (14)

one obtains the � mass term

Lmass =
�
�3,k �

⇤
3,�k

�
0

@
M

2
A + 1

2�1v
2 + 1

4
p
42
k�2v

2
p
7
7 (�1)k+1

n
2M2

B + 1p
2
�3v

2
o

p
7
7 (�1)k+1

n
2M2⇤

B + 1p
2
�
⇤
3v

2
o

M
2
A + 1

2�1v
2
�

1
4
p
42
k�2v

2

1

A
✓

�
⇤
3,k

�3,�k

◆
(15)

3

It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,

�
��

�
0
=

(�1)2j
p
2j + 1

�†�, (3)

which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. We shall denote with (. . .)J a contraction into
the irreducible representation with isospin J throughout
this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
of ways, such as

�
(��)J

�
��

�
J

�
0
, J = 0, 1, . . . , 2j (4)

for � self-interactions or

��
HH

�
L

�
��

�
L

�
0

(5)

with L = 0, 1 for the Higgs portal interactions. Note that
there exists a third such interaction

�
HH

�
0
(��)0 (6)

that is distinct from the L = 0 operator in Eq. (5) for
� being a complex integer representation. We note that
previous studies have not in generally included all three of
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of the � self-interactions is more involved, and it is most
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L=0,1 

3

It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,
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in special cases when � is a real scalar multiplet satisfying
� = �. We shall denote with (. . .)J a contraction into
the irreducible representation with isospin J throughout
this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
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that is distinct from the L = 0 operator in Eq. (5) for
� being a complex integer representation. We note that
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the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as

V=+M
2
A(�

†�) +
�
M

2
B(��)0 + h.c.

 
� µ

2
H

†
H

+�(H†
H)2 + �1(H

†
H)(�†�) (7)

+�2

�
(HH)1(��)1

�
0
+ [�3(HH)0(��)0 + h.c.] ,

where H is the Higgs doublet and � is a complex elec-
troweak septuplet with

(��)0=
1
p
7

3X

m=�3

(�1)3�m
�3,m�3,�m

=
1
p
7

�
2�3,3�3,�3�2�3,2�3,�2

+2�3,1�3,�1��3,0�3,0

�
(8)

(HH)0=
1
p
2

⇥
(H+)⇤H+ + (H0)⇤H0

⇤
(9)

and

(HH)1=

0

@
(H0)⇤H+

1p
2

⇥
(H0)⇤H0

� (H+)⇤H+
⇤

�(H+)⇤H0

1

A (10)

(��)1=

0

@
1
14A

�

p
7

14

P3
m=�3 m�

⇤
3,m�3,m

1
14B

1

A (11)

with

A=+
p
21�⇤

3,�3�3,�2 +
p
35�⇤

3,�2�3,�1 +
p
42�⇤

3,�1�3,0

+
p
42�⇤

3,0�3,1 +
p
35�⇤

3,1�3,2 +
p
21�⇤

3,2�3,3 (12)

B=�
p
21�⇤

3,�2�3,�3 �
p
35�⇤

3,�1�3,�2 �
p
42�⇤

3,0�3,�1

�
p
42�⇤

3,1�3,0 �
p
35�⇤

3,2�3,1 �
p
21�⇤

3,3�3,2 (13)

After electroweak symmetry breaking, wherein

ReH0
! (v + h) /

p
2 (14)

one obtains the � mass term

Lmass =
�
�3,k �

⇤
3,�k

�
0

@
M

2
A + 1

2�1v
2 + 1

4
p
42
k�2v

2
p
7
7 (�1)k+1

n
2M2

B + 1p
2
�3v

2
o

p
7
7 (�1)k+1

n
2M2⇤

B + 1p
2
�
⇤
3v

2
o

M
2
A + 1

2�1v
2
�

1
4
p
42
k�2v

2

1

A
✓

�
⇤
3,k

�3,�k

◆
(15)

Higgs portal: complex Φ (distinct) 
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which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. Note that for j = 1/2 , (��)0 vanishes, so that
there is only one quadratic invariant in this case as well.
Quartic interactions can be constructed in a variety of
ways, such as
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By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as
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in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass eigenvalues
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which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. Note that for j = 1/2 , (��)0 vanishes, so that
there is only one quadratic invariant in this case as well.
Quartic interactions can be constructed in a variety of
ways, such as
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� being a complex integer representation. We note that
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the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.
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By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as
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in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass eigenvalues

Three portal couplings and three mass terms in general 

N.B. Previous work did not include all possible 
renormalizable interactions  
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It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,
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� = �. We shall denote with (. . .)J a contraction into
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this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
of ways, such as
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� being a complex integer representation. We note that
previous studies have not in generally included all three of
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of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as

