

TRI-DIRECT LITTLEST SEESAW WITH PRECISION MEASUREMENTS

TSECHUN WANG (<u>wangzejun@mail.sysu.edu.cn</u>) SYSU Collaboration with Gui-Jun Ding , Yu-Feng Li⁻, Jian Tang @FLASY 2019, on 29TH/JULY/2019

arXiv:1905.12939 submitted to PRD arXiv:1907.01371 submitted to EPJC

LEPTONIC FLAVOUR SYMMETRY

- It is used to be explain neutrino oscillations at the low energy. [talks by Ma, King, Zhou, Tsumura..etc]
- NOW, it is also used to explain baryogengesis at the high energy and DM in the dark sector. [talks by Ma, King, Chen, and Mondragon..etc]
- Understanding the neutrino oscillation helps us to understand physics at the high energy or in the dark sector with a flavour symmetry model.

—> The measurement of neutrino oscillation parameters is important. <u>A messenger from the high-energy and dark-sector physics!</u>
GOOD NEWS: We are entering in the precision-measurement era (<1% for 1σ precisions), e.g. DUNE, T2HK, JUNO, etc.

THE AIM OF THIS STUDY IS TO KNOW...

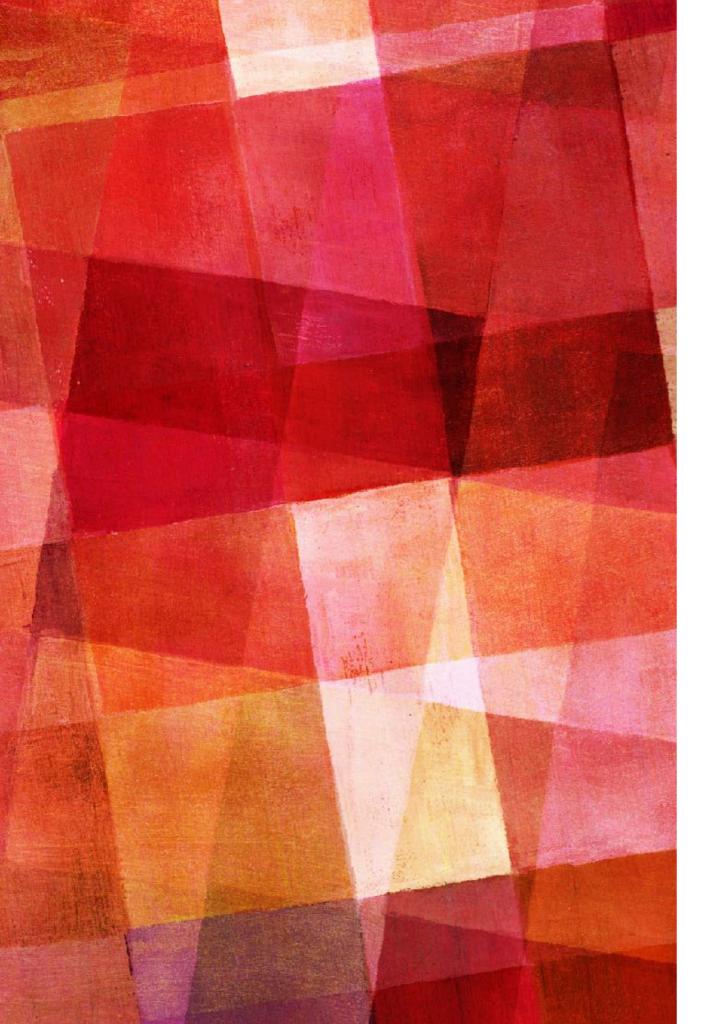
► Using tri-direct littlest seesaw as an example,

- ► 1. Is the precision of oscillation parameters good enough?
- ► 2. Why do we achieve the precision measurement?
- ► 3. How do we achieve the precision measurement?
- > 4. What is the motivation for precision measurement from the point of view of flavour symmetry?

PRECISION MEASUREMENTS FROM THE PERSPECTIVE OF FLAVOUR SYMMETRY

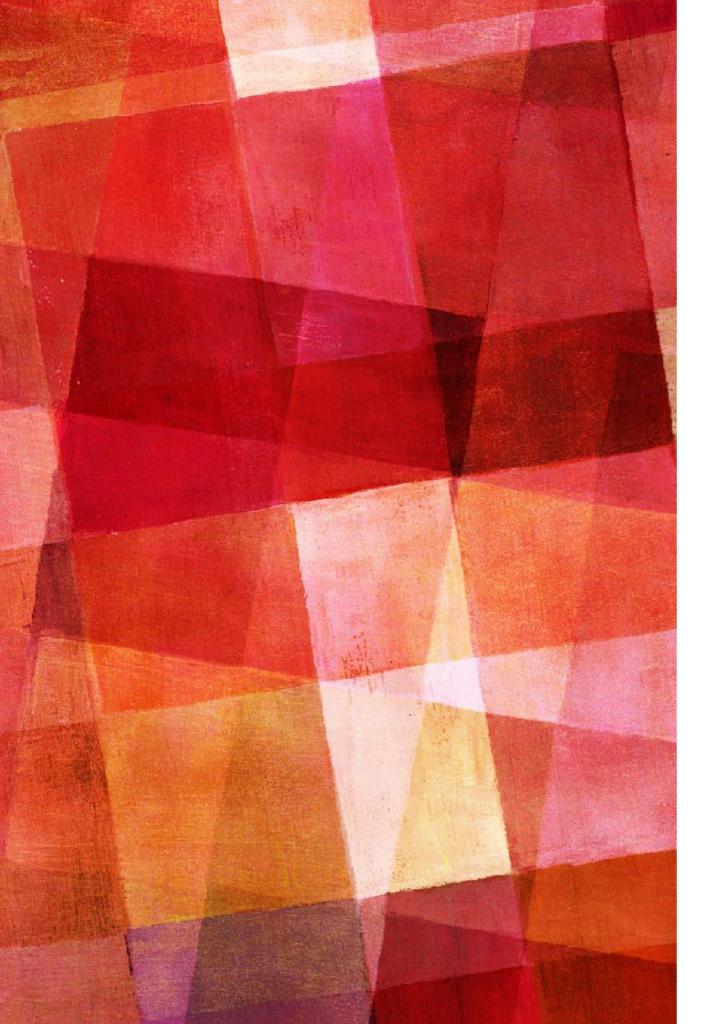
TSECHUN WANG (<u>wangzejun@mail.sysu.edu.cn</u>) SYSU Collaboration with Gui-Jun Ding , Yu-Feng Li⁻, Jian Tang @FLASY 2019, on 29TH/JULY/2019

