

$N_{1}+N_{2}$ Leptogenesis in $\Delta(27)$ with Universal Texture Zero

Aurora Melis

Based on: ArXiv1904.10545
With: Fredrik Björkeroth, Ivo de Medeiros Varzielas, Maria Luisa López-Ibáñez, Oscar Vives

Vniversitat (València

Motivations

A Flavor problem:

How to account for massive neutrinos and lepton mixing?

Δm_{21}^{2}	$=(6.79 \div 8.01) \times 10^{-5} \mathrm{eV}$
Δm_{31}^{2}	$=(2.431 \div 2.622) \times 10^{-3} \mathrm{eV}$
$\sin ^{2} \theta_{12}$	$=(2.75 \div 3.50) \times 10^{-1}$
$\sin ^{2} \theta_{23}$	$=(4.28 \div 6.23) \times 10^{-1}$
$\sin ^{2} \theta_{23}$	$=(2.044 \div 2.437) \times 10^{-2}$

Seesaw:

RH neutrinos provide a natural answer to the smallness of LH neutrino masses: $m_{i}=-\frac{v_{u}^{2} y_{i}^{\nu 2}}{M_{i}}$

A Cosmological problem:

The Baryon Asymmetry of the Universe (BAU) obtained in the SM is too small by different orders of magnitude:

Motivations

If seesaw is the origin of light neutrino masses then qualitative LpGn is unavoidable.

Quantitative? Matching the observed BAU constrains the unknown RH neutrino sector.

To be checked in the specific model! Note: original model for LpGn requires $M>10^{9}$, close to "natural" seesaw scale.

Seesaw:

RH neutrinos provide a
natural answer to the
smallness of LH neutrino
masses: $m_{i}=-\frac{v_{u}^{2} y_{i}^{\nu^{2}}}{M_{i}}$

Right Handed (RH) neutrinos

Leptogenesis (LpGn) :
Lepton number violating decays of RH neutrinos produce a Lepton asymmetry converted to a BAU by sphalerons.

Outline

Model
\triangle Universal Texture Zero
\triangleright UTZ seesaw

— Leptogenesis (LpGn)

- Boltzmann Equations
\triangle Leptogenesis parameters

\sum Analysis

$_$Procedure
\triangle Results
\triangle Conclusions

Model: Universal Texture Zero

Model based on the Flasy $\mathscr{G}_{f}=\Delta(27) \times Z_{N}$

	\boldsymbol{L}	$\boldsymbol{e}^{\boldsymbol{c}}$	$\boldsymbol{N}^{\boldsymbol{c}}$	$\boldsymbol{H}_{u, \boldsymbol{d}}$	$\boldsymbol{\Sigma}$	\boldsymbol{S}	$\boldsymbol{\phi}_{\boldsymbol{c}}$	$\boldsymbol{\phi}_{b}$	$\boldsymbol{\phi}_{a}$	$\boldsymbol{\phi}$	$\boldsymbol{\phi}_{X}$
$\Delta(27)$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{3}$
Z_{N}	0	0	0	0	2	-1	0	-1	2	0	X

Superpotential:

$$
\begin{aligned}
\mathscr{V}_{Y}=L_{i} e_{j}^{c} H_{d} & {\left[\frac{g_{c}^{e}}{\Lambda^{2}} \phi_{c}^{i} \phi_{c}^{j}+\frac{g_{b}^{e}}{\Lambda^{3}} \phi_{b}^{i} \phi_{b}^{j} \Sigma+\frac{g_{a}^{e}}{\Lambda^{3}}\left(\phi_{a}^{i} \phi_{b}^{j}+\phi_{b}^{i} \phi_{a}^{j}\right) S\right]+} \\
& +L_{i} N_{j}^{c} H_{u}\left[\frac{g_{c}^{L}}{\Lambda^{2}}{ }_{c}^{i} \phi_{c}^{j}+\frac{g_{b}^{L}}{\Lambda^{3}} \phi_{b}^{i} \phi_{b}^{j} \Sigma+\frac{g_{a}^{\nu}}{\Lambda^{3}}\left(\phi_{a}^{i} \phi_{b}^{j}+\phi_{b}^{i} \phi_{a}^{j}\right) S\right]
\end{aligned}
$$