V=+M
2
A(�

†�) +
�
M

2
B(��)0 + h.c.

 
� µ

2
H

†
H

+�(H†
H)2 + �1(H

†
H)(�†�) (7)

+�2

�
(HH)1(��)1

�
0
+ [�3(HH)0(��)0 + h.c.] ,

where H is the Higgs doublet and � is a complex elec-
troweak septuplet with

(��)0=
1
p
7

3X

m=�3

(�1)3�m
�3,m�3,�m

=
1
p
7

�
2�3,3�3,�3�2�3,2�3,�2

+2�3,1�3,�1��3,0�3,0

�
(8)

(HH)0=
1
p
2

⇥
(H+)⇤H+ + (H0)⇤H0

⇤
(9)

and

(HH)1=

0

@
(H0)⇤H+

1p
2

⇥
(H0)⇤H0

� (H+)⇤H+
⇤

�(H+)⇤H0

1

A (10)

(��)1=

0

@
1
14A

�

p
7

14

P3
m=�3 m�

⇤
3,m�3,m

1
14B

1

A (11)

with

A=+
p
21�⇤

3,�3�3,�2 +
p
35�⇤

3,�2�3,�1 +
p
42�⇤

3,�1�3,0

+
p
42�⇤

3,0�3,1 +
p
35�⇤

3,1�3,2 +
p
21�⇤

3,2�3,3 (12)

B=�
p
21�⇤

3,�2�3,�3 �
p
35�⇤

3,�1�3,�2 �
p
42�⇤

3,0�3,�1

�
p
42�⇤

3,1�3,0 �
p
35�⇤

3,2�3,1 �
p
21�⇤

3,3�3,2 (13)

After electroweak symmetry breaking, wherein

ReH0
! (v + h) /

p
2 (14)

one obtains the � mass term

Lmass =
�
�3,k �

⇤
3,�k

�
0

@
M

2
A + 1

2�1v
2 + 1

4
p
42
k�2v

2
p
7
7 (�1)k+1

n
2M2

B + 1p
2
�3v

2
o

p
7
7 (�1)k+1

n
2M2⇤

B + 1p
2
�
⇤
3v

2
o

M
2
A + 1

2�1v
2
�

1
4
p
42
k�2v

2

1

A
✓

�
⇤
3,k

�3,�k

◆
(15)

4

By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as
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in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass
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where for each isospin projection k, the “± denotes the
upper or lower sign in Eqs. (17,18) and where the nota-
tion �̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If �2 is nonzero, there will be no dark matter as one
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for k 6= 0. One needs �2 ⇠ 0, otherwise there may
exist long-lived charged scalars.

• For �2 = 0, we have two septuplet mass eigenstates
that are linear combinations of the real multiplets
A and B introduced above:
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1
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The corresponding mass eigenvalues eigenvalues are

M
2
SA,SB

=M
2
A +

1

2
�1v

2 (20)

±

����
2
p
7
M

2
B +

1
p
14

�3v
2

���� ,

where the lower (upper) sign corresponds to SA

(SB).

• In general, the lightest of the neutral fields �̂3;(0,+)

and �̂3;(0,�) component of SA – denoted here as the
real scalar � – will be the DM particle. Radiative
corrections will give rise to the mass splitting be-
tween the neutral and charged components. In the
limit MA � MW,Z , one has MQ � M0 ⇡ Q

2�M ,

with �M = (166±1) MeV [1] being the mass split-
ting between the Q=1 and 0 components. Note
also that for vanishing MB and �3 (as well as van-
ishing �2) , SA and SB will be degenerate. In this
case, one may choose the mass eigenstates to be the
real fields A and B introduced above, correspond-
ing to a two-component electroweak multiplet DM
scenario.

From the full scalar potential, one may obtain dark
matter self interactions

L
self
� = ��̃self �

4
, (21)

which may be important in solving the core-cusp prob-
lem [42, 43]. The relevant terms are

2JX

J=0

k

�
(��)k(��)k

�
0
+

2JX

k=0

n

0
k ((��)k(��)k)0

+
00
k

�
(��)k(��)k

�
0
+ h.c.

o
(22)

Note that each component of (��)j (j = 0, . . . , 6) is de-
termined by

(��)j,m =
X

m1,m2

C
j,m
3,m1;3,m2

�3,m1�3,m2 . (23)

From the property of Clebsch-Gordan coe�cients:

C
j,m
j1,m1;j2,m2

= (�1)j�j1�j2C
j,m
j2,m2;j1,m1

. (24)

If j � j1 � j2 is an odd (even) integer, the corresponding
contraction of two � fields is antisymmetric (symmetric).
Consequently, (��)1, (��)3 and (��)5 vanish. For the
most general case leading to the mass-squared matrix in
Eq. (16), the expression for the DM quartic self inter-
action is rather involved and not particularly enlighten-
ing. For completeness, in Appendix C we give an expres-
sion for the quartic interactions in terms of �3;(0,±), from
which one can determine the DM self interaction by ex-
pressing the �3;(0,±) in terms of the mass eigenstates. To
illustrate, we give here the result for the special case of
real M2