arXiv:1905.12939 submitted to PRD arXiv:1907.01371 submitted to EPJC



OUTLINE

- A flavour symmetry model in neutrino oscillations: tri-direct littlest seesaw models as example.
- ► Message 1 & 2
- ► Message 3 & 4
- Summary of messages and conclusions

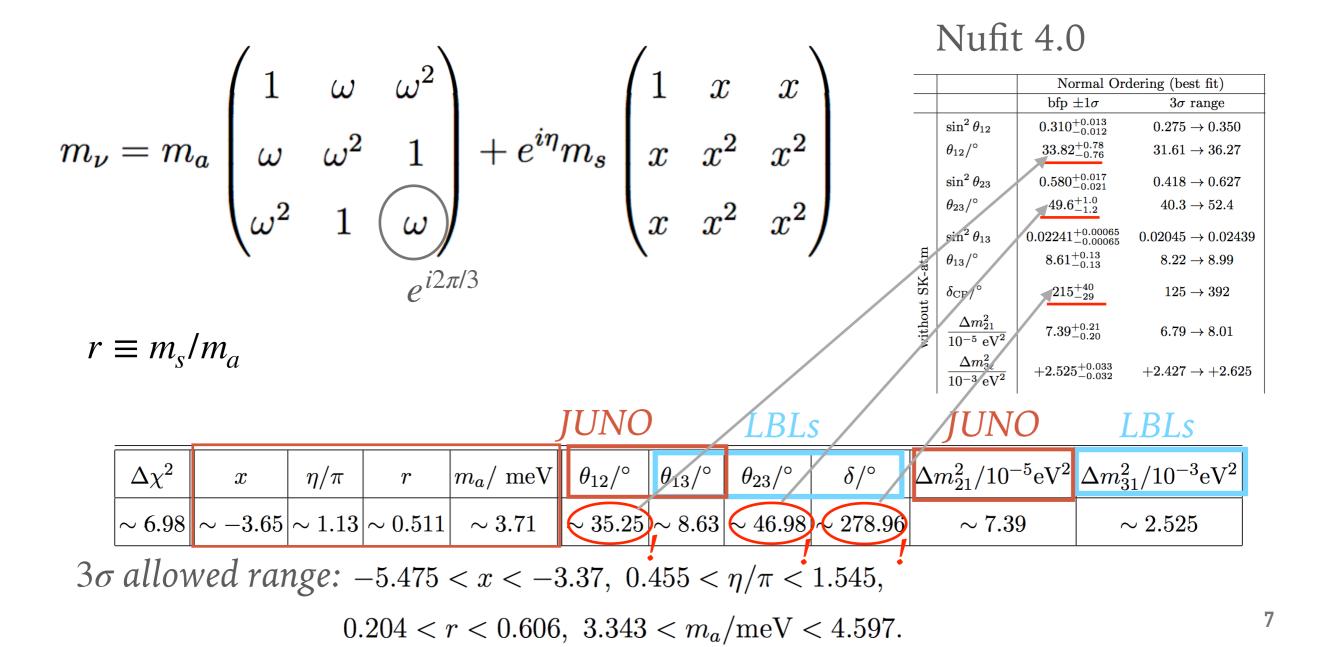


OUTLINE

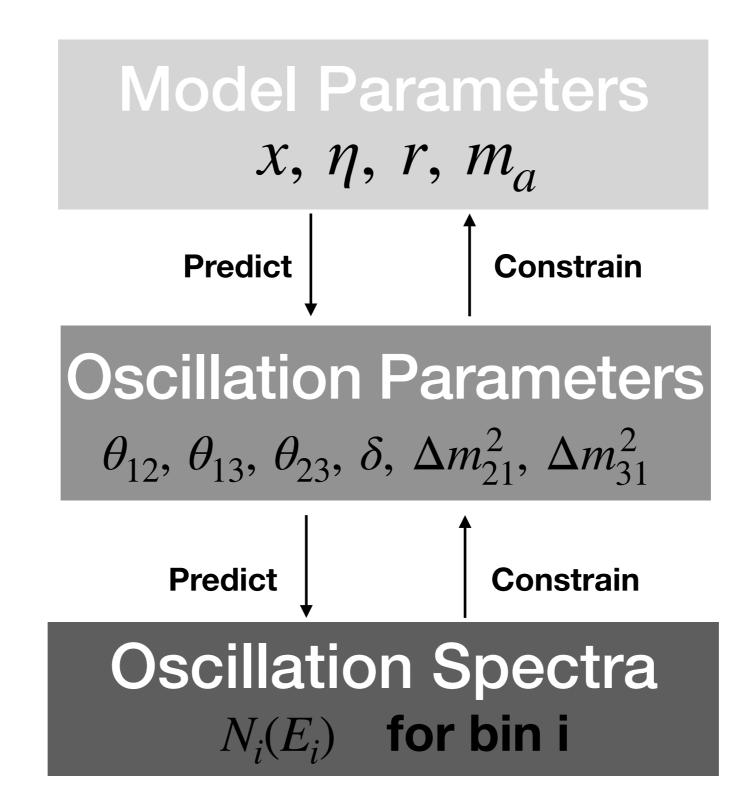
 A flavour symmetry model in neutrino oscillations: tri-direct littlest seesaw models as example.