Alignment:
$\left\langle\phi_{c}\right\rangle=v_{c}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \propto\langle\phi\rangle$
$\left\langle\phi_{b}\right\rangle=\frac{v_{b}}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
$\left\langle\phi_{a}\right\rangle=\frac{v_{a}}{\sqrt{3}}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
$\mathscr{V}_{N}=N_{i}^{c} N_{j}^{c}\left[\frac{g_{c}^{N}}{\Lambda} \phi^{i} \phi^{j}+\frac{g_{b}^{N}}{\Lambda^{4}} \phi_{b}^{i} \phi_{b}^{j}\left(\phi^{k} \phi^{k} \phi_{a}^{k}\right)+\frac{g_{a}^{N}}{\Lambda^{4}}\left(\phi_{a}^{i} \phi_{b}^{j}+\phi_{b}^{i} \phi_{a}^{j}\right)\left(\phi^{k} \phi^{k} \phi_{b}^{k}\right)\right]$

$\square_{i j}=\phi_{i} \phi_{j}^{T}$ (rank-1 matrices)

Same Dirac and Majorana structures:

$$
\sum\left[\begin{array}{c}
Y_{e, \nu} \\
M_{N}
\end{array}\right]=\left[\begin{array}{c}
y_{c}^{e, \nu} \\
M_{c}
\end{array}\right] \square_{c}+\left[\begin{array}{c}
y_{b}^{e, \nu} \\
M_{b}
\end{array}\right] \square_{b}+\left[\begin{array}{c}
y_{a}^{e, \nu} \\
M_{a}
\end{array}\right]\left(\square_{a b}+\square_{b a}\right)
$$

(1,1)-Universal and
symmetric Texture Zero (UTZ)

Model: UTZ see saw

As Dirac and Majorana matrices are in terms of rank-1 matrices, the UTZ is preserved after seesaw:

$$
\begin{aligned}
& m_{\nu} \equiv-v_{u}^{2} Y_{\nu} M_{N}^{-1} Y_{\nu}^{T}=m_{c} \square_{c}+m_{b} \square_{b}+m_{a}\left(\square_{a b}+\square_{b a}\right) \\
& m_{a}=-\frac{v_{u}^{2} y_{a}^{\nu 2}}{M_{a}} \quad m_{b}=m_{a}\left(2 \frac{y_{b}^{\nu}}{y_{a}^{\nu}}-\frac{M_{b}}{M_{a}}\right) \quad m_{c}=-\frac{v_{u}^{2} y_{c}^{\nu 2}}{M_{c}}
\end{aligned}
$$

$m_{a, b, c}$ entangle Dirac $y_{a, b, c}^{\nu}$ and Majorana $M_{a, b, c}$ neutrino couplings in a nontrivial way.

$$
R_{T B}^{T} m_{\nu} R_{T B}=\left(\begin{array}{ccc}
\frac{m_{c}}{6} & \frac{m_{c}}{3 \sqrt{2}} & -\frac{m_{c}}{2 \sqrt{3}} \\
\frac{m_{c}}{3 \sqrt{2}} & \frac{m_{c}}{3} & \frac{6 m_{a}-m_{c}}{\sqrt{6}} \\
\frac{m_{c}}{2 \sqrt{3}} & \frac{6 m_{a}-m_{c}}{\sqrt{6}} & \frac{4 m_{b}-m_{c}}{2}
\end{array}\right) \xrightarrow{\stackrel{m_{c}<m_{a}, m_{b}}{\text { semi-diagonalized }}} \begin{aligned}
& \text { by a Tri-Bimaximal } \\
& \text { (TB) rotation }
\end{aligned}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \sqrt{6} m_{a} \\
0 & \sqrt{6} m_{a} & 2 m_{b}
\end{array}\right) \quad\left(\boldsymbol{m}_{\mathbf{1}} \simeq \frac{\boldsymbol{m}_{\boldsymbol{c}}}{\mathbf{6}}\right)
$$