B and �3 with 2
p
2M2

B + �3v
2
< 0:

4�̃self=+
1

7
[0 + 2Re(0

0) + 2Re(00
0)]

+
4

21
p
5
[2 + 2Re(0

2) + 2Re(00
2)]

Eigenvalues: 

M+ - M0 = |EW loops| 
 +/-  λ2 contribution 
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It is easy to verify that both A and B fulfill the real-
ness condition A = A and B = B. Therefore a gen-
eral model with a complex multiplet � is equivalent to a
model of two interacting real multiplets A and B. Notice
that a scalar multiplet � of half integer isospin is al-
ways complex since the realness condition � = � can not
be fulfilled anymore. As we note below, under certain
assumptions about the model parameters, the complex
scalar multiplets may reduce to a pair of degenerate real
multiplets, allowing for a two-component DM scenario.
Since the case of the real triplet and singlet DM as sin-
glet component DM have been analyzed elsewhere, we
do not consider higher dimensional real representations
here. Instead, we focus on the complex Y = 0 exam-
ples that, in principle, can embody two-component real
multiplet DM scenarios.

One may then proceed to build SU(2)L invariants by
first coupling �, �, H, and H pairwise into irreducible
representations and finally into SU(2)L invariants. For
example,

�
��

�
0
=

(�1)2j
p
2j + 1

�†�, (3)

which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. We shall denote with (. . .)J a contraction into
the irreducible representation with isospin J throughout
this paper. Note that for j = 1/2 , (��)0 vanishes, so
that there is only one quadratic invariant in this case as
well. Quartic interactions can be constructed in a variety
of ways, such as

�
(��)J

�
��

�
J

�
0
, J = 0, 1, . . . , 2j (4)

for � self-interactions or

��
HH

�
L

�
��

�
L

�
0

(5)

with L = 0, 1 for the Higgs portal interactions. Note that
there exists a third such interaction

�
HH

�
0
(��)0 (6)

that is distinct from the L = 0 operator in Eq. (5) for
� being a complex integer representation. We note that
previous studies have not in generally included all three of
the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as

V=+M
2
A(�

†�) +
�
M

2
B(��)0 + h.c.

 
� µ

2
H

†
H

+�(H†
H)2 + �1(H

†
H)(�†�) (7)

+�2

�
(HH)1(��)1

�
0
+ [�3(HH)0(��)0 + h.c.] ,

where H is the Higgs doublet and � is a complex elec-
troweak septuplet with

(��)0=
1
p
7

3X
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�3,m�3,�m

=
1
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⇤
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and

(HH)1=

0

@
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1p
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with

A=+
p
21�⇤
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p
35�⇤

3,�2�3,�1 +
p
42�⇤

3,�1�3,0

+
p
42�⇤
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p
35�⇤

3,1�3,2 +
p
21�⇤

3,2�3,3 (12)

B=�
p
21�⇤
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p
35�⇤
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�
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p
35�⇤

3,2�3,1 �
p
21�⇤

3,3�3,2 (13)

After electroweak symmetry breaking, wherein

ReH0
! (v + h) /

p
2 (14)

one obtains the � mass term

Lmass =
�
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2
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(15)

4

By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as

 
M

2
A + 1

2�1v
2
�

2p
7
Re(M2

B)�
1p
14
Re(�3)v

2 2p
7
Im(M2

B) +
1p
14
Im(�3)v

2

2p
7
Im(M2

B) +
1p
14
Im(�3)v

2
M

2
A + 1

2�1v
2 + 2p

7
Re(M2

B) +
1p
14
Re(�3)v

2

!
(16)

in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass

eigenvalues

M
2
�̂3;±k

=M
2
A +

1
2
�1v

2
±

s����
2M2

B
p
7

+
�3v

2

p
14

����
2

+
k2�2
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4
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(17)

M
2
�̂3;(0,±)

=M
2
A +

1

2
�1v

2
±

����
2M2

B
p
7

+
�3v

2

p
14

���� (18)

where for each isospin projection k, the “± denotes the
upper or lower sign in Eqs. (17,18) and where the nota-
tion �̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If �2 is nonzero, there will be no dark matter as one
may have M

2
�3;(k,�)

< M
2
�3;(0,�)

M
2
�̂3;�k

< M
2
�̂3;(0,�)

for k 6= 0. One needs �2 ⇠ 0, otherwise there may
exist long-lived charged scalars.

