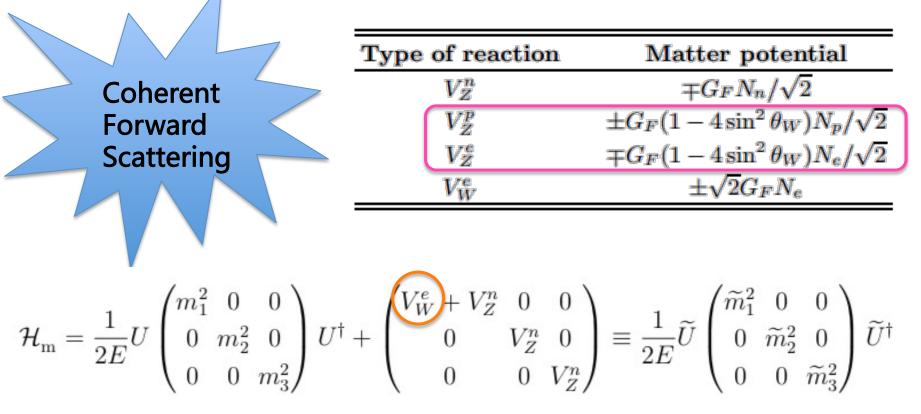
Asymptotic Behaviors of Neutrino Mixing in Matter

Jing-yu Zhu (TDLI&SJTU)

FLASY2019, Hefei, July 26, 2019

Based on Z.Z. Xing and J.Y. Zhu, 1905.08644; 1603.02002 (JHEP)


Jing-yu Zhu

Outline

- Introduction: terrestrial matter effects on neutrino oscillations
- Formulas: sum rules for neutrino mixing in a medium with constant matter density
- Application (1): understanding asymptotic behaviors of neutrino mixing in dense matter
- Application (2): understanding extremes of the effective Jarlskog invariant in matter
- Concluding remarks

Terrestrial matter effects

L. Wolfenstein (1978) S. P. Mikheev and A. Yu. Smirnov (1985)

- ➤ In the case of antineutrino beams, U→U*, matter potentials flip their signs.
- When unitarity violations (sterile neutrinos) are included, the contributions of NC coherent forward scattering are not be trivial.

Jing-yu Zhu

Preliminary formulas $\mathcal{H}'_{\rm m} = \frac{1}{2E} \left[U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{22} \end{pmatrix} U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] \equiv \frac{1}{2E} \left[\widetilde{U} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \widetilde{\Delta}_{21} & 0 \\ 0 & 0 & \widetilde{\Delta}_{22} \end{pmatrix} \widetilde{U}^{\dagger} + BI \right]$ $\Delta_{ij} \equiv m_i^2 - m_j^2 \quad \left| \widetilde{\Delta}_{ij} \equiv \widetilde{m}_i^2 - \widetilde{m}_j^2 \right| \quad \left| A = 2EV_W^e \right| \left| B = \widetilde{m}_1^2 - m_1^2 - 2EV_Z^n \right|$ $\widetilde{\Delta}_{21} = \frac{2}{2} \sqrt{x^2 - 3y} \sqrt{3(1 - z^2)}$, NMO V.D. Barger et al. (1980) H.W. Zaglauer et al. (1988) $\widetilde{\Delta}_{31} = \frac{1}{3}\sqrt{x^2 - 3y} \left[3z + \sqrt{3(1 - z^2)} \right] ,$ $B = \frac{1}{3}x - \frac{1}{3}\sqrt{x^2 - 3y} \left[z + \sqrt{3(1 - z^2)}\right] \qquad B = \frac{1}{3} \left(\Delta_{21} + \Delta_{31} + A - \widetilde{\Delta}_{21} - \widetilde{\Delta}_{31}\right)$ $x = \Delta_{21} + \Delta_{31} + A ,$

$$y = \Delta_{21}\Delta_{31} + A \left[\Delta_{21} \left(1 - |U_{e2}|^2 \right) + \Delta_{31} \left(1 - |U_{e3}|^2 \right) \right]$$
$$z = \cos \left[\frac{1}{3} \arccos \frac{2x^3 - 9xy + 27A\Delta_{21}\Delta_{31}|U_{e1}|^2}{2\sqrt{(x^2 - 3y)^3}} \right] .$$