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \sqrt{6} m_{a} \\
0 & \sqrt{6} m_{a} & 2 m_{b}
\end{array}\right) \xrightarrow[\text { Gatto-Sartori- }]{\sqrt{6} m_{a}<2 m_{b}} \boldsymbol{m}_{\mathbf{3}} \simeq \mathbf{2} \boldsymbol{m}_{\boldsymbol{b}}, \quad \boldsymbol{m}_{\mathbf{2}} \simeq \mathbf{3} \frac{\boldsymbol{m}_{a}^{\mathbf{2}}}{\boldsymbol{m}_{\boldsymbol{b}}}, \sin \boldsymbol{\theta}=\sqrt{\frac{\boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{m}_{\mathbf{3}}}} \simeq \sqrt{\frac{\mathbf{3}}{\mathbf{2}}} \frac{\boldsymbol{m}_{a}}{\boldsymbol{m}_{\boldsymbol{b}}}
$$

Tonin structure

The correct neutrino mixing is obtained if $\boldsymbol{m}_{\boldsymbol{c}}<\boldsymbol{m}_{\boldsymbol{a}}<\boldsymbol{m}_{\boldsymbol{b}}$
m_{ν} is compatible with a Normal Ordered neutrino spectrum

Model: UTZ see saw

As Dirac and Majorana matrices are in terms of rank-1 matrices, the UTZ is preserved after seesaw:

$$
\begin{gathered}
m_{\nu} \equiv-v_{u}^{2} Y_{\nu} M_{N}^{-1} Y_{\nu}^{T}=m_{c} \square_{c}+m_{b} \square_{b}+m_{a}\left(\square_{a b}+\square_{b a}\right) \\
m_{a}=-\frac{v_{u}^{2} y_{a}^{\nu 2}}{M_{a}} \quad m_{b}=m_{a}\left(2 \frac{y_{b}^{\nu}}{y_{a}^{\nu}}-\frac{M_{b}}{M_{a}}\right) \quad m_{c}=-\frac{v_{u}^{2} y_{c}^{\nu 2}}{M_{c}}
\end{gathered}
$$

$m_{a, b, c}$ entangle Dirac $y_{a, b, c}^{\nu}$ and Majorana $M_{a, b, c}$ neutrino couplings in a non-trivial way.

$$
R_{T B}^{T} m_{\nu} R_{T B}=\left(\begin{array}{ccc}
\frac{m_{c}}{6} & \frac{m_{c}}{3 \sqrt{2}} & -\frac{m_{c}}{2 \sqrt{3}} \\
\frac{m_{c}}{3 \sqrt{2}} & \frac{m_{c}}{3} & \frac{6 m_{a}-m_{c}}{\sqrt{6}} \\
\frac{m_{c}}{2 \sqrt{3}} & \frac{6 m_{a}-m_{c}}{\sqrt{6}} & \frac{4 m_{b}-m_{c}}{2}
\end{array}\right) \stackrel{m_{c}<m_{a} m_{b}}{\longrightarrow}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \sqrt{6} m_{a} \\
0 & \sqrt{6} m_{a} & 2 m_{b}
\end{array}\right) \quad\left(m_{1} \simeq \frac{m_{c}}{6}\right)
$$

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \sqrt{6} m_{a} \\
0 & \sqrt{6} m_{a} & 2 m_{b}
\end{array}\right) \stackrel{\sqrt{6} m_{a}<2 m_{b}}{ } \boldsymbol{m}_{\mathbf{3}} \simeq \mathbf{2 m}_{\boldsymbol{b}}, \boldsymbol{m}_{\mathbf{2}} \simeq \mathbf{3} \frac{\boldsymbol{m}_{\boldsymbol{a}}^{\mathbf{2}}}{\boldsymbol{m}_{\boldsymbol{b}}}, \quad \sin \boldsymbol{\theta}=\sqrt{\frac{\boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{m}_{\mathbf{3}}}} \simeq \sqrt{\frac{\mathbf{3}}{\mathbf{2}}} \frac{\boldsymbol{m}_{\boldsymbol{a}}}{\boldsymbol{m}_{\boldsymbol{b}}}
$$

$$
\begin{array}{ll}
\text { Fit of the } & m_{b}=\sqrt{\Delta m_{31}^{2}} / 2 \simeq 25 \mathrm{meV} \\
\text { model: } & m_{a}=m_{b} \sqrt{\Delta m_{21}^{2}} / 3 \simeq 9.5 \mathrm{meV}
\end{array}
$$

