Constraining Secret Neutrino Interactions with Big Bang Nucleosynthesis

Guoyuan Huang

Secret interactions among neutrinos can appear in several NP models and motivated by a number of phenomenological considerations

Some examples

- The Majoron model

$$
\begin{aligned}
& -\mathcal{L}=\overline{\ell_{\mathrm{L}}} Y_{\mathrm{D}} \widetilde{H} N+\frac{1}{2} \bar{N} Y_{N} \Phi N^{c}+\text { h. } \mathbf{c} . \\
& \Phi=\frac{(v+\rho)}{\sqrt{2}} e^{i \theta / v} \square \theta \theta \overline{v_{\mathrm{L}}} \gamma_{5} v_{\mathrm{L}}^{c}
\end{aligned}
$$

- Neutrinophilic two-Higgs-doublet model (v2HDM)

$$
\begin{gathered}
-\mathcal{L}=\overline{\ell_{\mathrm{L}}} \boldsymbol{Y}_{\boldsymbol{l}} \boldsymbol{H} E_{\mathrm{R}}+\overline{\ell_{\mathrm{L}}} \boldsymbol{Y}_{\boldsymbol{v}} \Phi \boldsymbol{\Phi} \boldsymbol{v}_{\mathrm{R}}+\mathbf{h} . \mathbf{c} . \\
\boldsymbol{M}_{\boldsymbol{v}}=\boldsymbol{Y}_{\boldsymbol{v}}\langle\Phi\rangle \quad \sqrt{\rho \overline{v_{\mathrm{L}}} \nu_{\mathrm{L}}^{c}}\langle\boldsymbol{\square}\rangle \sim \mathrm{eV}
\end{gathered}
$$

Wang, Wang \& Yang, EPL, 06 Gariel \& Nandi, PLB, 07 Sher \& Triola, PRD, 2011

- Gauged $L_{\mu}-L_{\tau}$

$$
-\mathcal{L}=g^{\prime}{Z_{\mu}^{\prime}}_{\boldsymbol{\mu}}^{\overline{\ell_{\mathbf{L}}^{\alpha}}} \gamma^{\mu}\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{1}
\end{array}\right)_{\alpha \beta} \ell_{\mathbf{L}}^{\boldsymbol{\beta}} \quad \square Z_{\mu}^{\prime} \overline{v_{\mathrm{L}}} \gamma^{\mu} v_{\mathrm{L}}
$$

- Solving the small-scale structure problem of WIMP CDM
- Fuzzy dark matter interacting with neutrinos
- Reconcile the tension between cosmology and eV sterile neutrino

HISTORY OF THE UNIVERSE

Standard Theory of BBN

See Cyburt et al., RMP, 16, for a review

Phase I: 0.8-0.1 MeV n-p reactions

$$
\nu_{e}+n \longleftrightarrow p+e^{-} \quad e^{+}+n \longleftrightarrow p+\bar{\nu}_{e}
$$

\mathbf{n} / \mathbf{p} freezing and neutron decay

$$
n \longleftrightarrow p+e^{-}+\bar{\nu}_{e}
$$

n / p ratio is the key to fix Y_{p}, sensitive to new physics models

$\left(\frac{n}{p}\right)_{e q} \simeq \exp \left(-\frac{m_{n}-m_{p}}{T_{\gamma}}\right)=\exp \left(-\frac{1,293 \mathrm{MeV}}{T_{\gamma}}\right)$

BBN Observations

Abundance ratio D/H

absorption lines by high-z and low-z Ly α neutral clouds from distant quasars
${ }^{3} \mathrm{He} / \mathrm{H}:$
detectable via hyperfine emission line of gas clouds available only within Milky Way.
Y_{p} mass fraction of ${ }^{4} \mathrm{He}$:
emission lines from the low-metallicity extragalactic H II (ionized H) regions then extrapolate to zero metallicity

${ }^{7}$ Li/H:
emission lines from metal-poor halo stars of Milky Way

Big Bang Nucleosynthesis (BBN) and CMB

Simple BBN Constraints

Working Example: $\quad \mathcal{L}_{\mathrm{SNI}}=g_{\phi}^{\alpha \beta} \overline{\nu_{\alpha \mathrm{L}}} \nu_{\beta \mathrm{C}}^{\mathrm{C}} \phi+g_{V}^{\alpha \beta} \overline{\nu_{\alpha \mathrm{L}}} \gamma^{\mu} \nu_{\beta \mathrm{L}} V_{\mu}+$ h.c.
Either scalar or vector boson \& flavor-diagonal and universal couplings Assume no right-handed neutrinos, otherwise more severely constrained Require $\Delta \mathrm{N}_{\text {eff }}<1$ on the extra radiation at the temperature $T=1 \mathrm{MeV}$

Scalar Boson
$N_{\text {eff }} \equiv\left(\rho_{\mathrm{r}}-\rho_{\gamma}\right) /\left(\rho_{\nu} / 3\right)$

Decays and inverse decays dominate for a relatively large mass For small masses, the annihilation of neutrino pairs is more efficient
For $m<1 \mathrm{MeV}$, one can just count the relativistic degrees of freedom

Extra Radiation $\Delta N_{\mathrm{eff}}=1 / 2 \cdot 8 / 7 \approx 0.57 \Delta N_{\mathrm{eff}}=3 / 2 \cdot 8 / 7 \approx 1.71$