Jing-yu Zhu

Matter effects on neutrino oscillations

vacuum :
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i < j} \operatorname{Re} \left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j} \right) \sin^{2} \frac{\Delta_{j i} L}{4E} + 8\mathcal{J} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sin \frac{\Delta_{21} L}{4E} \sin \frac{\Delta_{31} L}{4E} \sin \frac{\Delta_{32} L}{4E}$$

matter : $\tilde{P}(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i < j} \operatorname{Re} \left(\tilde{U}_{\alpha i} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*} \tilde{U}_{\beta j} \right) \sin^{2} \frac{\tilde{\Delta}_{j i} L}{4E} + 8\tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sin \frac{\tilde{\Delta}_{21} L}{4E} \sin \frac{\tilde{\Delta}_{31} L}{4E} \sin \frac{\tilde{\Delta}_{32} L}{4E}$

$$\operatorname{Im} \left(U_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*} \right) = \mathcal{J} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\operatorname{Im} \left(\tilde{U}_{\alpha i} \tilde{U}_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*} \right) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha} - \nu_{\beta}) = \frac{\mathcal{J}}{2} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\operatorname{Im} \left(\tilde{U}_{\alpha i} \tilde{U}_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*} \right) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*}) = \frac{\mathcal{J}}{2} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

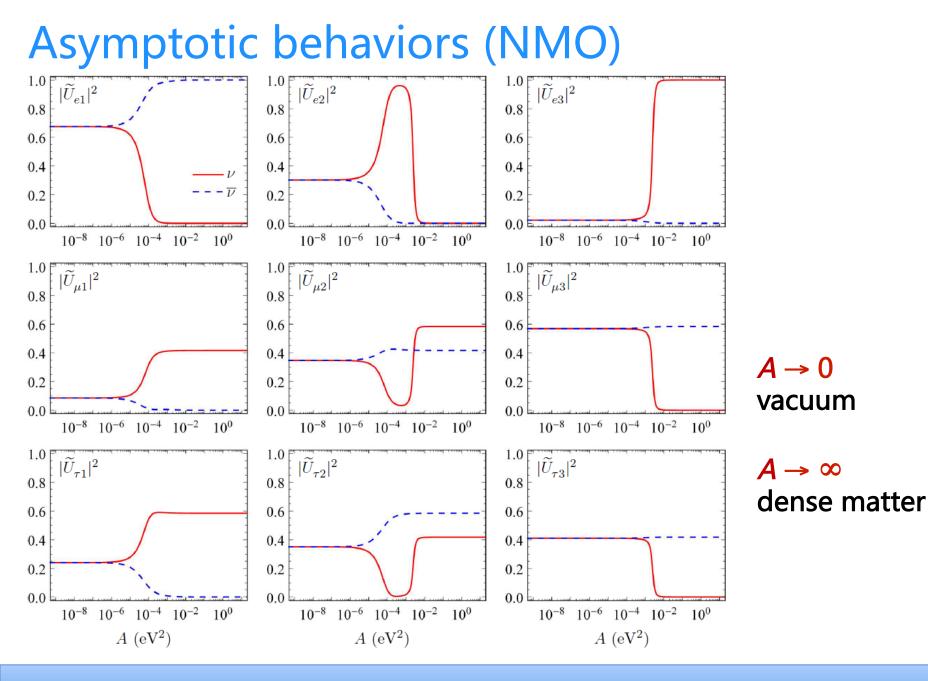
$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

