Black Holes lectures problem questions

Mahdi Godazgar
17-21 June, STFC PhD School, Southampton

Lecture 1: Schwarzschild solution

1. Assuming that the only non-zero component of the Einstein tensor of metric

$$
\begin{equation*}
d s^{2}=-(1+2 \Phi(R)) d t^{2}+(1-2 \Phi(R))\left(d R^{2}+R^{2} d \Omega^{2}\right) \tag{1}
\end{equation*}
$$

in the weak field limit (i.e. to leading order in Φ) is

$$
\begin{equation*}
G_{t t}=2 \Delta \Phi \tag{2}
\end{equation*}
$$

where $\Delta=\nabla^{2}$ is the three-dimensional Laplacian, show that the Schwarzschild metric in the weak field limit satisfies the Einstein equation $G_{a b}=8 \pi T_{a b}$ with

$$
\begin{equation*}
T^{a b}=\rho U^{a} U^{b}, \quad \rho=m \delta(\mathbf{x}), U^{a}=(1, \mathbf{0}) \tag{3}
\end{equation*}
$$

2. i) Starting from the Schwarzschild metric in Schwarzschild coordinates

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2} \tag{4}
\end{equation*}
$$

perform a coordinate transformation

$$
\begin{equation*}
v=t+r+2 m \log \left|\frac{r}{2 m}-1\right| \tag{5}
\end{equation*}
$$

to obtain the Schwarzschild solution in ingoing Eddington-Finkelstein coordinates

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{6}
\end{equation*}
$$

ii) Write down the coordinate transformation required in order to put the Schwarzschild metric in outgoing Eddington-Finkelstein form

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d u^{2}-2 d u d r+r^{2} d \Omega^{2} . \tag{7}
\end{equation*}
$$

3. The Kerr solution represents a rotating black hole with "angular momentum" parameter given by $J=a M$. In Boyer-Lindquist coordinates, the metric is given by

$$
\begin{align*}
d s^{2}= & -\frac{\left(\Delta-a^{2} \sin ^{2} \theta\right)}{\Sigma} d t^{2}-2 a \sin ^{2} \theta \frac{\left(r^{2}+a^{2}-\Delta\right)}{\Sigma} d t d \phi \\
& +\left(\frac{\left(r^{2}+a^{2}\right)^{2}-\Delta a^{2} \sin ^{2} \theta}{\Sigma}\right) \sin ^{2} \theta d \phi^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\Sigma=r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta=r^{2}-2 m r+a^{2} . \tag{9}
\end{equation*}
$$

i) Show that this metric reduces to the Schwarzschild metric when $a=0$.
ii) Show that the solution is singular for

$$
\begin{equation*}
r=0, \quad r=r_{ \pm}=m \pm \sqrt{m^{2}-a^{2}} \tag{10}
\end{equation*}
$$

What is special about the solution when

$$
\begin{equation*}
m=a ? \tag{11}
\end{equation*}
$$

iii) Show that the surface $r=r_{+}$is a coordinate singularity by deriving a new metric in Kerr coordinates (v, r, θ, χ). What happens to the metric in Kerr coordinates for $a=0$?
Hint: Try the coordinate transformations

$$
\begin{equation*}
d v=d t+\frac{r^{2}+a^{2}}{\Delta} d r, \quad d \chi=d \phi+\frac{a}{\Delta} d r \tag{12}
\end{equation*}
$$

