

N_1+N_2 Leptogenesis in $\Delta(27)$ with Universal Texture Zero

Aurora Melis

Based on: ArXiv1904.10545

With: Fredrik Björkeroth , Ivo de Medeiros Varzielas , Maria Luisa López-Ibáñez , Oscar Vives

Motivations

A Flavor problem:

How to account for massive neutrinos and lepton mixing?

$$\Delta m_{21}^2 = (6.79 \div 8.01) \times 10^{-5} \text{eV}$$

 $\Delta m_{31}^2 = (2.431 \div 2.622) \times 10^{-3} \text{eV}$

$$\sin^2 \theta_{12} = (2.75 \div 3.50) \times 10^{-1}$$
$$\sin^2 \theta_{23} = (4.28 \div 6.23) \times 10^{-1}$$
$$\sin^2 \theta_{23} = (2.044 \div 2.437) \times 10^{-2}$$

Seesaw:

RH neutrinos provide a natural answer to the smallness of LH neutrino masses: $m_i = -\frac{v_u^2 y_i^{\nu^2}}{M_i}$

A Cosmological problem:

The Baryon Asymmetry of the Universe (BAU) obtained in the SM is too small by different orders of magnitude:

$$Y_B^{exp} = \frac{n_B - \overline{n}_B}{s} = (0.86 \div 0.88) \times 10^{-10}$$

Right Handed (RH) neutrinos

Leptogenesis (LpGn):

Lepton number violating decays of RH neutrinos produce a Lepton asymmetry converted to a BAU by sphalerons.

Motivations

If seesaw is the origin of light neutrino masses then qualitative LpGn is unavoidable.

Quantitative?

Matching the observed BAU constrains the unknown RH neutrino sector. To be checked in the specific model! Note: original model for LpGn requires $M>10^9$, close to "natural" seesaw scale.

Seesaw:

RH neutrinos provide a natural answer to the smallness of LH neutrino masses: $m_i = -\frac{v_u^2 y_i^{\nu^2}}{M_i}$

$$m_i = -\frac{v_u^2 y_i^{DZ}}{M_i}$$

Right Handed (RH) neutrinos

Leptogenesis (LpGn):

Lepton number violating decays of RH neutrinos produce a Lepton asymmetry converted to a BAU by sphalerons.

Outline

- > Model
 - Universal Texture Zero
 - UTZ seesaw
- Leptogenesis (LpGn)
 - Boltzmann Equations
 - Leptogenesis parameters
- Analysis
 - Procedure
 - Results
 - Conclusions

Model: Universal Texture Zero

Model based on the Flasy $\mathcal{G}_f = \Delta(27) \times Z_N$

Superpotential:

$$\mathcal{W}_{Y} = L_{i}e_{j}^{c}H_{d}\left[\frac{g_{c}^{e}}{\Lambda^{2}}\phi_{c}^{i}\phi_{c}^{j} + \frac{g_{b}^{e}}{\Lambda^{3}}\phi_{b}^{i}\phi_{b}^{j}\Sigma + \frac{g_{a}^{e}}{\Lambda^{3}}(\phi_{a}^{i}\phi_{b}^{j} + \phi_{b}^{i}\phi_{a}^{j})S\right] +$$

$$+L_{i}N_{j}^{c}H_{u}\left[\frac{g_{c}^{\nu}}{\Lambda^{2}}\phi_{c}^{i}\phi_{c}^{j} + \frac{g_{b}^{\nu}}{\Lambda^{3}}\phi_{b}^{i}\phi_{b}^{j}\Sigma + \frac{g_{a}^{\nu}}{\Lambda^{3}}(\phi_{a}^{i}\phi_{b}^{j} + \phi_{b}^{i}\phi_{a}^{j})S\right]$$

$$\mathcal{W}_{N} = N_{i}^{c} N_{j}^{c} \begin{bmatrix} \frac{g_{c}^{N}}{\Lambda} \phi^{i} \phi^{j} + \frac{g_{b}^{N}}{\Lambda^{4}} \phi_{b}^{i} \phi_{b}^{j} (\phi^{k} \phi^{k} \phi_{a}^{k}) + \frac{g_{a}^{N}}{\Lambda^{4}} (\phi_{a}^{i} \phi_{b}^{j} + \phi_{b}^{i} \phi_{a}^{j}) (\phi^{k} \phi^{k} \phi_{b}^{k}) \end{bmatrix}$$