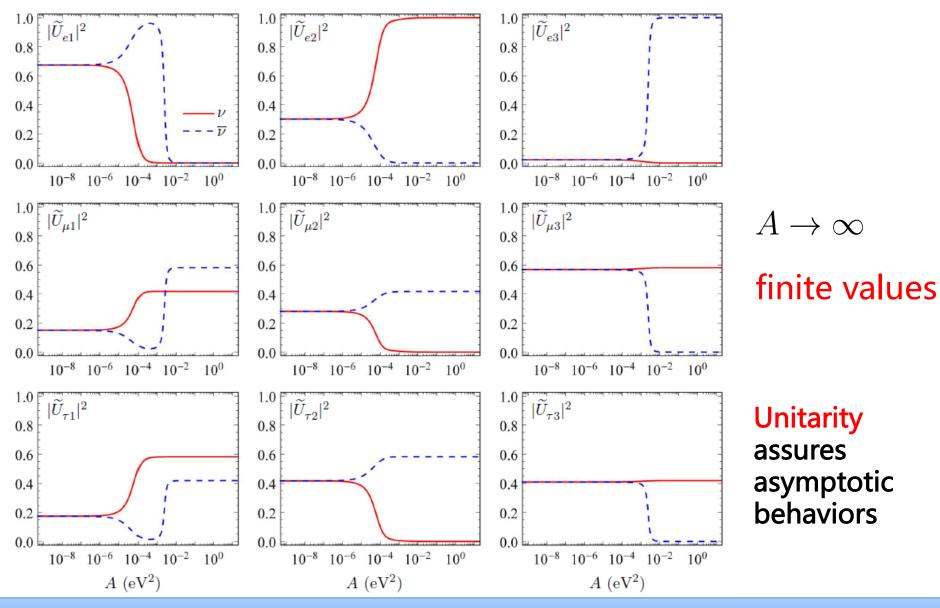
$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$


$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

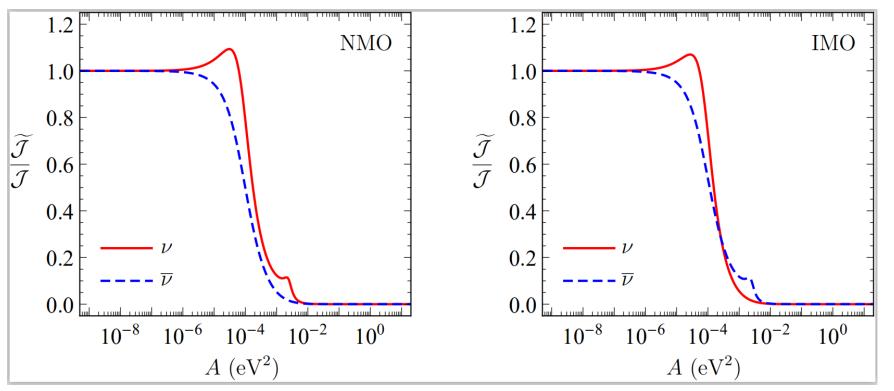
$$\tilde{P}(\nu_{\alpha i} U_{\beta j} \tilde{U}_{\alpha j}^{*} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sum_{k} \epsilon_{i j k}$$

$$\tilde{P}(\nu_{\alpha i} U_{\beta i} \tilde{U}_{\beta i}^{*}) = \tilde{\mathcal{J}} \sum_{\alpha} \epsilon_{\alpha\beta\gamma} \sum_{i j k} \epsilon_{i j k}$$


$$\tilde{P}(\nu_{\alpha i} U_{\beta i} \tilde{U}_{\alpha i}^{*}) = \tilde{P}(\nu_{\alpha i} U_{\beta i}^{*}) = \tilde{P}(\nu_{\alpha i} U_{\beta i} \tilde{U}_{\beta i}^{*}) = \tilde{P}(\nu_{\alpha i} U_{\beta i}^{*}) = \tilde{P}(\nu_{\alpha i}$$

Jing-yu Zhu

Jing-yu Zhu


Asymptotic behaviors (IMO)

Jing-yu Zhu

Effective Jarlskog invariant in matter

V.A. Naumov (1992)

Motivation: to analytically understand the asymptotic behaviors in the $A \to \infty$ limit and Jarlskog's peaks.