Neutrinos		Charged leptons	
m_{a} / meV	8.95	y_{a}^{e}	3.01×10^{-4}
m_{b} / meV	24.6	$y_{b}^{\text {e }}$	3.90×10^{-3}
m_{c} / meV	2.26	$y_{c}^{\text {e }}$	7.16×10^{-2}
γ_{m}	2.51	$\gamma_{\text {e }}$	0.13
δ_{m}	1.26	$\delta_{\text {e }}$	-1.31

Model: Majorana Masses

Structure of Dirac matrices: $y_{a}^{e, \nu}: y_{b}^{e, \nu}: y_{c}^{e, \nu} \sim \epsilon_{e, \nu}^{3}: \epsilon_{e, \nu}^{2}: 1$

$$
Y_{e, \nu} \simeq y_{c}^{e, \nu}\left(\begin{array}{ccc}
0 & \epsilon_{e, \nu}^{3} & \epsilon_{e, \nu}^{3} \\
\epsilon_{e, \nu}^{3} & \epsilon_{e, \nu}^{2} & \epsilon_{e, \nu}^{2} \\
\epsilon_{e, \nu}^{3} & \epsilon_{e, \nu}^{2} & 1
\end{array}\right) \quad \begin{aligned}
& \epsilon_{e} \equiv y_{a}^{e} / y_{b}^{e}=0.15 \\
& \boldsymbol{\epsilon}_{\nu} \equiv y_{a}^{\nu} / y_{b}^{\nu} \text { not fixed } \\
& \text { by phenomenology }
\end{aligned}
$$

$$
\begin{gathered}
m_{a, c}=-\frac{v_{u}^{2} y_{a, c}^{\nu}}{M_{a, c}} \\
m_{b}=m_{a}\left(2 \frac{y_{b}^{\nu}}{y_{a}^{\nu}}-\frac{M_{b}}{M_{a}}\right)
\end{gathered}
$$

For the correct neutrino mixing $m_{c}<m_{a}<m_{b}$:

$$
\begin{aligned}
& \frac{m_{a}}{m_{b}}=\left(2 \frac{y_{b}^{\nu}}{y_{a}^{\nu}}-\frac{M_{b}}{M_{a}}\right) \sim\left(\frac{2}{\epsilon_{\nu}}-\frac{M_{b}}{M_{a}}\right) \xrightarrow{m_{a}<m_{b}} \Rightarrow \frac{M_{a}}{M_{b}}<\epsilon_{\nu} \\
& \frac{m_{a}}{m_{c}}=\frac{y_{c}^{\nu 2}}{y_{a}^{\nu 2}} \frac{M_{a}}{M_{c}} \sim \frac{1}{\epsilon_{\nu}^{6}} \frac{M_{a}}{M_{c}} \xrightarrow[m_{c}<m_{a}]{\longrightarrow} \frac{M_{a}}{M_{c}}<\epsilon_{\nu}^{6}
\end{aligned}
$$

N_{3} with $M_{3} \sim M_{c}$ effectively decouples after seesaw\square	We expect a hierarchical spectrum for the RH masses: $\boldsymbol{M}_{\mathbf{1}}<\boldsymbol{M}_{\mathbf{2}} \ll \boldsymbol{M}_{\mathbf{3}}$