King's talk this morning. LITTLEST SEESAW FOR TRI-DIRECT APPROACH (TDLS)

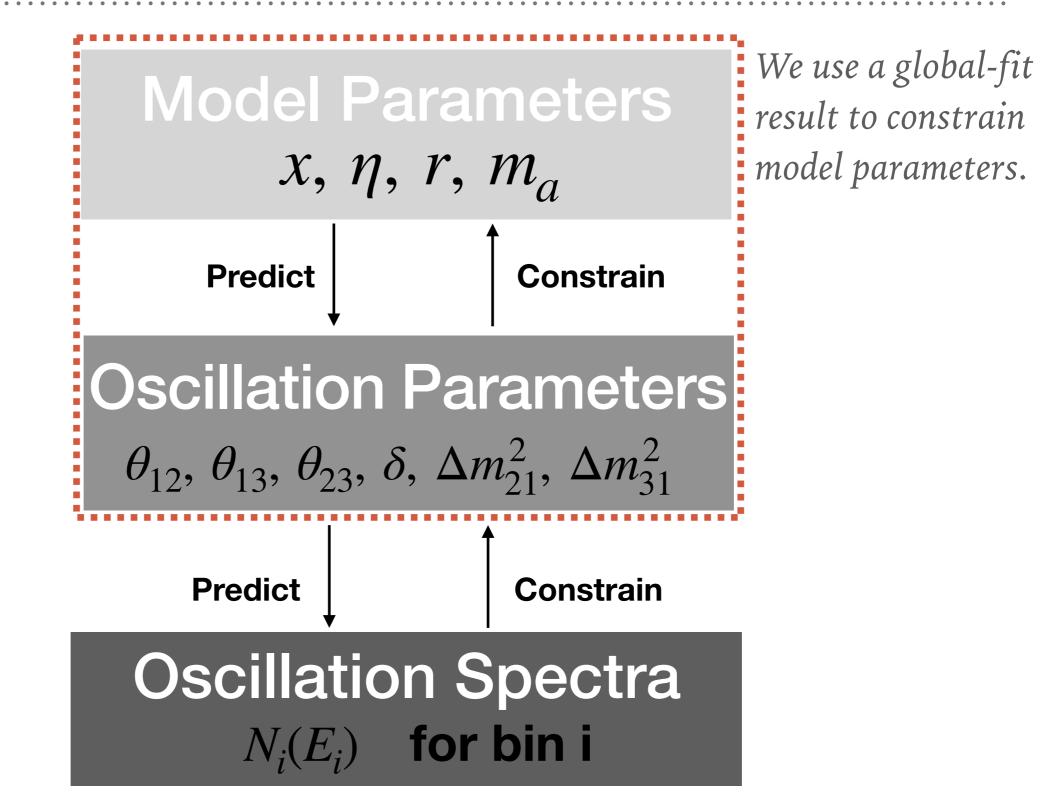
- Proposed by Gui-Jun Ding, Stephen F. King, Cai-Chang Li. JHEP 12 (2018) 003, arXiv:1807.07538 [hep-ph]
- Four parameters in the neutrino mass matrix.