Jing-yu Zhu

 $\widetilde{\mathcal{J}}$

Sum rules

A full set of linear equations of 3 unknown variables: they' re solvable! $\sum_{i=1} \widetilde{U}_{\alpha i} \widetilde{U}_{\beta i}^* \widetilde{\Delta}_{i1} = \sum_{i=1} U_{\alpha i} U_{\beta i}^* \Delta_{i1} + A \delta_{e\alpha} \delta_{e\beta} - B \delta_{\alpha\beta}$ $\sum \widetilde{U}_{\alpha i} \widetilde{U}_{\beta i}^* \widetilde{\Delta}_{i1} (\widetilde{\Delta}_{i1} + 2B) = \sum U_{\alpha i} U_{\beta i}^* \Delta_{i1} \left[\Delta_{i1} + A(\delta_{e\alpha} + \delta_{e\beta}) \right] + A^2 \delta_{e\alpha} \delta_{e\beta} - B^2 \delta_{\alpha\beta}$ $\sum_{i=1}^{3} \widetilde{U}_{\alpha i} \widetilde{U}_{\beta i}^{*} = \sum_{i=1}^{3} U_{\alpha i} U_{\beta i}^{*} = \delta_{\alpha \beta} \qquad |\widetilde{U}_{\alpha 1}|^{2} = \frac{\zeta - 2\xi B - \xi \widetilde{\Delta}_{21} - \xi \widetilde{\Delta}_{31} + \widetilde{\Delta}_{21} \widetilde{\Delta}_{31}}{\widetilde{\Delta}_{\alpha i} \widetilde{\Delta}_{\alpha i}}$ $|\widetilde{U}_{\alpha 2}|^2 = \frac{\xi \widetilde{\Delta}_{31} + 2\xi B - \zeta}{\widetilde{\Delta}_{31} \widetilde{\Delta}_{32}} ,$ Setting $\alpha = \beta$, we obtain 9 moduli of the PMNS matrix elements in matter. $|\widetilde{U}_{\alpha 3}|^2 = \frac{\zeta - 2\xi B - \xi \Delta_{21}}{\widetilde{\Delta}_{\alpha 4} \widetilde{\Delta}_{\alpha 5}} ,$ **Analytical results** $\xi = \Delta_{21} |U_{\alpha 2}|^2 + \Delta_{31} |U_{\alpha 3}|^2 + A\delta_{e\alpha} - B ,$

 $\zeta = \Delta_{21}(\Delta_{21} + 2A\delta_{e\alpha})|U_{\alpha 2}|^2 + \Delta_{31}(\Delta_{31} + 2A\delta_{e\alpha})|U_{\alpha 3}|^2 + A^2\delta_{e\alpha} - B^2$

Jing-yu Zhu

Moduli of the matrix elements

$$\begin{split} |\widetilde{U}_{e1}|^2 &= \frac{1}{9} \left[\frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} + \Delta_{31} + \Delta_{32} - A}{\widetilde{\Delta}_{31}} \cdot \frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} + \Delta_{21} - \Delta_{32} - A}{\widetilde{\Delta}_{21}} |U_{e1}|^2 \\ &+ \frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} + \Delta_{31} + \Delta_{32} - A}{\widetilde{\Delta}_{31}} \cdot \frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} - \Delta_{21} - \Delta_{31} - A}{\widetilde{\Delta}_{21}} |U_{e2}|^2 \\ &+ \frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} + \Delta_{21} - \Delta_{32} - A}{\widetilde{\Delta}_{31}} \cdot \frac{\widetilde{\Delta}_{21} + \widetilde{\Delta}_{31} - \Delta_{21} - \Delta_{31} - A}{\widetilde{\Delta}_{21}} |U_{e3}|^2 \right] \\ |\widetilde{U}_{e2}|^2 &= \frac{1}{9} \left[\frac{\widetilde{\Delta}_{32} - \widetilde{\Delta}_{21} + \Delta_{31} + \Delta_{32} - A}{\widetilde{\Delta}_{32}} \cdot \frac{\widetilde{\Delta}_{21} - \widetilde{\Delta}_{32} + \Delta_{32} - \Delta_{21} + A}{\widetilde{\Delta}_{32}} |U_{e1}|^2 \\ &+ \frac{\widetilde{\Delta}_{32} - \widetilde{\Delta}_{21} + \Delta_{31} + \Delta_{32} - A}{\widetilde{\Delta}_{32}} \cdot \frac{\widetilde{\Delta}_{21} - \widetilde{\Delta}_{32} + \Delta_{21} + \Delta_{31} + A}{\widetilde{\Delta}_{21}} |U_{e2}|^2 \\ &+ \frac{\widetilde{\Delta}_{32} - \widetilde{\Delta}_{21} - \Delta_{32} + \Delta_{21} - A}{\widetilde{\Delta}_{32}} \cdot \frac{\widetilde{\Delta}_{21} - \widetilde{\Delta}_{32} + \Delta_{21} + \Delta_{31} + A}{\widetilde{\Delta}_{21}} |U_{e3}|^2 \right] \end{split}$$