• For �2 = 0, we have two septuplet mass eigenstates
that are linear combinations of the real multiplets
A and B introduced above:
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1
p
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�̂
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SB =
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The corresponding mass eigenvalues eigenvalues are

M
2
SA,SB

=M
2
A +

1

2
�1v

2 (20)

±
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2
p
7
M

2
B +

1
p
14

�3v
2

���� ,

where the lower (upper) sign corresponds to SA

(SB).

• In general, the lightest of the neutral fields �̂3;(0,+)

and �̂3;(0,�) component of SA – denoted here as the
real scalar � – will be the DM particle. Radiative
corrections will give rise to the mass splitting be-
tween the neutral and charged components. In the
limit MA � MW,Z , one has MQ � M0 ⇡ Q

2�M ,

with �M = (166±1) MeV [1] being the mass split-
ting between the Q=1 and 0 components. Note
also that for vanishing MB and �3 (as well as van-
ishing �2) , SA and SB will be degenerate. In this
case, one may choose the mass eigenstates to be the
real fields A and B introduced above, correspond-
ing to a two-component electroweak multiplet DM
scenario.

From the full scalar potential, one may obtain dark
matter self interactions

L
self
� = ��̃self �

4
, (21)

which may be important in solving the core-cusp prob-
lem [42, 43]. The relevant terms are

2JX

J=0

k

�
(��)k(��)k
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0
+

2JX

k=0

n

0
k ((��)k(��)k)0

+
00
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(��)k(��)k

�
0
+ h.c.

o
(22)

Note that each component of (��)j (j = 0, . . . , 6) is de-
termined by

(��)j,m =
X

m1,m2

C
j,m
3,m1;3,m2

�3,m1�3,m2 . (23)

From the property of Clebsch-Gordan coe�cients:

C
j,m
j1,m1;j2,m2

= (�1)j�j1�j2C
j,m
j2,m2;j1,m1

. (24)

If j � j1 � j2 is an odd (even) integer, the corresponding
contraction of two � fields is antisymmetric (symmetric).
Consequently, (��)1, (��)3 and (��)5 vanish. For the
most general case leading to the mass-squared matrix in
Eq. (16), the expression for the DM quartic self inter-
action is rather involved and not particularly enlighten-
ing. For completeness, in Appendix C we give an expres-
sion for the quartic interactions in terms of �3;(0,±), from
which one can determine the DM self interaction by ex-
pressing the �3;(0,±) in terms of the mass eigenstates. To
illustrate, we give here the result for the special case of
real M2

B and �3 with 2
p
2M2

B + �3v
2
< 0:

4�̃self=+
1

7
[0 + 2Re(0

0) + 2Re(00
0)]

+
4

21
p
5
[2 + 2Re(0

2) + 2Re(00
2)]

Eigenvalues: 

•  Set λ2 = 0 : no stable charged 
scalars 

•  If set MB = 0: two degenerate 
multiplets (can be real)  
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which in general is a distinct invariant from (��)0 except
in special cases when � is a real scalar multiplet satisfying
� = �. Note that for j = 1/2 , (��)0 vanishes, so that
there is only one quadratic invariant in this case as well.
Quartic interactions can be constructed in a variety of
ways, such as

⇥
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⇤
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(3)

for � self-interactions or

⇥�
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�
L

�
��
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L

⇤
0

(4)

with L = 0, 1 for the Higgs portal interactions. Note that
there exists a third such interaction

�
HH

�
0
(��)0 (5)

that is distinct from the L = 0 operator in Eq. (4) for
� being a complex integer representation. We note that
previous studies have not in generally included all three of
the possible Higgs portal interactions. The classification
of the � self-interactions is more involved, and it is most
illuminating to consider them on a case-by-case basis.

A. Setptuplet

The interactions can be written as
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where H is the Higgs doublet and � is a complex elec-
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After electroweak symmetry breaking, wherein
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By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as
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in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass eigenvalues

•  Set λ2 = 0 for DM stability 

•  All dynamics affected by λeff 

6
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where �e↵ is an e↵ective coupling given by a linear com-
bination of the independent Higgs portal couplings. As-
suming real M2

B and �3 one has

�e↵ =

8
<

:
�1 ±

q
2
7�3 , septuplet

�1 ⌥

q
2
5�3 , quintuplet

, (38)

where we have set �2 = 0 as above; where the upper

(lower) signs correspond to 2
p
2M2

B+�3v
2 being negative

(positive); where the parameter

cn =
(n2

� 1)2
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(39)

accounts for the e↵ective couplings of the dark matter
with the W boson; and where
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(41)

The present relic density of the DM is simply given by
⇢� = Mn�. The relic density can finally be expressed in
terms of the critical density

⌦h2
⇡

1.07⇥ 109GeV�1
xF

Mpl
p
g⇤(a+ 3b/xF )