$$\Box_{c} \qquad \Box_{b} \qquad \Box_{ab} \qquad \Box_{ba}$$

$$\left(\Box \right) \qquad \left(\Box \right) \qquad \right)$$

$$\langle \phi_c \rangle = v_c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \propto \langle \phi \rangle$$

$$\langle \phi_b \rangle = \frac{v_b}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\langle \phi_a \rangle = \frac{v_a}{\sqrt{3}} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$

$$\square_{ij} = \phi_i \phi_j^T \text{(rank-1 matrices)}$$

Same Dirac and Majorana structures:

$$\begin{bmatrix} Y_{e,\nu} \\ M_N \end{bmatrix} = \begin{bmatrix} y_c^{e,\nu} \\ M_c \end{bmatrix} \Box_c + \begin{bmatrix} y_b^{e,\nu} \\ M_b \end{bmatrix} \Box_b + \begin{bmatrix} y_a^{e,\nu} \\ M_a \end{bmatrix} (\Box_{ab} + \Box_{ba})$$
 symmetric Texture Zero

(1,1)-Universal and

See: JHEP03(2018)007 Ivo de Medeiros Varzielas, Graham G. Ross and Jim Talbert

Model: UTZ see saw

As Dirac and Majorana matrices are in terms of rank-1 matrices, the UTZ is preserved after seesaw:

$$m_{\nu} \equiv -v_u^2 Y_{\nu} M_N^{-1} Y_{\nu}^T = m_c \square_c + m_b \square_b + m_a (\square_{ab} + \square_{ba})$$

$$m_{a} = -\frac{v_{u}^{2} y_{a}^{\nu^{2}}}{M_{a}} \qquad m_{b} = m_{a} \left(2 \frac{y_{b}^{\nu}}{y_{a}^{\nu}} - \frac{M_{b}}{M_{a}} \right) \qquad m_{c} = -\frac{v_{u}^{2} y_{c}^{\nu^{2}}}{M_{c}}$$

 $m_{a,b,c}$ entangle Dirac $y_{a,b,c}^{\nu}$ and Majorana $M_{a,b,c}$ neutrino couplings in a non-trivial way.

$$R_{TB}^{T}m_{\nu}R_{TB} = \begin{pmatrix} \frac{m_{c}}{6} & \frac{m_{c}}{3\sqrt{2}} & -\frac{m_{c}}{2\sqrt{3}} \\ \frac{m_{c}}{3\sqrt{2}} & \frac{m_{c}}{3} & \frac{6m_{a}-m_{c}}{\sqrt{6}} \\ \frac{m_{c}}{2\sqrt{3}} & \frac{6m_{a}-m_{c}}{\sqrt{6}} & \frac{4m_{b}-m_{c}}{2} \end{pmatrix} \text{ semi-diagonalized by a Tri-Bimaximal (TB) rotation} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sqrt{6}m_{a} \\ 0 & \sqrt{6}m_{a} & 2m_{b} \end{pmatrix} \quad (m_{1} \simeq \frac{m_{c}}{6})$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sqrt{6}m_a \\ 0 & \sqrt{6}m_a & 2m_b \end{pmatrix} \xrightarrow{\sqrt{6}m_a < 2m_b} m_3 \simeq 2m_b \ , \ m_2 \simeq 3\frac{m_a^2}{m_b} \ , \ \sin\theta = \sqrt{\frac{m_2}{m_3}} \simeq \sqrt{\frac{3}{2}}\frac{m_a}{m_b}$$
 Gatto-Sartori-Tonin structure