Jing-yu Zhu

Asymptotic results (1)

The effective neutrino mass-squared differences + PMNS matrix elements in the $A \to \infty$ limit:

	$\rm NMO$ (neutrinos)	IMO (neutrino)
$\widetilde{\Delta}_{21}$	$\Delta_{31} \left(1 - U_{e3} ^2\right) - \Delta_{21} U_{e1} ^2$	A
$\widetilde{\Delta}_{31}$	A	$\Delta_{31} \left(1 - U_{e3} ^2 \right) - \Delta_{21} U_{e1} ^2$
$\widetilde{\Delta}_{32}$	A	-A
\widetilde{U}	$ \begin{pmatrix} 0 & 0 & 1 \\ \sqrt{1 - U_{\mu3} ^2} & U_{\mu3} & 0 \\ - U_{\mu3} & \sqrt{1 - U_{\mu3} ^2} & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 1 & 0 \\ \sqrt{1 - U_{\mu3} ^2} & 0 & U_{\mu3} \\ - U_{\mu3} & 0 & \sqrt{1 - U_{\mu3} ^2} \end{pmatrix} $
Illustration:		
$ \left(\tilde{U}_{\alpha i} ^2 \right) \Big _{A \to \infty}^{(\text{NMO, }\nu)} = \begin{pmatrix} 0 & 0 & 1 \\ 0.417 & 0.583 & 0 \\ 0.583 & 0.417 & 0 \end{pmatrix} \left \left(\tilde{U}_{\alpha i} ^2 \right) \Big _{A \to \infty}^{(\text{IMO, }\nu)} = \begin{pmatrix} 0 & 1 & 0 \\ 0.418 & 0 & 0.582 \\ 0.582 & 0 & 0.418 \end{pmatrix} \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty}^{(\text{IMO, }\nu)} = \left(\begin{pmatrix} 0 & 1 & 0 \\ 0.418 & 0 & 0.582 \\ 0.582 & 0 & 0.418 \end{pmatrix} \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty}^{(\text{IMO, }\nu)} = \left(\begin{pmatrix} 0 & 1 & 0 \\ 0.418 & 0 & 0.582 \\ 0.582 & 0 & 0.418 \end{pmatrix} \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty}^{(\text{IMO, }\nu)} = \left(\begin{pmatrix} 0 & 1 & 0 \\ 0.418 & 0 & 0.582 \\ 0.582 & 0 & 0.418 \end{pmatrix} \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty} \left \left(\tilde{U}_{\alpha i} ^2 \right) \right _{A \to \infty$		

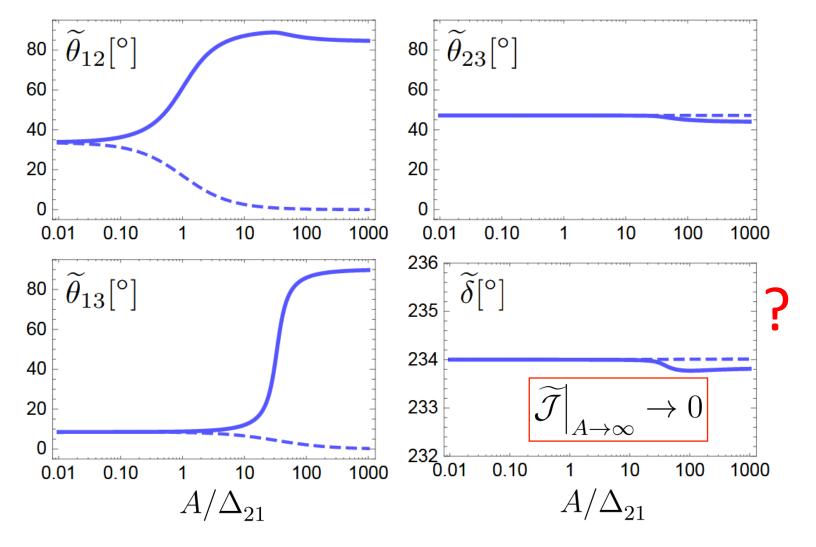
Jing-yu Zhu

Asymptotic results (2)