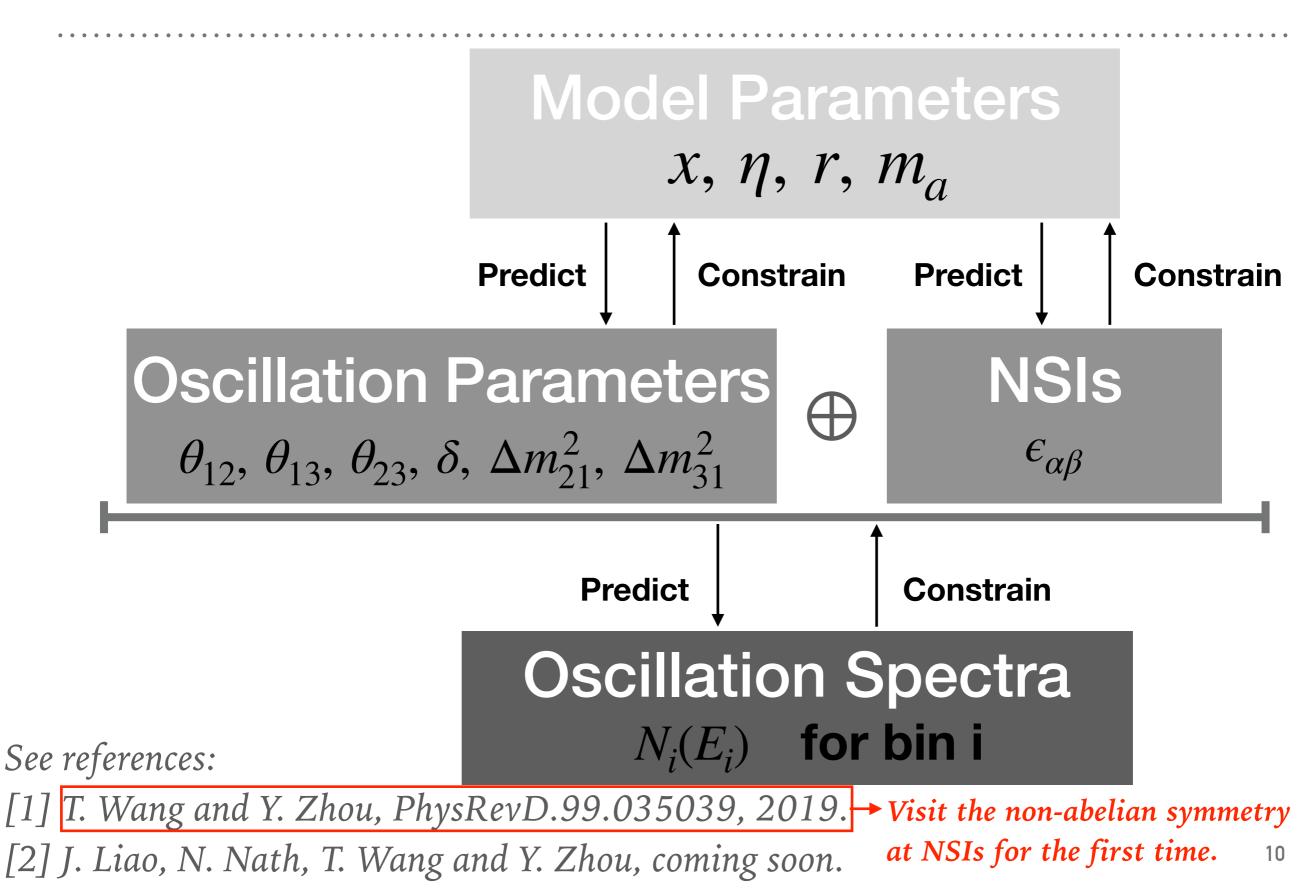
FLAVOUR SYMMETRY & OSCILLATIONS



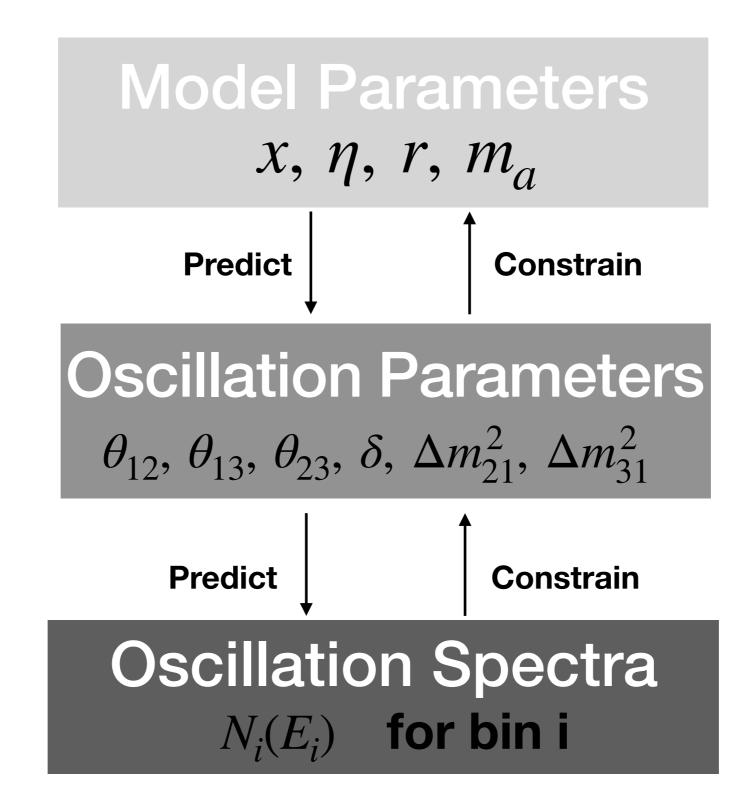
FLAVOUR SYMMETRY & OSCILLATIONS



FLAVOUR SYMMETRY & OSCILLATIONS WITH NONSTANDARD INTERACTIONS (NSIS)



IN THIS TALK WE FOCUS ON . . .