The correct neutrino mixing is obtained if $m_c < m_a < m_b$

 m_{ν} is compatible with a Normal Ordered neutrino spectrum

See: JHEP03(2018)007 Ivo de Medeiros Varzielas, Graham G. Ross and Jim Talbert

Model: UTZ see saw

As Dirac and Majorana matrices are in terms of rank-1 matrices, the UTZ is preserved after seesaw:

$$m_{\nu} \equiv -v_{u}^{2} Y_{\nu} M_{N}^{-1} Y_{\nu}^{T} = m_{c} \square_{c} + m_{b} \square_{b} + m_{a} (\square_{ab} + \square_{ba})$$

$$m_{a} = -\frac{v_{u}^{2}y_{a}^{\nu^{2}}}{M_{a}} \qquad m_{b} = m_{a} \left(2\frac{y_{b}^{\nu}}{y_{a}^{\nu}} - \frac{M_{b}}{M_{a}}\right) \qquad m_{c} = -\frac{v_{u}^{2}y_{c}^{\nu^{2}}}{M_{c}}$$

 $m_{a,b,c}$ entangle Dirac $y_{a,b,c}^{\nu}$ and Majorana $M_{a,b,c}$ neutrino couplings in a non-trivial way.

$$R_{TB}^{T}m_{\nu}R_{TB} = \begin{pmatrix} \frac{m_{c}}{6} & \frac{m_{c}}{3\sqrt{2}} & -\frac{m_{c}}{2\sqrt{3}} \\ \frac{m_{c}}{3\sqrt{2}} & \frac{m_{c}}{3} & \frac{6m_{a}-m_{c}}{\sqrt{6}} \\ \frac{m_{c}}{2\sqrt{3}} & \frac{6m_{a}-m_{c}}{\sqrt{6}} & \frac{4m_{b}-m_{c}}{2} \end{pmatrix} \qquad \begin{pmatrix} m_{c} < m_{a}, m_{b} \\ 0 & 0 & \sqrt{6}m_{a} \\ 0 & \sqrt{6}m_{a} & 2m_{b} \end{pmatrix} \qquad (m_{1} \simeq \frac{m_{c}}{6})$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{6}m_a \\ 0 & \sqrt{6}m_a & 2m_b \end{pmatrix} \qquad \frac{\sqrt{6}m_a < 2m_b}{m_3} \simeq 2m_b \quad , \quad m_2 \simeq 3\frac{m_a^2}{m_b} \quad , \quad \sin\theta = \sqrt{\frac{m_2}{m_3}} \simeq \sqrt{\frac{3}{2}}\frac{m_a}{m_b}$$

Fit of the model:

$$m_b = \sqrt{\Delta m_{31}^2}/2 \simeq 25 \text{ meV}$$

 $m_a = m_b \sqrt{\Delta m_{21}^2}/3 \simeq 9.5 \text{ meV}$

Neutrinos		Charged leptons	
m_a/meV 8	3.95 g	σu	3.01×10^{-4}
m_b/meV 2	24.6	$y_b^{ m e}$	3.90×10^{-3}
m_c/meV 2	2.26	$y_c^{ m e}$	7.16×10^{-2}
γ_m 2	2.51	$\gamma_{ m e}$	0.13
δ_m	1.26	$\delta_{ m e}$	-1.31

See: JHEP03(2018)007 Ivo de Medeiros Varzielas, Graham G. Ross and Jim Talbert

Model: Majorana Masses

Structure of Dirac matrices: $y_a^{e,\nu}: y_b^{e,\nu}: y_c^{e,\nu} \sim \epsilon_{e,\nu}^3: \epsilon_{e,\nu}^2: 1$

$$Y_{e,\nu} \simeq y_c^{e,\nu} \begin{pmatrix} 0 & \epsilon_{e,\nu}^3 & \epsilon_{e,\nu}^3 \\ \epsilon_{e,\nu}^3 & \epsilon_{e,\nu}^2 & \epsilon_{e,\nu}^2 \\ \epsilon_{e,\nu}^3 & \epsilon_{e,\nu}^2 & 1 \end{pmatrix} \qquad \begin{aligned} \epsilon_e &\equiv y_a^e/y_b^e = 0.15 \\ \epsilon_\nu &\equiv y_a^\nu/y_b^\nu \text{ not fixed} \\ \text{by phenomenology} \end{aligned}$$

$$\epsilon_e \equiv y_a^e / y_b^e = 0.15$$

$$m_{a,c} = -\frac{v_u^2 y_{a,c}^{\nu}^2}{M_{a,c}}$$

$$m_b = m_a \left(2 \frac{y_b^{\nu}}{y_a^{\nu}} - \frac{M_b}{M_a} \right)$$

For the correct neutrino mixing $m_c < m_a < m_b$:

$$\frac{m_a}{m_b} = \left(2\frac{y_b^{\nu}}{y_a^{\nu}} - \frac{M_b}{M_a}\right) \sim \left(\frac{2}{\epsilon_{\nu}} - \frac{M_b}{M_a}\right) \xrightarrow{m_a < m_b} \frac{M_a}{M_b} < \epsilon_{\nu}$$

$$\frac{m_a}{m_c} = \frac{y_c^{\nu 2}}{y_a^{\nu 2}} \frac{M_a}{M_c} \sim \frac{1}{\epsilon_{\nu}^6} \frac{M_a}{M_c} \xrightarrow{m_c < m_a} \frac{M_a}{M_a} < \epsilon_{\nu}^6$$

 N_3 with $M_3 \sim M_c$ effectively decouples after seesaw

We expect a hierarchical spectrum for the RH masses: $M_1 < M_2 \ll M_3$

LpGn: Boltzmann Equations

Generation of the BAU through N_i -leptogenesis is a non equilibrium process treated by means of **Boltzmann equations (BEs)**.

We can use simplified BEs, in MSSM, 3-flavoured regime:

$$\frac{dY_{N_i}}{dz} = -2D(Y_{N_i} - Y_{N_i}^{eq}), \quad \frac{dY_{\tilde{N}_i}}{dz} = -2D(Y_{\tilde{N}_i} - Y_{\tilde{N}_i}^{eq}) \qquad Y_B = \frac{10}{31} \sum_{\alpha} Y_{\Delta_{\alpha}}(z \gg 1)$$

$$\frac{dY_{\Delta_{\alpha}}}{dz} = 2\varepsilon_{N_i}^{\alpha} D(Y_{N_i} - Y_{N_i}^{eq}) + 2\varepsilon_{\tilde{N}_i}^{\alpha} D(Y_{\tilde{N}_i} - Y_{\tilde{N}_i}^{eq}) + \frac{K_{N_i}^{\alpha}}{K_{N_i}} W \sum_{\alpha'} A_{\alpha\alpha'} Y_{\Delta_{\alpha}'}$$

$$(\alpha = e, \mu, \tau, i = 1, 2, 3)$$

 $Y_{N_i}, Y_{\tilde{N}_i}$: number densities of RH (s)neutrinos.

 $Y_{\Delta_{\alpha}}$: total (particle+sparticle) number densities of $\Delta_{\alpha}=B/3-L_{\alpha}$ (conserved by sphalerons)

 $D, W = \Gamma_{D(W)}/Hz$: decay and washout terms <

 $\mathcal{E}_{N_i}^{\alpha}$, $K_{N_i}^{\alpha}$: decay factors and CP asymmetries (geometrical model factors)

LpGn: Boltzmann Equations

Generation of the BAU through N_i -leptogenesis is a non equilibrium process treated by means of **Boltzmann equations (BEs)**.

We can use simplified BEs, in MSSM, 3-flavoured regime:

$$\frac{dY_{N_i}}{dz} = -2D(Y_{N_i} - Y_{N_i}^{eq}), \quad \frac{dY_{\tilde{N}_i}}{dz} = -2D(Y_{\tilde{N}_i} - Y_{\tilde{N}_i}^{eq}) \qquad Y_B = \frac{10}{31} \sum_{\alpha} Y_{\Delta_{\alpha}}(z \gg 1)$$

$$\frac{dY_{\Delta_{\alpha}}}{dz} = 2\varepsilon_{N_i}^{\alpha}D(Y_{N_i} - Y_{N_i}^{eq}) + 2\varepsilon_{\tilde{N}_i}^{\alpha}D(Y_{\tilde{N}_i} - Y_{\tilde{N}_i}^{eq}) + \frac{K_{N_i}^{\alpha}}{K_{N_i}}W\sum_{\alpha'} A_{\alpha\alpha'}Y_{\Delta_{\alpha}'}$$

$$(\alpha = e, \mu, \tau, i = 1, 2, 3)$$

 $Y_{N_i}, Y_{\tilde{N}_i}$: number densities of RH (s)neutrinos.