The effective antineutrino mass-squared differences + PMNS matrix elements in the $A \to \infty$ limit:

	NMO (antineutrino)	IMO (antineutrino)
$\widetilde{\Delta}_{21}$	A	$-\Delta_{31}\left(1- U_{e3} ^2\right)+\Delta_{21} U_{e1} ^2$
$\widetilde{\Delta}_{31}$	A	-A
$\widetilde{\Delta}_{32}$	$\Delta_{31} \left(1 - U_{e3} ^2\right) - \Delta_{21} U_{e1} ^2$	-A
\widetilde{U}	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 - U_{\mu3} ^2} & U_{\mu3} \\ 0 & - U_{\mu3} & \sqrt{1 - U_{\mu3} ^2} \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & 1 \\ U_{\mu3} & \sqrt{1 - U_{\mu3} ^2} & 0 \\ -\sqrt{1 - U_{\mu3} ^2} & U_{\mu3} & 0 \end{pmatrix} $

Illustration:

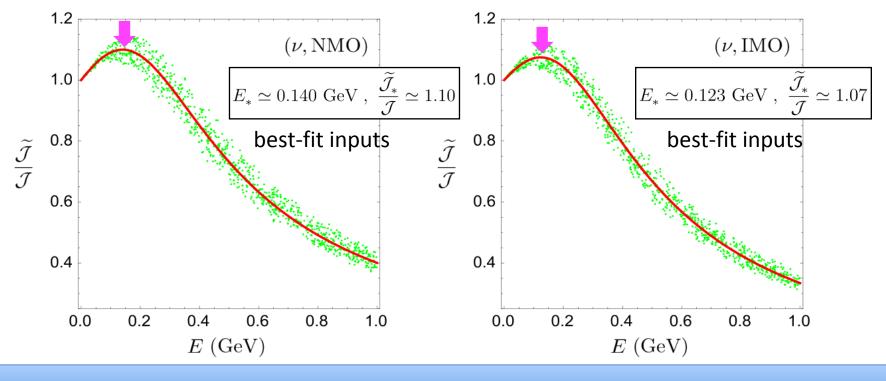

$$\left(|\widetilde{U}_{\alpha i}|^2 \right) \Big|_{A \to \infty}^{(\text{NMO, }\overline{\nu})} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.417 & 0.583 \\ 0 & 0.583 & 0.417 \end{pmatrix} \left| \left(|\widetilde{U}_{\alpha i}|^2 \right) \Big|_{A \to \infty}^{(\text{IMO, }\overline{\nu})} = \begin{pmatrix} 0 & 0 & 1 \\ 0.582 & 0.418 & 0 \\ 0.418 & 0.582 & 0 \end{pmatrix} \right|$$

Jing-yu Zhu

Something misleading?

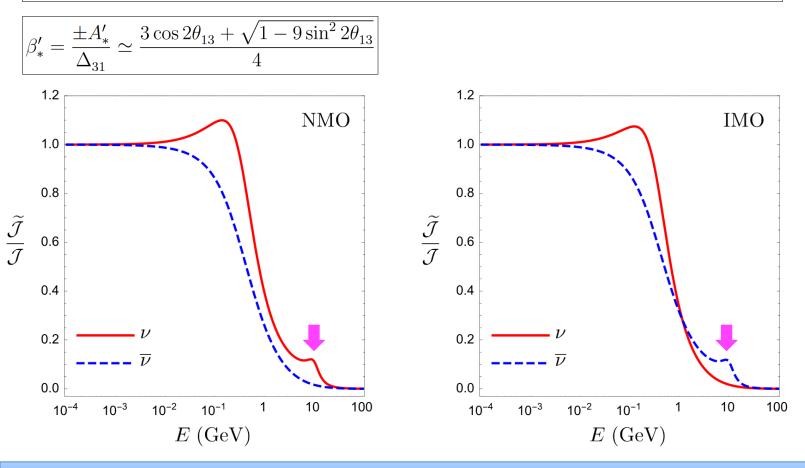
parameter redundancy

Why the CP-violating phase remains finite in the $A \rightarrow \infty$ limit?