, (42)

where a and b, which are given in Eqs. (34-37), are
expressed in GeV�2 and g⇤ is the e↵ective degrees of
freedom at the freeze-out temperature TF , xF = M/TF ,
which can be estimated through the iterative solution of
the equation

xF = ln

"
c(c+ 2)

r
45

8

g

2⇡3

MMpl(a+ 6b/xF )
p
g⇤xF

#
,(43)

where c is a constant of order one determined by match-
ing the late-time and early-time solutions. It is conven-
tional to write the relic density in terms of the Hub-

ble parameter, h = H0/100km s�1 Mpc�1. Observa-
tionally, the DM relic abundance is determined to be
⌦h2 = 0.1186± 0.0031 [30].
We plot in Fig. 1 the dark matter relic density as the

function of dark matter mass. The red, blue and green
lines correspond, respectively, to �e↵ = 0, 2, and 5. The
top (bottom) panel gives the septuplet (quintuplet) case.
To obtain the correct relic density, one hasM = 9.17 TeV
for the septuplet and M = 4.60 TeV for the quintuplet
by taking �e↵ = 0.

B. Co-annihilation

The mass splittings between the neutral and charged
components of the septuplet is about 166 MeV [1], so
the e↵ect of co-annihilation should be considered. The
relevant processes are listed in Table. I.

Three portal couplings and three mass terms in general 
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By setting �3,0 = (�3;(0,+) + i�3;(0,�))/
p
2, the neutral scalar mass matrix can be written as
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in the basis (�3;(0,+), �3;(0,�))
T . Then we have the mass
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where for each isospin projection k, the “± denotes the
upper or lower sign in Eqs. (17,18) and where the nota-
tion �̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If �2 is nonzero, there will be no dark matter as one
may have M

2
�3;(k,�)

< M
2
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M
2
�̂3;�k

< M
2
�̂3;(0,�)

for k 6= 0. One needs �2 ⇠ 0, otherwise there may
exist long-lived charged scalars.

• For �2 = 0, we have two septuplet mass eigenstates
that are linear combinations of the real multiplets
A and B introduced above:
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The corresponding mass eigenvalues eigenvalues are
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where the lower (upper) sign corresponds to SA

(SB).

• In general, the lightest of the neutral fields �̂3;(0,+)

and �̂3;(0,�) component of SA – denoted here as the
real scalar � – will be the DM particle. Radiative
corrections will give rise to the mass splitting be-
tween the neutral and charged components. In the
limit MA � MW,Z , one has MQ � M0 ⇡ Q

2�M ,

with �M = (166±1) MeV [1] being the mass split-
ting between the Q=1 and 0 components. Note
also that for vanishing MB and �3 (as well as van-
ishing �2) , SA and SB will be degenerate. In this
case, one may choose the mass eigenstates to be the
real fields A and B introduced above, correspond-
ing to a two-component electroweak multiplet DM
scenario.

From the full scalar potential, one may obtain dark
matter self interactions

L
self
� = ��̃self �

4
, (21)

which may be important in solving the core-cusp prob-
lem [42, 43]. The relevant terms are
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Note that each component of (��)j (j = 0, . . . , 6) is de-
termined by
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C
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From the property of Clebsch-Gordan coe�cients:
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If j � j1 � j2 is an odd (even) integer, the corresponding
contraction of two � fields is antisymmetric (symmetric).
Consequently, (��)1, (��)3 and (��)5 vanish. For the
most general case leading to the mass-squared matrix in
Eq. (16), the expression for the DM quartic self inter-
action is rather involved and not particularly enlighten-
ing. For completeness, in Appendix C we give an expres-
sion for the quartic interactions in terms of �3;(0,±), from
which one can determine the DM self interaction by ex-
pressing the �3;(0,±) in terms of the mass eigenstates. To
illustrate, we give here the result for the special case of
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where for each isospin projection k, the “± denotes the
upper or lower sign in Eqs. (17,18) and where the nota-
tion �̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If �2 is nonzero, there will be no dark matter as one
may have M
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for k 6= 0. One needs �2 ⇠ 0, otherwise there may
exist long-lived charged scalars.

• For �2 = 0, we have two septuplet mass eigenstates
that are linear combinations of the real multiplets
A and B introduced above:
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The corresponding mass eigenvalues eigenvalues are
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where the lower (upper) sign corresponds to SA

(SB).

• In general, the lightest of the neutral fields �̂3;(0,+)

and �̂3;(0,�) component of SA – denoted here as the
real scalar � – will be the DM particle. Radiative
corrections will give rise to the mass splitting be-
tween the neutral and charged components. In the
limit MA � MW,Z , one has MQ � M0 ⇡ Q

2�M ,

with �M = (166±1) MeV [1] being the mass split-
ting between the Q=1 and 0 components. Note
also that for vanishing MB and �3 (as well as van-
ishing �2) , SA and SB will be degenerate. In this
case, one may choose the mass eigenstates to be the
real fields A and B introduced above, correspond-
ing to a two-component electroweak multiplet DM
scenario.