 $Y_{\Delta_{\alpha}}$: total (particle+sparticle) number densities of $\Delta_{\alpha}=B/3-L_{\alpha}$ (conserved by sphalerons)

 $D, W = \Gamma_{D(W)}/Hz$: decay and washout terms

 $\mathcal{E}_{N_i}^{\alpha}$, $K_{N_i}^{\alpha}$: decay factors and CP asymmetries (geometrical model factors)

See: arXiv:hep-ph/0609038v4, S. Antusch, S. F. King, A. Riotto

LpGn: Decay Factors & CP asymmetries

The nature of RH neutrino masses imply the decays $N_i \to L_\alpha H_u$ and $N_i \to \overline{L}_\alpha H_u^*$

Decay factors dominated by tree level diagram

$$K_{N_i}^{\alpha} \equiv \frac{\Gamma(N_i \to L_{\alpha} H_u) + \Gamma(N_i \to \overline{L}_{\alpha} H_u^*)}{\mathrm{H}(M_i)}$$
$$K_{N_i}^{\alpha} = \frac{v_u^2}{m_* M_i} (\lambda_{\nu})_{i\alpha}^{\dagger} (\lambda_{\nu})_{\alpha i}$$

CP asymmetries arise only at loop level

$$\varepsilon_{N_i}^{\alpha} \equiv \frac{\Gamma(N_i \to L_{\alpha} H_u) - \Gamma(N_i \to \overline{L}_{\alpha} H_u^*)}{\Gamma(N_i \to L_{\alpha} H_u) + \Gamma(N_i \to \overline{L}_{\alpha} H_u^*)}$$

$$\varepsilon_{N_i}^{\alpha} = \frac{1}{8\pi} \sum_{j \neq i} \frac{\operatorname{Im}[(\lambda_{\nu})_{i\alpha}^{\dagger}(\lambda_{\nu}^{\dagger}\lambda_{\nu})_{ij}(\lambda_{\nu})_{\alpha j}]}{(\lambda_{\nu}^{\dagger}\lambda_{\nu})_{ii}} \times \begin{cases} -3M_i/M_j & \text{if } M_i \\ 2M_j/M_i & \text{if } M_i < M_j \end{cases}$$

They are fully geometrical factors that depend only on the specific model!

$$\lambda_{\nu}^{*} = V_{eL} Y_{\nu} V_{N}^{T}$$

$$(Y_{e}^{diag} = V_{eL} Y_{e} V_{eR}^{\dagger}) \longleftarrow (M_{N}^{diag} = V_{N} Y_{e} V_{N}^{T})$$

See: arXiv:hep-ph/0609038v4, S. Antusch, S. F. King, A. Riotto

LpGn: Decay Factors & CP asymmetries

At LO we can consider
$$\lambda_{\nu} \sim Y_{\nu} \simeq y_{c}^{\nu} \begin{pmatrix} 0 & \epsilon_{\nu}^{3} & \epsilon_{\nu}^{3} \\ \epsilon_{\nu}^{3} & \epsilon_{\nu}^{2} & \epsilon_{\nu}^{2} \\ \epsilon_{\nu}^{3} & \epsilon_{\nu}^{2} & 1 \end{pmatrix}$$

Washout weaker in the electron

$$K_{N_1}^{\alpha} \sim \left| \frac{M_3}{M_1} \right| \epsilon_{\nu}^6 \begin{pmatrix} \epsilon_{\nu}^2 \\ 1 \\ 1 \end{pmatrix}$$
 Aligned
$$K_{N_2}^{\alpha} \sim \left| \frac{M_3}{M_2} \right| \epsilon_{\nu}^4 \begin{pmatrix} \epsilon_{\nu}^2 \\ 1 \\ 1 \end{pmatrix}$$

$$K_{N_2}^{\alpha} \sim \left| \frac{M_3}{M_2} \right| \epsilon_{\nu}^4 \begin{pmatrix} \epsilon_{\nu}^2 \\ 1 \\ 1 \end{pmatrix}$$

 $\varepsilon_{N_1}^{\alpha} \sim \frac{3}{8\pi} \left| \frac{M_1}{M_2} \right| \varepsilon_{\nu}^{4}$ compared with $\varepsilon_{N_1}^{\mu,\tau}$ $\varepsilon_{N_1}^{\mu,\tau} = \text{the dominant contributions to } Y_{\Delta_{\alpha}}^{i=1}$