LpGn: Boltzmann Equations

Generation of the BAU through N_{i}-leptogenesis is a non equilibrium process treated by means of Boltzmann equations (BEs).
We can use simplified BEs, in MSSM, 3-flavoured regime:

$$
\begin{aligned}
& \frac{d Y_{N_{i}}}{d z}=-2 D\left(Y_{N_{i}}-Y_{N_{i}}^{e q}\right), \frac{d Y_{\tilde{N}_{i}}}{d z}=-2 D\left(Y_{\tilde{N}_{i}}-Y_{\tilde{N}_{i}}^{e q}\right) \quad Y_{B}=\frac{10}{31} \sum_{\alpha} Y_{\Delta_{\alpha}}(z \gg 1) \\
& \frac{d Y_{\Delta_{\alpha}}}{d z}=2 \varepsilon_{N_{i}}^{\alpha} D\left(Y_{N_{i}}-Y_{N_{i}}^{e q}\right)+2 \varepsilon_{\tilde{N}_{i}}^{\alpha} D\left(Y_{\tilde{N}_{i}}-Y_{\tilde{N}_{i}}^{e q}\right)+\frac{K_{N_{i}}^{\alpha}}{K_{N_{i}}} W \sum_{\alpha^{\prime}} A_{\alpha \alpha^{\prime}} Y_{\Delta_{\alpha}^{\prime}} \quad(\alpha=e, \mu, \tau, i=1,2,3)
\end{aligned}
$$

$Y_{N_{i}}, Y_{\tilde{N}_{i}}$: number densities of RH (s)neutrinos.
$Y_{\Delta_{\alpha}}$: total (particle+sparticle) number densities of $\Delta_{\alpha}=B / 3-L_{\alpha}$ (conserved by sphalerons)
$D, W=\Gamma_{D(W)} / \mathrm{Hz}$: decay and washout terms
$\varepsilon_{N_{i}}^{\alpha}, K_{N_{i}}^{\alpha}$: decay factors and CP asymmetries (geometrical model factors)

LpGn: Boltzmann Equations

Generation of the BAU through N_{i}-leptogenesis is a non equilibrium process treated by means of Boltzmann equations (BEs).
We can use simplified BEs, in MSSM, 3-flavoured regime:

$$
\begin{aligned}
& \frac{d Y_{N_{i}}}{d z}=-2 D\left(Y_{N_{i}}-Y_{N_{i}}^{e q}\right), \frac{d Y_{\tilde{N}_{i}}}{d z}=-2 D\left(Y_{\tilde{N}_{i}}-Y_{\tilde{N}_{i}}^{e q}\right) \quad Y_{B}=\frac{10}{31} \sum_{\alpha} Y_{\Delta_{\alpha}}(z \gg 1) \\
& \frac{d Y_{\Delta_{\alpha}}}{d z}=2 \varepsilon_{N_{i}}^{\alpha} D\left(Y_{N_{i}}-Y_{N_{i}}^{e q}\right)+2 \varepsilon_{\tilde{N}_{i}}^{\alpha} D\left(Y_{\tilde{N}_{i}}-Y_{\tilde{N}_{i}}^{e q}\right)+\frac{K_{N_{i}}^{\alpha}}{K_{N_{i}}} W \sum_{\alpha^{\prime}} A_{\alpha \alpha^{\prime}} Y_{\Delta_{\alpha}^{\prime}} \quad(\alpha=e, \mu, \tau, i=1,2,3)
\end{aligned}
$$

$Y_{N_{i}}, Y_{\tilde{N}_{i}}$: number densities of RH (s)neutrinos.
$Y_{\Delta_{\alpha}}$: total (particle+sparticle) number densities of $\Delta_{\alpha}=B / 3-L_{\alpha}$ (conserved by sphalerons)
$D, W=\Gamma_{D(W)} / \mathrm{Hz}$: decay and washout terms
$\varepsilon_{N_{i}}^{\alpha}, K_{N_{i}}^{\alpha}$: decay factors and CP asymmetries (geometrical model factors)

LpGn: Decay Factors \& CP asymmetries

The nature of RH neutrino masses imply the decays $N_{i} \rightarrow L_{\alpha} H_{u}$ and $N_{i} \rightarrow \bar{L}_{\alpha} H_{u}^{*}$
Decay factors dominated by tree level diagram

$$
\begin{gathered}
K_{N_{i}}^{\alpha} \equiv \frac{\Gamma\left(N_{i} \rightarrow L_{\alpha} H_{u}\right)+\Gamma\left(N_{i} \rightarrow \bar{L}_{\alpha} H_{u}^{*}\right)}{\mathrm{H}\left(M_{i}\right)} \\
K_{N_{i}}^{\alpha}=\frac{v_{u}^{2}}{m_{*} \boldsymbol{M}_{i}}\left(\lambda_{\nu}\right)_{i \alpha}^{\dagger}\left(\lambda_{\nu}\right)_{\alpha i}
\end{gathered}
$$