From the full scalar potential, one may obtain dark
matter self interactions

L
self
� = ��̃self �
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which may be important in solving the core-cusp prob-
lem [42, 43]. The relevant terms are
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Note that each component of (��)j (j = 0, . . . , 6) is de-
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If j � j1 � j2 is an odd (even) integer, the corresponding
contraction of two � fields is antisymmetric (symmetric).
Consequently, (��)1, (��)3 and (��)5 vanish. For the
most general case leading to the mass-squared matrix in
Eq. (16), the expression for the DM quartic self inter-
action is rather involved and not particularly enlighten-
ing. For completeness, in Appendix C we give an expres-
sion for the quartic interactions in terms of �3;(0,±), from
which one can determine the DM self interaction by ex-
pressing the �3;(0,±) in terms of the mass eigenstates. To
illustrate, we give here the result for the special case of
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where for each isospin projection k, the “± denotes the
upper or lower sign in Eqs. (17,18) and where the nota-
tion �̂3,±k indicates the mass eigenstate.

From these expressions we conclude that

• If �2 is nonzero, there will be no dark matter as one
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for k 6= 0. One needs �2 ⇠ 0, otherwise there may
exist long-lived charged scalars.

• For �2 = 0, we have two septuplet mass eigenstates
that are linear combinations of the real multiplets
A and B introduced above:
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The corresponding mass eigenvalues eigenvalues are
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where the lower (upper) sign corresponds to SA

(SB).

• In general, the lightest of the neutral fields �̂3;(0,+)

and �̂3;(0,�) component of SA – denoted here as the
real scalar � – will be the DM particle. Radiative
corrections will give rise to the mass splitting be-
tween the neutral and charged components. In the
limit MA � MW,Z , one has MQ � M0 ⇡ Q

2�M ,

with �M = (166±1) MeV [1] being the mass split-
ting between the Q=1 and 0 components. Note
also that for vanishing MB and �3 (as well as van-
ishing �2) , SA and SB will be degenerate. In this
case, one may choose the mass eigenstates to be the
real fields A and B introduced above, correspond-
ing to a two-component electroweak multiplet DM
scenario.

From the full scalar potential, one may obtain dark
matter self interactions
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which may be important in solving the core-cusp prob-
lem [42, 43]. The relevant terms are
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Note that each component of (��)j (j = 0, . . . , 6) is de-
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If j � j1 � j2 is an odd (even) integer, the corresponding
contraction of two � fields is antisymmetric (symmetric).
Consequently, (��)1, (��)3 and (��)5 vanish. For the
most general case leading to the mass-squared matrix in
Eq. (16), the expression for the DM quartic self inter-
action is rather involved and not particularly enlighten-
ing. For completeness, in Appendix C we give an expres-
sion for the quartic interactions in terms of �3;(0,±), from
which one can determine the DM self interaction by ex-
pressing the �3;(0,±) in terms of the mass eigenstates. To
illustrate, we give here the result for the special case of
real M2
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where the factor 4 comes from the fact that �3,0 =
(�3;(0,+) + i�3;(0,�))/

p
2. In general, �̃self depends on

12 free parameters in Eq. (22). We defer an exploration
of the possible additional physical consequences of these
independent interactions to future work.

B. Quintuplet

The analysis for the electroweak scalar quintuplet dark
matter is similar to the septuplet case. For purposes of
completeness, we include some of the important features
below. The complex quintuplet scalar field with j = 2
and Y = 0 is denoted by
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The mass term and interactions of quintuplet are the
same as those of the septuplet given in Eq. (6), where
we set �2 = 0 to ensure the presence of a stable neutral
component. To derive the mass eigenvalues we consider
the contractions of the two scalar multiplets ��. Ac-
cording to general decomposition rule, one has
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By setting �2,0 = (↵0 + i�
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2, the mass matrix of the

neutral scalars can be written as
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The mass eigenvalues are
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which are also mass eigenvalues of the two real
quintuplet.

The self-coupling can be derived following the same
strategy of the septuplet case, and we give the results in
Appendix C.