EXPERIMENTS

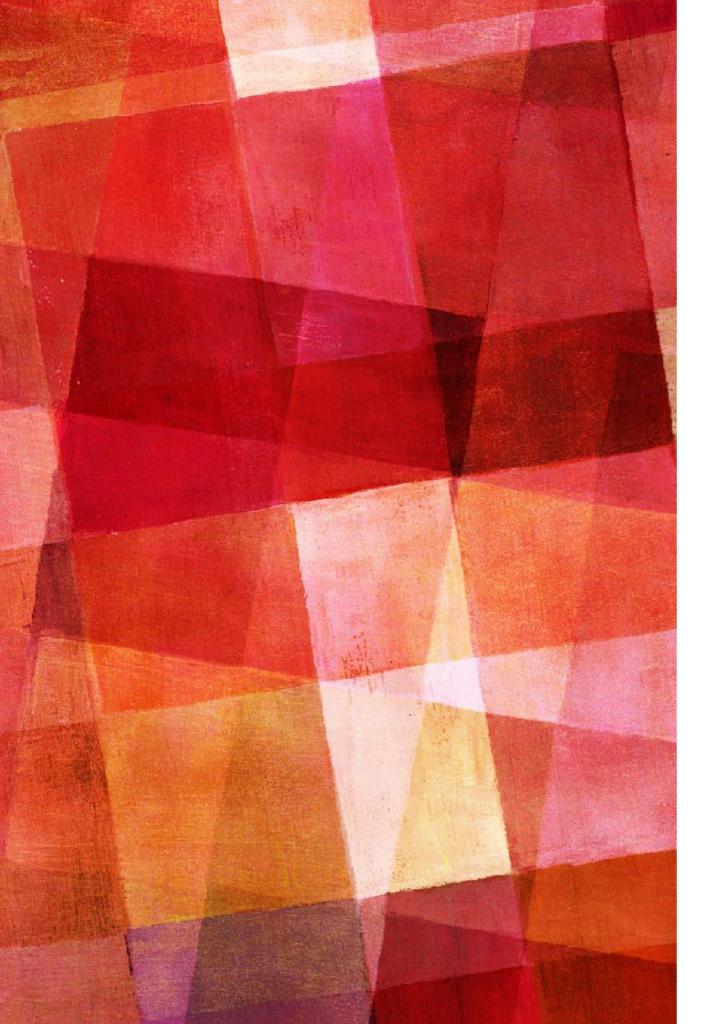
► ON-GOING (~2025):
Full-run NOvA: 36 × 10²⁰ POT
Full-run T2K: 7.8 × 10²¹ POT

► UP-COMING (~2027): 6-year JUNO

► UP-COMING (~2035):

7-year DUNE: 1.47×10^{21} POT 10-year T2HK: 2.5 years for ν + 7.5 years for $\bar{\nu}$ with a 1.3 MW proton beam

► UNDER-CONSIDERATION (2035~): 10-year MOMENT: 5 years for ν + 5 years for $\bar{\nu}$ with 1.1×10^{24} POT



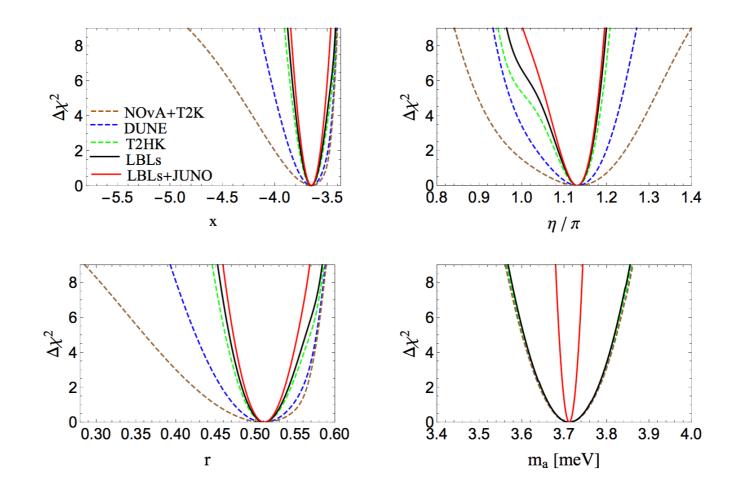
OUTLINE

- A flavour symmetry model in neutrino oscillations: tri-direct littlest seesaw models as example.
- ► Message 1 & 2

LSTD IN THE NEAR FUTURE

- We consider full-run NOvA and T2K, DUNE, T2HK, JUNO, etc.
- ► Great improvements by combining all exps. is seen.

 3σ allowed range with NuFit4.0: -5.475 < x < -3.37, $0.455 < \eta/\pi < 1.545$, 0.204 < r < 0.606, $3.343 < m_a/\text{meV} < 4.597$.



MESSAGE 1

. .