Lecture 2: ADM formalism and energy

1. The ADM action is given by

$$
\begin{equation*}
S\left[N, N^{i}, h_{i j}\right]=\int d t d^{3} x N \sqrt{h}\left({ }^{(3)} R+K^{i j} K_{i j}-K^{2}\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i j}=-\frac{1}{2} \mathcal{L}_{n} g_{i j}, \quad n=\frac{1}{N}\left(\partial_{t}-N^{i} \partial_{i}\right) \tag{14}
\end{equation*}
$$

is the second fundamental form and $K=h^{i j} K_{i j}$ is its trace. Note that all three-dimensional indices are raised/lowered with $h^{i j} / h_{i j}$, respectively.
i) Show that the canonical momentum conjugate to $h_{i j}$

$$
\begin{equation*}
\pi^{i j} \equiv \frac{\delta S}{\delta \dot{h}_{i j}}=-\sqrt{h}\left(K^{i j}-K h^{i j}\right) \tag{15}
\end{equation*}
$$

ii) From the definition of the Hamiltonian for canonical fields ϕ^{I}

$$
\begin{equation*}
H=\int d^{3} x \sum_{I} \pi_{\phi^{I}} \dot{\phi}^{I}-\mathcal{L} \tag{16}
\end{equation*}
$$

derive the ADM Hamiltonian

$$
\begin{equation*}
H=\int d^{3} x\left\{\pi_{N} \dot{N}+\pi_{i} \dot{N}^{i}+\sqrt{h}\left(N \mathcal{H}+N^{i} \mathcal{H}_{i}\right)\right\} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi_{N} \approx 0, \quad \pi_{i} \approx 0 \tag{18}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathcal{H}=-{ }^{(3)} R+h^{-1} \pi^{i j} \pi_{i j}-\frac{1}{2} h^{-1} \pi^{2} \tag{19}\\
\mathcal{H}_{i}=-2 D^{j}\left(h^{-1 / 2} \pi_{i j}\right) \tag{20}
\end{gather*}
$$

where D_{i} is the covariant derivative associated with metric $h_{i j}$.
2. In $n>2$ dimensions, given a conformal transformation of the metric of the form

$$
\begin{equation*}
\tilde{g}_{a b}=e^{2 \varphi} g_{a b}, \tag{21}
\end{equation*}
$$

show that the Ricci scalars of the two metrics are related by the following equation

$$
\begin{equation*}
\tilde{R}=e^{-2 \varphi}\left[R-\frac{4(n-1)}{(n-2)} e^{-(n-2) \varphi / 2} \nabla^{2}\left(e^{(n-2) \varphi / 2}\right)\right] . \tag{22}
\end{equation*}
$$

3. Starting from the Schwarzschild metric in isotropic coordinates (t, ρ, θ, ϕ)

$$
\begin{equation*}
d s^{2}=-\frac{\left(1-\frac{m}{2 \rho}\right)^{2}}{\left(1+\frac{m}{2 \rho}\right)^{2}} d t^{2}+\left(1+\frac{m}{2 \rho}\right)^{4}\left(d \rho^{2}+\rho^{2} d \Omega^{2}\right) \tag{23}
\end{equation*}
$$

show that, we recover the Schwarzschild metric in Schwarzschild coordinates via the coordinate transformation

$$
\begin{equation*}
r=\rho\left(1+\frac{m}{2 \rho}\right)^{2} \tag{24}
\end{equation*}
$$

Lecture 3: Bondi energy and BMS charges

1. Asymptotically flat spacetimes are defined as those for which Bondi coordinates $\left(t, r, x^{I}=\{\theta, \phi\}\right)$ can be introduced such that the metric takes the Bondi form

$$
\begin{equation*}
d s^{2}=-F e^{2 \beta} d u^{2}-2 e^{2 \beta} d u d r+r^{2} h_{I J}\left(d x^{I}-C^{I} d u\right)\left(d x^{J}-C^{J} d u\right), \tag{25}
\end{equation*}
$$

with the metric functions satisfying the following fall-off conditions at large r

$$
\begin{align*}
F\left(u, r, x^{I}\right) & =1+\frac{F_{0}\left(u, x^{I}\right)}{r}+\ldots, \\
\beta\left(u, r, x^{I}\right) & =\frac{\beta_{0}\left(u, x^{I}\right)}{r^{2}}+\ldots, \\
C^{I}\left(u, r, x^{I}\right) & =\frac{C_{0}^{I}\left(u, x^{I}\right)}{r^{2}}+\ldots, \\
h_{I J}\left(u, r, x^{I}\right) & =\omega_{I J}+\frac{C_{I J}}{r}+\ldots, \tag{26}
\end{align*}
$$