III. RELIC DENSITY

In this work, we assume that dark matter in the early
Universe was in the local thermodynamic equilibrium.
Decoupling occurred when its interaction rate drops be-
low the expansion rate of the Universe. The correspond-
ing evolution of the dark matter number density n, is
governed by the Boltzmann equation:

ṅ+ 3Hn = �h�vM/olleri(n
2
� n

2
EQ) , (30)

where H is the Hubble constant, �vM/oller is the total an-
nihilation cross section multiplied by the M/oller velocity,
vM/oller = (|v1�v2|

2
� |v1⇥v2|

2)1/2, brackets denote ther-
mal average and nEQ is the number density at thermal

equilibrium. It has been shown that

h�vM/olleri = h�vlabi =
1

2
[1+K

2
1 (x)/K

2
2 (x)]h�vcmi , (31)

where x = m/T , Ki are the modified Bessel functions of
order i.
In a general framework that includes co-annihilation,

the dynamics depend on a set of species {�i} with masses
{mi} and number densities {ni}. It has been shown that
the total number density of all species taking part in the
co-annihilation process, n ⌘

P
i ni, obeys Eq. (30). In

this case h�vM/olleri can be written as [44, 45]
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(32)

where gi is the number of degrees of freedom, s is the
Mandelstam variable, �ij = �(�i�j ! all), and the kine-
matic factor �f (s,mi,mj) is given by

�ij =

s
1�

(mi +mj)2

s

� 
1�

(mi �mj)2

s

�
. (33)

The number density of the dark matter at the end will
be n� = n. The relic density of the dark matter today
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FIG. 3: Sommerfeld enhancement factor for the quintuplet
and septuplet as the function of x(M/T ).

where N is the total isospin of the initial state contain-
ing two annihilating DM particles and n is the dimen-
sion of the SU(2)L irreducible representation of the DM.
Since DM only annihilates into SM final states, one has
N = 0, 1, 2, depending on the specific process. Of these
possibilities, which there exist more N = 0 final SM final
states that those with N = 0, 1, so we concentrate on
the N = 0 case. Note that for n > 1, the corresponding
potential is attractive.

The Sommerfeld enhancement factor S =
�/�perturbative for the Coulomb potential can be
written as

S = �⇡
a

�

1

1� exp(⇡a� )
(49)

where � is the relative velocity between the annihilat-
ing particles (note that a < 0 for N = 0 and n > 1).
For a s-wave annihilation, one can use the Sommerfeld
enhancement averaged over the thermal distribution, de-
fined as [56]

hSi =
x
3/2

2
p
⇡

Z
S�

2 exp
�
�x�

2
/4
�
d� (50)

where x = M/T with T the temperature.

In Fig. 3 we show the thermal average of the Som-
merfeld enhancement as the function of x. A numerical
calculation gives hSi ⇠ 3.4(septuplet), 2.1 (quintuplet)
at x = xF , which will be used in the calculation of the
dark matter relic density. As can be seen from Eq. (48), a
higher dimensional representation for the multiplet gives
rise to a larger enhancement factor. The resulting impact
of the Sommerfeld enhancement is shown in Fig. 2, where
the dotted black line corresponds to the case of includ-
ing both co-annihilation and Sommerfeld enhancement
e↵ects. As expected, the presence of this enhancement
counteracts the e↵ect of coannihilation, allowing for a
smaller value of �e↵ (for fixed M) or larger value of M
(for fixed �e↵).

IV. DIRECT DETECTION

For conventional Higgs portal dark matter models,
constraints from dark matter direct detection are quite
severe. The parameter space of these models is strongly
constrained by the limits obtained by the LUX [57],
PandaX-II [58], and Xenon1T [59] experiments. In what
follows, we consider how the presence of the Higgs portal
interactions a↵ects the interpretation of these experimen-
tal results. To that end, we consider all the terms in the
e↵ective Lagrangian for low-energy DM interactions with
SM particles relevant to the scalar DM scenario consid-
ered in this paper. In the limit MDM � MW � Mq, one
has[36–39]
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is the twist-two quark bilinear with coe�cient
function[60]
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and with ! = m
2
W /m

2
�, b! =

p
1� !/4.

We note that the interaction involving the twist two
operator arises from the exchange of two massive elec-

troweak gauge bosons between the DM and quarks inside
the nucleus. We also observe that this contribution dif-
fers from what appears in Ref. [1], which did not include
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where N is the total isospin of the initial state contain-
ing two annihilating DM particles and n is the dimen-
sion of the SU(2)L irreducible representation of the DM.
Since DM only annihilates into SM final states, one has
N = 0, 1, 2, depending on the specific process. Of these
possibilities, which there exist more N = 0 final SM final
states that those with N = 0, 1, so we concentrate on
the N = 0 case. Note that for n > 1, the corresponding
potential is attractive.

The Sommerfeld enhancement factor S =
�/�perturbative for the Coulomb potential can be
written as

S = �⇡
a

�

1

1� exp(⇡a� )
(49)

where � is the relative velocity between the annihilat-
ing particles (note that a < 0 for N = 0 and n > 1).
For a s-wave annihilation, one can use the Sommerfeld
enhancement averaged over the thermal distribution, de-
fined as [56]

hSi =
x
3/2

2
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2 exp
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d� (50)

where x = M/T with T the temperature.