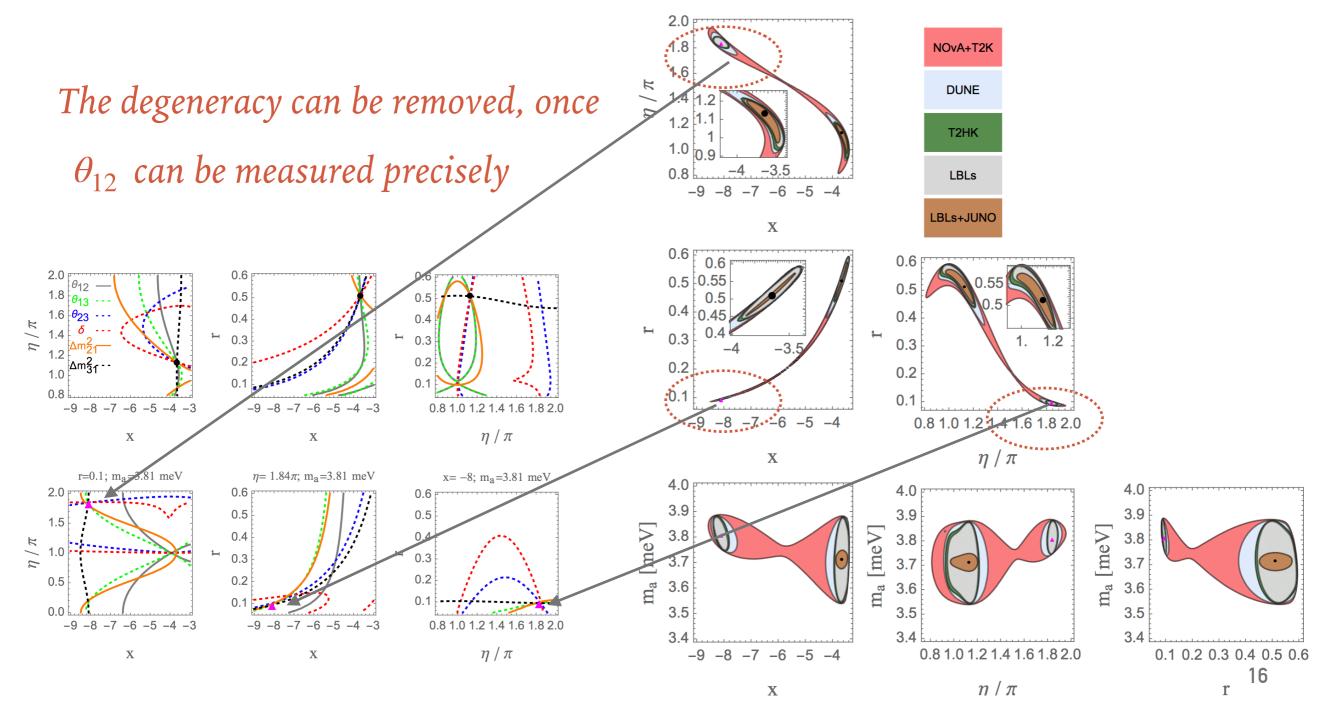
► 1. Understand the model better.

• •

.

LSTD IN THE NEAR FUTURE

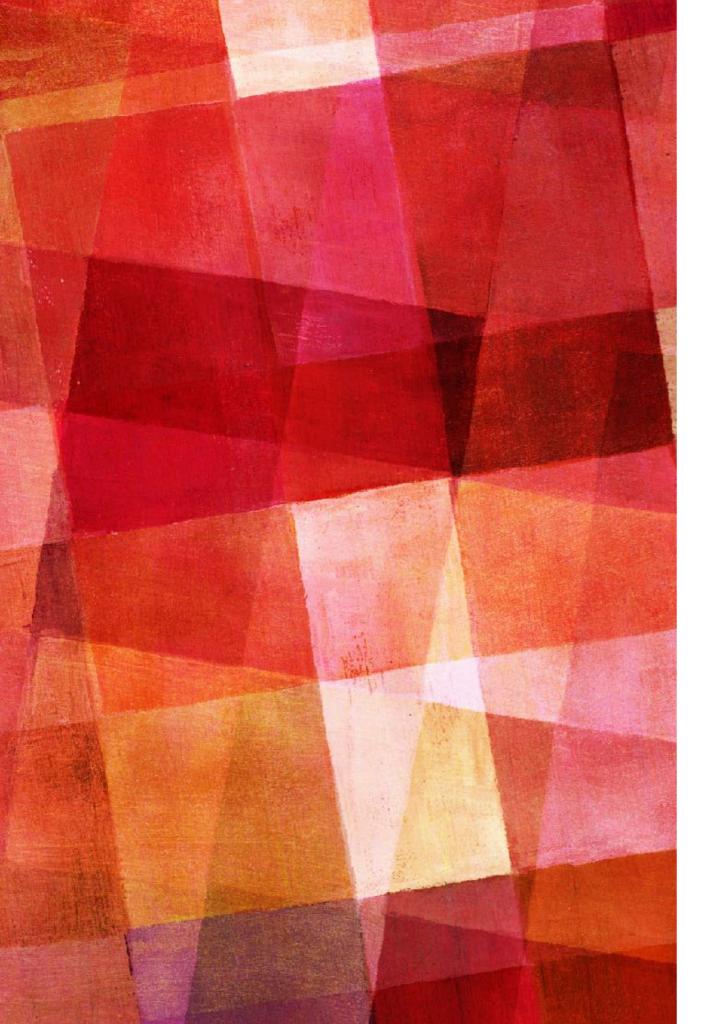
We consider full-run NOvA and T2K, DUNE, T2HK, JUNO, etc.



MESSAGE 1 & 2

► 1. Understand the model better.

► 2. Resolve the possible degeneracy problem.