Simple BBN Constraints

Boltzman Equations $\frac{\partial f_{i}\left(\left|\mathbf{p}_{i}\right|, t\right)}{\partial t}-H\left|\mathbf{p}_{i}\right| \frac{\partial f_{i}\left(\left|\mathbf{p}_{i}\right|, t\right)}{\partial\left|\mathbf{p}_{i}\right|}=C_{\mathrm{D}}^{i}\left(f_{\nu}, f_{\phi / V}\right)+C_{\mathrm{A}}^{i}\left(f_{\nu}, f_{\phi / V}\right)+C_{\mathrm{E}}^{i}\left(f_{\nu}, f_{\phi / V}\right)$

$$
C_{\mathrm{D}}^{\phi}=\frac{1}{2 E_{\phi}} \int \mathrm{d} \tilde{p}_{\nu} \mathrm{d} \tilde{p}_{\bar{\nu}} \tilde{\delta}^{4}(p)\left[f_{\nu} f_{\bar{\nu}}\left(1+f_{\phi}\right)-f_{\phi}\left(1-f_{\nu}\right)\left(1-f_{\bar{\nu}}\right)\right]\left|\overline{\mathcal{M}}_{\mathrm{D}}\right|^{2},
$$

with collision terms

$$
\begin{aligned}
& C_{\mathrm{A}}^{\phi}=\frac{1}{2 E_{\phi}} \int \mathrm{d} \tilde{p}_{\nu} \mathrm{d} \tilde{p}_{\bar{\nu}} \mathrm{d} \tilde{p}_{\phi}^{\prime} \tilde{\delta}^{4}(p)\left[f_{\nu} f_{\bar{\nu}}\left(1+f_{\phi}^{\prime}\right)\left(1+f_{\phi}\right)-f_{\phi} f_{\phi}^{\prime}\left(1-f_{\nu}\right)\left(1-f_{\bar{\nu}}\right)\right]\left|\overline{\mathcal{M}}_{\mathrm{A}}\right|^{2} \\
& C_{\mathrm{E}}^{\phi}=\frac{1}{2 E_{\phi}} \int \mathrm{d} \tilde{p}_{\nu} \mathrm{d} \tilde{p}_{\nu}^{\prime} \mathrm{d} \tilde{p}_{\phi}^{\prime} \tilde{\delta}^{4}(p)\left[f_{\nu} f_{\phi}^{\prime}\left(1+f_{\phi}\right)\left(1-f_{\nu}^{\prime}\right)-f_{\nu}^{\prime} f_{\phi}\left(1+f_{\phi}^{\prime}\right)\left(1-f_{\nu}\right)\right]\left|\overline{\mathcal{M}}_{\mathrm{E}}\right|^{2}
\end{aligned}
$$

Light Element Abundances

Note: expansion rate dominated by radiation during the whole BBN era Calculate the energy density of extra radiation by using Boltzmann Eqs Compute the light element abundances via the public code AlterBBN

Case I: reaches thermal equilibrium above $\mathbf{T}=10 \mathrm{MeV}$

The vector boson V thermalized far above $\mathrm{T}=10 \mathrm{MeV}$ or $\mathrm{a}=0.1 \mathrm{MeV}^{-1}$ Weak interactions for n-p freeze out earlier, so a larger $n / p \& Y_{p}$ by 8.5\%

Light Element Abundances

Note: expansion rate dominated by radiation during the whole BBN era Calculate the energy density of extra radiation by using Boltzmann Eqs Compute the light element abundances via the public code AlterBBN

Case III: not in thermal equilibrium at $\mathrm{T}=1 \mathrm{MeV}$

The vector boson V not be fully thermalized at $\mathrm{T}=1 \mathrm{MeV}\left(\Delta \mathrm{N}_{\text {eff }}=0.5\right)$
But neutrino temperature is greatly reduced, so a larger $n / p \& Y_{p}$ by 10%

Light Element Abundances

Note: expansion rate dominated by radiation during the whole BBN era Calculate the energy density of extra radiation by using Boltzmann Eqs Compute the light element abundances via the public code AlterBBN

Case IV: Boltzman suppression after $\mathbf{T}=\mathbf{1} \mathbf{~ M e V}$

The thermalized V transfer entropy to neutrinos after $\mathrm{T}=1 \mathrm{MeV}\left(\Delta \mathrm{N}_{\text {eff }}=1.5\right)$ But neutrino temperature is also enhanced, cancellation happens!

Light Element Abundances

Note: expansion rate dominated by radiation during the whole BBN era Calculate the energy density of extra radiation by using Boltzmann Eqs Compute the light element abundances via the public code AlterBBN

Case IV: Boltzman suppression after $\mathbf{T}=\mathbf{1} \mathbf{~ M e V}$

The thermalized V transfer entropy to neutrinos after $\mathrm{T}=1 \mathrm{MeV}\left(\Delta \mathrm{N}_{\text {eff }}=1.5\right)$ But neutrino temperature is also enhanced, solving the lithium-7 problem?

Final Constraints

Constructing the chi-square function ($\mathrm{i}, \mathrm{j}=\mathrm{D},{ }^{4} \mathrm{He}$):
Fiorentini, PRD, 98

$$
\chi^{2}=\sum_{i, j}\left(Y_{i}^{\mathrm{th}}-Y_{i}^{\mathrm{ex}}\right)\left[S_{i j}\right]^{-1}\left(Y_{j}^{\mathrm{th}}-Y_{j}^{\mathrm{ex}}\right) \quad Y_{\mathrm{p}}=0.2449 \pm 0.0040
$$

Theoretical errors from reaction rates included
$\mathrm{D} /\left.\mathrm{H}\right|_{\mathrm{p}}=(2.53 \pm 0.04) \times 10^{-5}$
Scan over the parameters $\left(\eta, m_{V}, g_{V}\right)$ to minimize the chi-square function

Thanks for your attention