In Fig. 3 we show the thermal average of the Som-
merfeld enhancement as the function of x. A numerical
calculation gives hSi ⇠ 3.4(septuplet), 2.1 (quintuplet)
at x = xF , which will be used in the calculation of the
dark matter relic density. As can be seen from Eq. (48), a
higher dimensional representation for the multiplet gives
rise to a larger enhancement factor. The resulting impact
of the Sommerfeld enhancement is shown in Fig. 2, where
the dotted black line corresponds to the case of includ-
ing both co-annihilation and Sommerfeld enhancement
e↵ects. As expected, the presence of this enhancement
counteracts the e↵ect of coannihilation, allowing for a
smaller value of �e↵ (for fixed M) or larger value of M
(for fixed �e↵).

IV. DIRECT DETECTION

For conventional Higgs portal dark matter models,
constraints from dark matter direct detection are quite
severe. The parameter space of these models is strongly
constrained by the limits obtained by the LUX [57],
PandaX-II [58], and Xenon1T [59] experiments. In what
follows, we consider how the presence of the Higgs portal
interactions a↵ects the interpretation of these experimen-
tal results. To that end, we consider all the terms in the
e↵ective Lagrangian for low-energy DM interactions with
SM particles relevant to the scalar DM scenario consid-
ered in this paper. In the limit MDM � MW � Mq, one
has[36–39]

Le↵ =
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2
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�2
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2
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q
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1

2
gµ⌫ /D

◆
q (51)

is the twist-two quark bilinear with coe�cient
function[60]

fT =
↵
2
2

8m2
W

n
2
� (4Y 2 + 1)

4

⇢
! ln! + 4 +

(4� !)(2 + !) arctan 2b!/
p
!

b!
p
!

�
(52)

and with ! = m
2
W /m

2
�, b! =

p
1� !/4.

We note that the interaction involving the twist two
operator arises from the exchange of two massive elec-

troweak gauge bosons between the DM and quarks inside
the nucleus. We also observe that this contribution dif-
fers from what appears in Ref. [1], which did not include
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EW Multiplet DM: Direct Detection 
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EW Multiplet DM: Direct Detection 

 λeff = 1 allowed
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EW Multiplet DM: Direct Detection 

 λeff = 1 allowed

EWPT favored
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IV. Collider Probes 
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EWPT & Dark Sector: EW Multiplets 
Cirelli & Strumia ‘05 

Real Triplet 

This study 

This study 

“Minimal Scalar DM” 

Higgsino 

Wino Triplet 

Signature: Disappearing charge track S+ ! SDM + π+ (soft)    



WIMP Dark Matter Probes 
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Mono-X + MET 

DM Interactions 

χSM 

SM χ

X X = j, V, h 



WIMP Dark Matter Probes 
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Disappearing Charged Track 

DM Interactions 

 χ0SM 

SM 

 χ+

X X = j, V, h 

 χ0

 π+

Thanks: J.M. No 



DCT: Real Triplet DM 
Basic signature:  Charged track disappearing after ~ 5 cm   

SM Background: 
QCD jZ and jW w/ 
Z !νν & W!lν 

Trigger: Monojet 
(ISR) + large ET 

Cuts:  large  ET   hard 
jet   One 5cm track 

Fileviez Perez, Patel, MRM, Wang ‘08 



DCT: Real Triplet DM @ LHC 
Basic signature:  Charged track disappearing after ~ 5 cm   

SM Background: 
QCD jZ and jW w/ 
Z !νν & W!lν 

Trigger: Monojet 
(ISR) + large ET 

Cuts:  large  ET   hard 
jet   One 5cm track 

Cirelli et al:  

MΣ = 500 GeV:  

ΩΣ / ΩCDM ~ 0.1  

Fileviez Perez, Patel, MRM, Wang ‘08 



43 

DCT: 100 TeV pp Collider 
Mono-jet, DCT, Mono-Z J.F. Zurita 
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Dark Sector EW Multiplets @ FCC-hh 
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Dark Sector EW Multiplets @ FCC-hh 

•  For a general EW multiplet, what is the DCT 
reach for a 100 TeV pp collider ? 

•  If a DCT signature observed, what fraction of the 
relic density would it correspond to ?  

Work in progress: C-W Chiang, G. Cotton, Y. Du, MJRM  

Stay tuned ! 
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IV. Outlook 

•  Extended scalar sectors provide an interesting avenue 
for addressing open problems in cosmology 

•  Scalar EW multiplet DM (“minimal” or otherwise) can 
provide a viable DM scenario while potentially catalyzing 
a first order EW phase transition as needed for EW 
baryogenesis 

•  There exists a rich interplay involving the Higgs portal 
coupling, gauge interactions, and the EW multiplet mass 
– and the phenomenological consequences for the DM 
relic density, direct detection, collider probes, and the 
possibility of a first order EWPT 

•  A definitive test of this scenario may await the next 
generation of experiments 