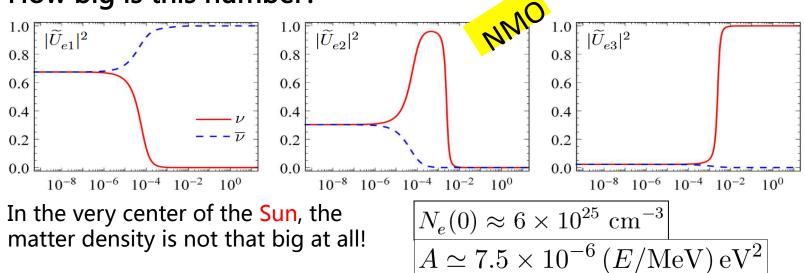

Jing-yu Zhu

Extremes of the effective Jarlskog invariant in matter

$$E_* \simeq \frac{\Delta_{21}}{2\sqrt{2} G_F N_e} \left[\cos 2\theta_{12} \left(1 + \sin^2 \theta_{13} \right) + \frac{3}{2} \sin^2 2\theta_{12} \frac{\Delta_{21}}{\Delta_{31}} \right] \text{ resonant energy}$$

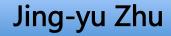

$$\frac{\widetilde{\mathcal{J}}_*}{\mathcal{J}} \simeq \frac{1}{\sin 2\theta_{12}} \left[1 + \frac{1}{2} \left(1 + 3\cos 2\theta_{12} \right) \frac{\Delta_{21}}{\Delta_{31}} + \text{smaller terms} \right] \text{ enhancive peak}$$
We find a unique energy upper $E_F \approx \Delta_{12} \cos 2\theta_{12} \left(\sqrt{2} G_F N_E \right) \approx 0.25 G_F$

We find a unique energy upper $E_0 \simeq \Delta_{21} \cos 2\theta_{12} / (\sqrt{2} \ G_F N_e) \simeq 0.25 \ \text{GeV}$ limit for $\tilde{\mathcal{J}}/\mathcal{J} \gtrsim 1$: best-fit inputs


Jing-yu Zhu

$$\nu \text{ beam } (\Delta_{31} > 0): \quad E_* \simeq 0.140 \text{ GeV} , \quad \frac{\widetilde{\mathcal{J}}_*}{\mathcal{J}} \simeq 1.10 ; \quad E'_* \simeq 8.906 \text{ GeV} , \quad \frac{\widetilde{\mathcal{J}}'_*}{\mathcal{J}} \simeq 0.12$$
$$\nu \text{ beam } (\Delta_{31} < 0): \quad E_* \simeq 0.123 \text{ GeV} , \quad \frac{\widetilde{\mathcal{J}}_*}{\mathcal{J}} \simeq 1.07 ;$$
$$\overline{\nu} \text{ beam } (\Delta_{31} < 0): \quad E'_* \simeq 8.828 \text{ GeV} , \quad \frac{\widetilde{\mathcal{J}}'_*}{\mathcal{J}} \simeq 0.12 .$$

Concluding remarks


➤ The $A \to \infty$ limit is at least conceptually interesting, and in practice it is approximately equivalent to $A \gtrsim 10^{-2} \text{ eV}^2$, as shown in the figures. How big is this number?

There is obvious enhancements of the effective Jarlskog invariant in the region with low neutrino beam energy or low matter density. There are also much smaller terrestrial matter effects in this region.
 So a possible experiment focusing on the low energy v-oscillation to explore CP violation, for example :MOMENT (150 ~ 200 MeV) J. Cao et al, 1401.8125 M. Blennow et al, 1511.02859

Jing-yu Zhu

Thank you for your attention!