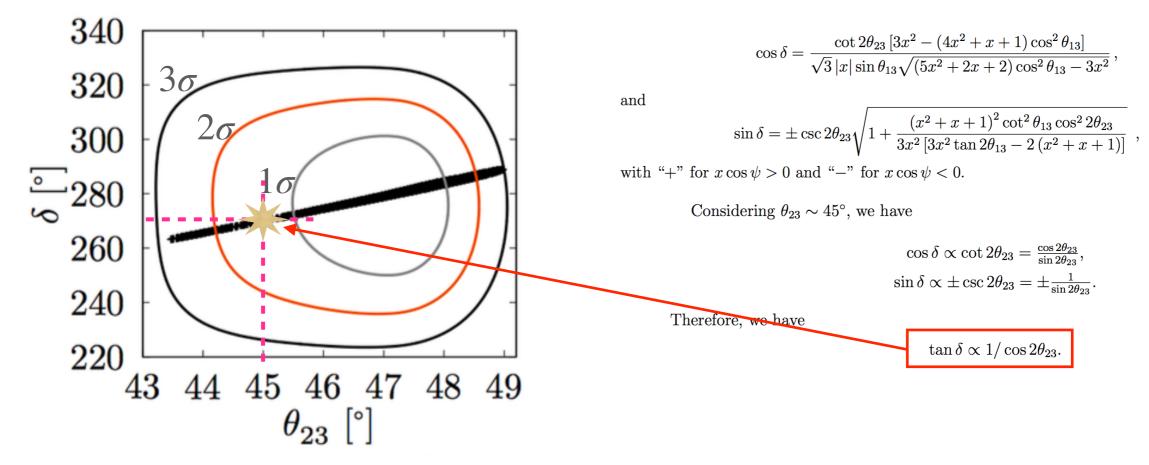
OUTLINE

- A flavour symmetry model in neutrino oscillations: tri-direct littlest seesaw models as example.
- ► Message 1 & 2
- ► Message 3 & 4

PROJECTION ON OSCILLATION PARAMETERS

► With simulated MOMENT data.

► We see the sum rule predicted by TDLS.



Cross: the projection of 3σ surface from model-parameter space to oscillation-parameter space.

Contour: without assuming TDLS.

MESSAGE 3

• •

► 3. Discover sum rules.

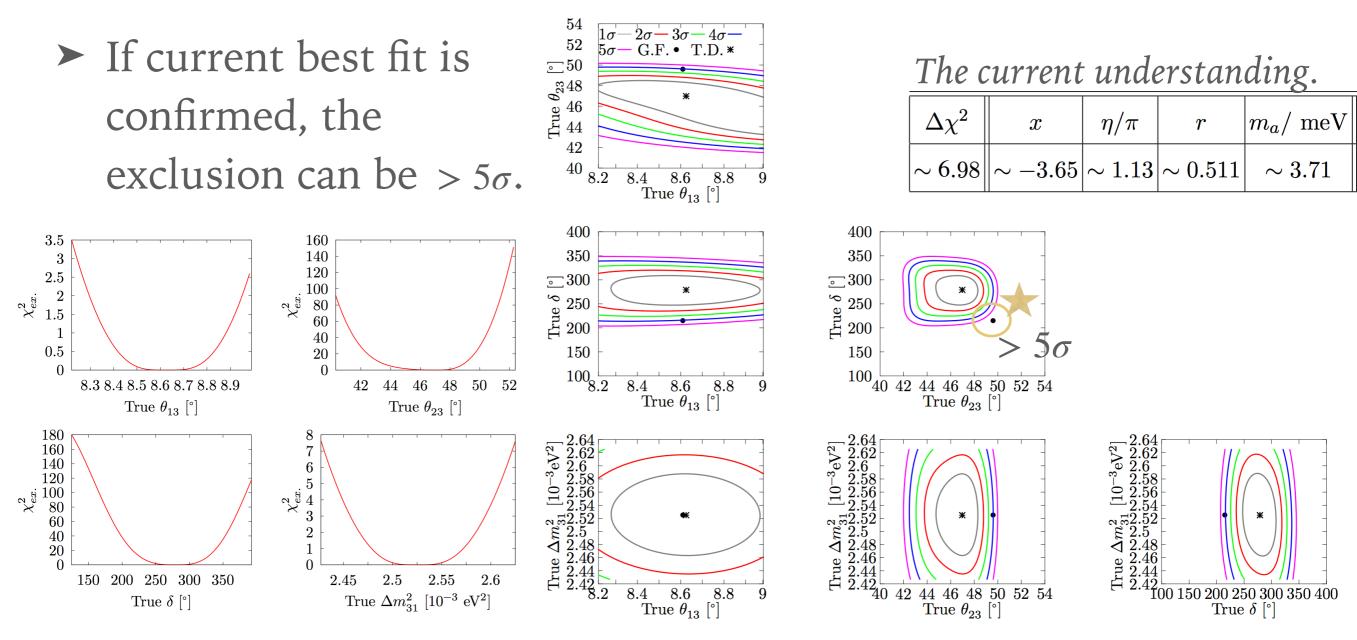
. . .

• •

.

LSTD VS. THE MOMENT EXPERIMENT (MODEL EXCLUSION)

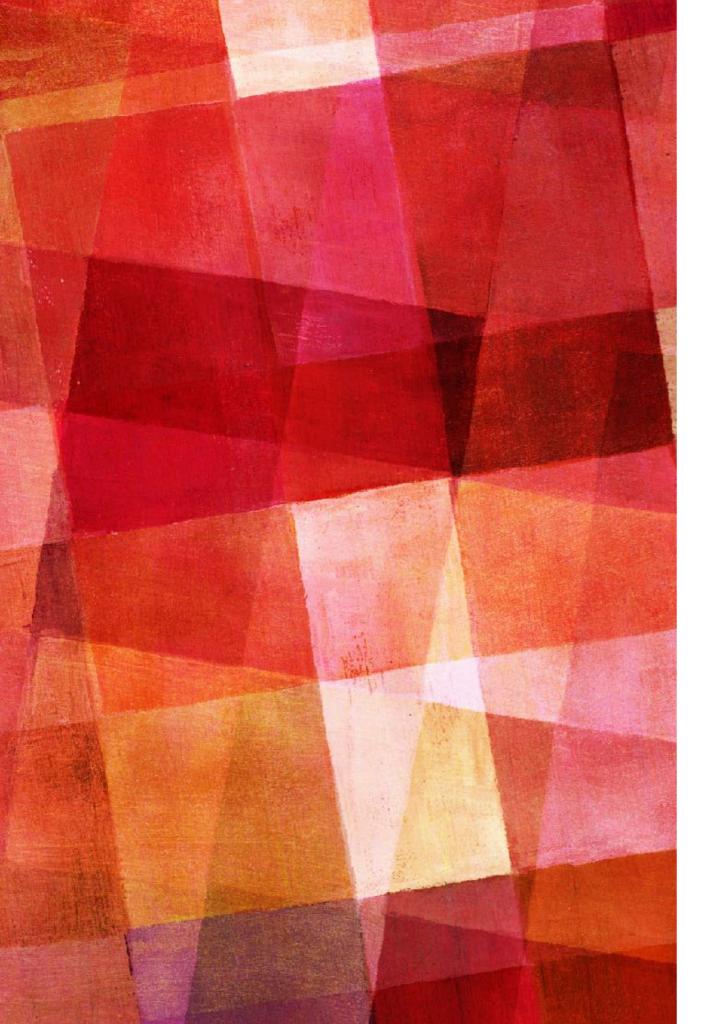
> θ_{23} and δ are the most important two parameters for MOMENT to exclude this model.