CP asymmetries arise only at loop level

$$
\begin{gathered}
\varepsilon_{N_{i}}^{\alpha} \equiv \frac{\Gamma\left(N_{i} \rightarrow L_{\alpha} H_{u}\right)-\Gamma\left(N_{i} \rightarrow \bar{L}_{\alpha} H_{u}^{*}\right)}{\Gamma\left(N_{i} \rightarrow L_{\alpha} H_{u}\right)+\Gamma\left(N_{i} \rightarrow \bar{L}_{\alpha} H_{u}^{*}\right)} \\
\varepsilon_{N_{i}}^{\alpha}=\frac{1}{8 \pi} \sum_{j \neq i} \frac{\operatorname{Im}\left[\left(\lambda_{\nu}\right)_{i \alpha}^{\dagger}\left(\lambda_{\nu}^{\dagger} \lambda_{\nu}\right)_{i j}\left(\lambda_{\nu}\right)_{\alpha j}\right]}{\left(\lambda_{\nu}^{\dagger} \lambda_{\nu}\right)_{i i}} \times\left\{\begin{array}{rll}
-3 M_{i} / M_{j} & \text { if } & M_{i} \\
2 M_{j} / M_{i} & \text { if } & M_{i}<M_{j}
\end{array}\right.
\end{gathered}
$$

They are fully geometrical factors that depend only on the specific model!

$$
\left(Y_{e}^{\text {diag }}=V_{e L} Y_{e} V_{e R}^{\dagger}\right) \hookleftarrow V^{\lambda_{e L}^{*}}=\boldsymbol{Y}_{\nu} V_{N}^{T}{ }^{N}\left(M_{N}^{d i a g}=V_{N} Y_{e} V_{N}^{T}\right)
$$

LpGn: Decay Factors \& CP asymmetries

At LO we can consider $\lambda_{\nu} \sim Y_{\nu} \simeq y_{c}^{\nu}\left(\begin{array}{ccc}0 & \epsilon_{\nu}^{3} & c_{\nu}^{3} \\ \epsilon_{\nu}^{3} & \epsilon_{\nu}^{2} & \epsilon_{\nu}^{2} \\ \epsilon_{\nu}^{3} & \epsilon_{\nu}^{2} & 1\end{array}\right)$

Washout weaker

in the electron

$$
\left.\begin{array}{l}
\boldsymbol{K}_{N_{1}}^{\boldsymbol{\alpha}} \sim\left|\frac{M_{3}}{M_{1}}\right| \epsilon_{\nu}^{6}\left(\begin{array}{r}
\epsilon_{\nu}^{2} \\
1 \\
1
\end{array}\right) \\
\boldsymbol{K}_{N_{2}}^{\boldsymbol{\alpha}} \sim\left|\frac{M_{3}}{M_{2}}\right| \epsilon_{\nu}^{4}\left(\begin{array}{r}
\epsilon_{\nu}^{2} \\
1 \\
1
\end{array}\right)
\end{array}\right\} \text { Aligned }
$$

$$
\varepsilon_{N_{1}}^{\alpha} \sim \frac{3}{8 \pi}\left|\frac{M_{1}}{M_{2}}\right| \epsilon_{\nu}^{4} \begin{array}{|cc|}
\hline \epsilon_{\nu}^{2} \\
1 \\
1
\end{array} \begin{gathered}
\text { compared with } \varepsilon_{N_{1}}^{\mu, \tau} \\
\begin{array}{l}
\varepsilon_{N_{1}}^{\mu, \tau} \text { are the dominant } \\
\text { contributions to } Y_{\Delta_{\alpha}}^{i=1}
\end{array}
\end{gathered}
$$