as well as the gauge condition

$$
\begin{equation*}
h=\omega, \tag{27}
\end{equation*}
$$

where $h \equiv \operatorname{det}\left(h_{I J}\right)$ and $\omega \equiv \operatorname{det}\left(\omega_{I J}\right)=\sin ^{2} \theta$.
Consider all diffeomorphisms that leave the form of the Bondi metric invariant and show that these take the form

$$
\begin{equation*}
\xi=f \partial_{u}+\xi^{I} \partial_{I}-\frac{r}{2}\left(D_{I} \xi^{I}-C^{I} D_{I} f\right) \partial_{r}, \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi^{I}=Y^{I}\left(x^{I}\right)-\int_{r}^{\infty} d r^{\prime} \frac{e^{2 \beta}}{r^{\prime 2}} h^{I J} D_{J} f, \quad f=s\left(x^{I}\right)+\frac{u}{2} D_{I} Y^{I}, \quad D_{(I} Y_{J)}=\frac{1}{2} D_{K} Y^{K} \omega_{I J} \tag{29}
\end{equation*}
$$

and D_{I} is the metric associated with the metric $\omega_{I J}$. The set of vectors ξ defined above generate the BMS algebra.
Hint: You may use the fact that a conformal Killing vector on the two-sphere, Y^{I}, satisfies the following equation

$$
\begin{equation*}
D^{2}\left(D_{I} Y^{I}\right)+2 D_{I} Y^{I}=0 \tag{30}
\end{equation*}
$$

2. The general expression for the variation of an asymptotic charge for asymptotically flat spacetimes is

$$
\begin{align*}
& \not \mathcal{Q}_{\xi}[\delta g, g]=\frac{1}{8 \pi} \lim _{r \rightarrow \infty} \int_{S^{2}}\left(d^{2} x\right)_{a b} \sqrt{-g}\left\{\xi^{b} g^{c d} \nabla^{a} \delta g_{c d}-\xi^{b} g^{a c} \nabla^{d} \delta g_{c d}+\xi^{c} g^{a d} \nabla^{b} \delta g_{c d}\right. \\
&\left.+\frac{1}{2} g^{c d} \delta g_{c d} \nabla^{b} \xi^{a}+\frac{1}{2} g^{b d} \delta g_{c d}\left(\nabla^{a} \xi^{c}-\nabla^{c} \xi^{a}\right)\right\}, \tag{31}
\end{align*}
$$

where

$$
\begin{equation*}
\left(d^{2} x\right)_{a b}=\frac{1}{4} \eta_{a b I J} d x^{J} \wedge d x^{J} \tag{32}
\end{equation*}
$$

Take the background metric to be a subset of the class of asymptotically flat spacetimes with metric

$$
\begin{equation*}
d s^{2}=-F d u^{2}-2 d u d r+r^{2} \Omega^{2} \tag{33}
\end{equation*}
$$

so that the only non-zero component of $\delta g_{a b}$ is

$$
\begin{equation*}
\delta g_{u u}=-\frac{\delta F_{0}}{r}+\ldots \tag{34}
\end{equation*}
$$

Furthermore, choose

$$
\begin{equation*}
\xi=\partial_{u} \tag{35}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
\Gamma_{I J}^{u}=r \omega_{I J} \tag{36}
\end{equation*}
$$

show that the right hand side of the above expression becomes integrable and conclude that

$$
\begin{equation*}
\mathcal{Q}_{\xi}=-\frac{1}{8 \pi} \int_{S^{2}} d \Omega F_{0} \tag{37}
\end{equation*}
$$

i.e. we recover the Bondi energy.