MESSAGE 3 & 4

► 3. Discover sum rules.

 4. Future LBLs well exclude those models that do not fit θ₂₃ and δ in the global-fit result, e.g. littlest seesaw (P. Ballet, at. el., JHEP03(2017)110, arXiv: 1612.01999).



OUTLINE

- A flavour symmetry model in neutrino oscillations: tri-direct littlest seesaw models as example.
- ► Message 1 & 2
- ► Message 3 & 4
- Summary of messages and conclusions

SUMMARY: PRECISION MEASUREMENTS CAN...

- ► Message 1. Understand the model better.
- ► Message 2. Resolve the possible degeneracy problem.
- ► Message 3. Discover sum rules.
- Message 4. Future LBLs well exclude those models that do not fit θ₂₃ and δ in the global-fit result.

SUMMARY AND CONCLUSION

- ► Message 1. Understand the model better.
- ► Message 2. Resolve the possible degeneracy problem.
- ► Message 3. Discover sum rules.
- Message 4. Future LBLs well exclude those models that do not fit θ₂₃ and δ in the global-fit result.

► Conclusion:

To better understand the flavour symmetry, we need to keep improving the precision of oscillation parameters.

Thank you very much for your attention!!

BACK-UP

MODEL PARAMETERS AND OSCILLATION PARAMETERS

.

.

model parameters	x, η, r, m_a
combinations of model parameters	$y = \frac{5x^2 + 2x + 2}{2(x^2 + x + 1)}(m_a + e^{i\eta}m_s),$
	$z = -\frac{\sqrt{5x^2 + 2x + 2}}{2(x^2 + x + 1)} \left[(x + 2)m_a - x(2x + 1)e^{i\eta}m_s \right],$
	$w = \frac{1}{2(x^2 + x + 1)} \left[(x + 2)^2 m_a + x^2 (2x + 1)^2 e^{i\eta} m_s \right],$
	$\sin \psi = rac{\Im(y^*z + wz^*)}{ y^*z + wz^* }, \cos \psi = rac{\Re(y^*z + wz^*)}{ y^*z + wz^* }.$
	$\sin 2 heta = rac{2 y^*z+wz^* }{\sqrt{(w ^2- y ^2)^2+4 y^*z+wz^* ^2}},$
	$\cos 2\theta = \frac{ w ^2 - y ^2}{\sqrt{(w ^2 - y ^2)^2 + 4 y^*z + wz^* ^2}}.$
oscillation parameters	$\Delta m_{21}^2 = m_2^2 = \frac{1}{2} \left[y ^2 + w ^2 + 2 z ^2 - \frac{ w ^2 - y ^2}{\cos \theta} \right],$
	$\left \Delta m_{31}^2 = m_3^2 = \frac{1}{2} \left[y ^2 + w ^2 + 2 z ^2 + \frac{ w ^2 - y ^2}{\cos \theta} \right],$
	$\sin^2 \theta_{12} = 1 - \frac{3x^2}{3x^2 + 2(x^2 + x + 1)\cos^2 \theta},$
	$\sin^2 heta_{13} = rac{2ig(x^2+x+1ig)\sin^2 heta}{5x^2+2x+2},$
	$\sin^2 \theta_{23} = \frac{1}{2} + \frac{x\sqrt{3(5x^2 + 2x + 2)}\sin 2\theta \sin \psi}{2[3x^2 + 2(x^2 + x + 1)\cos^2 \theta]},$
	$\cos \delta = \frac{\cot 2\theta_{23} [3x^2 - (4x^2 + x + 1)\cos^2 \theta_{13}]}{\sqrt{3} x \sin \theta_{13} \sqrt{(5x^2 + 2x + 2)\cos^2 \theta_{13} - 3x^2}},$
	$\sin \delta = \pm \csc 2\theta_{23} \sqrt{1 + \frac{(x^2 + x + 1)^2 \cot^2 \theta_{13} \cos^2 2\theta_{23}}{3x^2 [3x^2 \tan^2 \theta_{13} - 2(x^2 + x + 1)]}}.$

LSTD VS. THE MOMENT EXPERIMENT (MODEL PARA. CONSTRAIN)

MOMEN can improve the 3σ uncertainty by at least 50% compared to our current understanding.