This gives an important contribution
when $M_{2} \sim M_{3}$

Always subdominant

Always subdominant compared with $\varepsilon_{N_{1}}^{\alpha}$

$$
\boldsymbol{\varepsilon}_{N_{2}}^{\alpha} \sim \frac{3}{8 \pi}\left(\frac{M_{2}}{M_{3}} \left\lvert\,\left(\begin{array}{c}
\left(\begin{array}{c}
\epsilon_{\nu}^{4} \\
\epsilon_{\nu}^{2} \\
1
\end{array}\right)+\frac{1}{4 \pi} \underbrace{\left|\frac{M_{1}}{M_{2}}\right| \epsilon_{\nu}^{6}\left(\begin{array}{c}
\epsilon_{\nu}^{2} \\
1 \\
1
\end{array}\right)} .
\end{array}\right.\right.\right.
$$

Analysis: Procedure

Assumption of hierarchical RH neutrino masses: $M_{1}<M_{2} \ll M_{3}$. Within this framework:
\square Any N_{3} generated asymmetry is assumed negligible.
\square The two lightest RH neutrinos do not interfere with each other: the generation of the asymmetry from N_{1} decays and from N_{2} decays proceed independently.

Analysis: Procedure

Inputs:
Generate randomly $\left|M_{a, b}\right| \in\left[10^{7}, 10^{14}\right] \mathrm{GeV}$ $\gamma_{N}, \delta_{N} \in[-\pi, \pi]$ ($M_{c}=5 \times 10^{14} \mathrm{GeV}$)

Dirac couplings are entangled by $M_{a, b, c}$ and $m_{a, b, c}$ (fixed by fit)

Diagonalize Y_{e}, M_{N} and obtain $\lambda_{\nu}^{*}=V_{e L} Y_{\nu} V_{N}^{T}$

Solve BEs (2 steps):
Solve for $Y_{\Delta_{\alpha}}$ from BEs with $\boldsymbol{N}_{\boldsymbol{i = 2}}$ assuming zero initial conditions

Solve for $Y_{\Delta_{\alpha}}$ from BEs with $\boldsymbol{N}_{\boldsymbol{i = 1}}$ assuming $Y_{\Delta_{\alpha}}^{(i=2)}$ as initial conditions

Y_{B} is computed from $Y_{\Delta}^{(i=1)}$ Accept only points that give Y_{B} within $20 \% Y_{B}^{\text {exp }}$

Analysis: Results

N_{1} decays only

N_{1} and N_{2} decays

Allowed values of RH neutrino masses $M_{1,2}$ giving Y_{B} within $20 \%\left(M_{3} \simeq 5 \times 10^{14} \mathrm{GeV}\right)$

Analysis: Results

Correct BAU above

$$
M_{1} \simeq 4 \times 10^{9} \mathrm{GeV}, \mathrm{M}_{2} \simeq 2 \times 10^{11} \mathrm{GeV}
$$

Two regions:

$M_{1} / M_{2} \in[0.002,0.1]$	$M_{1} \ll M_{2}$ $M_{2} \ll M_{3}$
$M_{2} / M_{3}>0.1$	

BAU consistent with leptogenesis from N_{1}
N_{1} and N_{2} decays

Allowed values of RH neutrino masses $M_{1,2}$ giving Y_{B} within $20 \%\left(M_{3} \simeq 5 \times 10^{14} \mathrm{GeV}\right)$

Analysis: Results

Allowed values of
RH input mass parameters ($M_{a, b}$)

Allowed values of Dirac neutrino couplings $\left(y_{a, b}^{\nu}\right)$

Conclusions

\square We have studied the generation of the BAU through $N_{1}+N_{2}$-leptogenesis in the UTZ $S O(10) \times \Delta(27) \times Z_{N}$ flavoured GUT model

B Leptogenesis yields the observed BAU for a considerable region of the parameter space.

The preferred mechanism is N_{l} leptogenesis: $M_{1}>4 \times 10^{9} \mathrm{GeV}$, with $M_{2}>2 \times 10^{11} \mathrm{GeV}$, while $0.002<M_{l} / M_{2}<0.1$.
N_{2} leptogenesis possible but not compatible with the model!
\square We can constrain the neutrino Yukawa couplings, which are bounded from below:

$$
y_{a}{ }^{v}>0.003, y_{b}{ }^{v}>0.008
$$

Thank you W谢谢