Always subdominant

$$\boldsymbol{\varepsilon_{N_2}^{\alpha}} \sim \frac{3}{8\pi} \left| \frac{M_2}{M_3} \right| \left| \frac{\epsilon_{\nu}^4}{\epsilon_{\nu}^2} \right| + \frac{1}{4\pi} \left| \frac{M_1}{M_2} \right| \epsilon_{\nu}^6 \left(\frac{\epsilon_{\nu}^2}{1} \right)$$

This gives an important contribution when $M_2 \sim M_3$

Always subdominant compared with $\boldsymbol{\varepsilon}_{N_1}^{lpha}$

Analysis: Procedure

Assumption of hierarchical RH neutrino masses: $M_1 < M_2 \ll M_3$. Within this framework:

 \longrightarrow Any N_3 generated asymmetry is assumed negligible.

The two lightest RH neutrinos do not interfere with each other: the generation of the asymmetry from N_1 decays and from N_2 decays proceed independently.

See: ArXiv1904.10545, Fredrik Björkeroth, Ivo de Medeiros Varzielas, M.L. López-Ibáñez, AM, Oscar Vives

Analysis: Procedure

Inputs:

Generate randomly $|M_{a,b}| \in [10^7, 10^{14}] \, \mathrm{GeV}$ $\gamma_N, \delta_N \in [-\pi, \pi]$ $(M_c = 5 \times 10^{14} \, \mathrm{GeV})$

Dirac couplings are entangled by $M_{a,b,c}$ and $m_{a,b,c}$ (fixed by fit)

Model parameters:

Diagonalize Y_e, M_N and obtain $\lambda_{\nu}^* = V_{eL} Y_{\nu} V_N^T$

Solve BEs (2 steps):

Solve for $Y_{\Delta_{\alpha}}$ from BEs with $N_{i=2}$ assuming zero initial conditions

Solve for $Y_{\Delta_{\alpha}}$ from BEs with $N_{i=1}$ assuming $Y_{\Delta}^{(i=2)}$ as initial conditions

 Y_B is computed from $Y_{\Delta_{\alpha}}^{(i=1)}$ Accept only points that give Y_B within 20% Y_B^{exp}

See: ArXiv1904.10545, Fredrik Björkeroth, Ivo de Medeiros Varzielas, M.L. López-Ibáñez, AM, Oscar Vives

Analysis: Results

 N_1 decays only

 N_1 and N_2 decays

Allowed values of RH neutrino masses $M_{1,2}$ giving Y_B within 20% ($M_3 \simeq 5 \times 10^{14} \, \mathrm{GeV}$)

See: ArXiv1904.10545, Fredrik Björkeroth, Ivo de Medeiros Varzielas, M.L. López-Ibáñez, AM, Oscar Vives

Analysis: Results

Correct BAU above

$$M_1 \simeq 4 \times 10^9 \,\text{GeV} \,, M_2 \simeq 2 \times 10^{11} \,\text{GeV}$$

Two regions:

$$M_1/M_2 \in [0.002, 0.1]$$
 M_1
 $M_2 \ll M_3$ M_2/M_2

$$M_1 \ll M_2$$

$$M_2/M_3 > 0.1$$

BAU consistent with leptogenesis from N_1

 N_1 and N_2 decays

Allowed values of RH neutrino masses $M_{1,2}$ giving Y_B within 20% ($M_3 \simeq 5 \times 10^{14} \, \mathrm{GeV}$)

Analysis: Results

Allowed values of RH input mass parameters $(M_{a,b})$

Allowed values of Dirac neutrino couplings $(y_{a,b}^{\nu})$

Conclusions

We have studied the generation of the BAU through N_1+N_2 -leptogenesis in the UTZ $SO(10)\times\Delta(27)\times Z_N$ flavoured GUT model

Leptogenesis yields the observed BAU for a considerable region of the parameter space.

The preferred mechanism is N_1 leptogenesis: $M_1 > 4 \times 10^9$ GeV, with $M_2 > 2 \times 10^{11}$ GeV, while $0.002 < M_1/M_2 < 0.1$. N_2 leptogenesis possible but not compatible with the model!

#