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Lecture 1 : Schwarzschild solution

1. Assuming that the only non-zero component of the Einstein tensor of metric

ds2 = −
(
1 + 2Φ(R)

)
dt2 +

(
1− 2Φ(R)

)
(dR2 +R2dΩ2) (1)

in the weak field limit (i.e. to leading order in Φ) is

Gtt = 2∆Φ, (2)

where ∆ = ∇2 is the three-dimensional Laplacian, show that the Schwarzschild metric in

the weak field limit satisfies the Einstein equation Gab = 8πTab with

T ab = ρ UaU b, ρ = mδ(x), Ua = (1,0). (3)

2. i) Starting from the Schwarzschild metric in Schwarzschild coordinates

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2, (4)

perform a coordinate transformation

v = t+ r + 2m log
∣∣∣ r

2m
− 1

∣∣∣ (5)

to obtain the Schwarzschild solution in ingoing Eddington-Finkelstein coordinates

ds2 = −
(
1− 2m

r

)
dv2 + 2dvdr + r2dΩ2. (6)

ii) Write down the coordinate transformation required in order to put the Schwarzschild

metric in outgoing Eddington-Finkelstein form

ds2 = −
(
1− 2m

r

)
du2 − 2dudr + r2dΩ2. (7)
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3. The Kerr solution represents a rotating black hole with “angular momentum” param-

eter given by J = aM. In Boyer-Lindquist coordinates, the metric is given by

ds2 =− (∆− a2 sin2 θ)

Σ
dt2 − 2a sin2 θ

(r2 + a2 −∆)

Σ
dtdϕ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdϕ2 +

Σ

∆
dr2 + Σdθ2, (8)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2. (9)

i) Show that this metric reduces to the Schwarzschild metric when a = 0.

ii) Show that the solution is singular for

r = 0, r = r± = m±
√
m2 − a2. (10)

What is special about the solution when

m = a? (11)

iii) Show that the surface r = r+ is a coordinate singularity by deriving a new metric in

Kerr coordinates (v, r, θ, χ). What happens to the metric in Kerr coordinates for a = 0?

Hint: Try the coordinate transformations

dv = dt+
r2 + a2

∆
dr, dχ = dϕ+

a

∆
dr. (12)

Lecture 2 : ADM formalism and energy

1. The ADM action is given by

S[N,N i, hij] =

∫
dtd3xN

√
h
(
(3)R +KijKij −K2

)
, (13)

where

Kij = −1

2
Lngij, n =

1

N
(∂t −N i∂i), (14)

is the second fundamental form and K = hijKij is its trace. Note that all three-dimensional

indices are raised/lowered with hij/hij, respectively.

i) Show that the canonical momentum conjugate to hij

πij ≡ δS

δḣij

= −
√
h(Kij −Khij). (15)
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ii) From the definition of the Hamiltonian for canonical fields ϕI

H =

∫
d3x

∑
I

πϕI ϕ̇I − L (16)

derive the ADM Hamiltonian

H =

∫
d3x

{
πNṄ + πiṄ

i +
√
h
(
NH +N iHi

)}
, (17)

where

πN ≈ 0, πi ≈ 0 (18)

and

H = −(3)R + h−1πijπij −
1

2
h−1π2, (19)

Hi = −2Dj(h−1/2πij), (20)

where Di is the covariant derivative associated with metric hij.

2. In n > 2 dimensions, given a conformal transformation of the metric of the form

g̃ab = e2φgab, (21)

show that the Ricci scalars of the two metrics are related by the following equation

R̃ = e−2φ

[
R− 4(n− 1)

(n− 2)
e−(n−2)φ/2∇2

(
e(n−2)φ/2

)]
. (22)

3. Starting from the Schwarzschild metric in isotropic coordinates (t, ρ, θ, ϕ)

ds2 = −
(1− m

2ρ
)2

(1 + m
2ρ
)2
dt2 +

(
1 +

m

2ρ

)4 (
dρ2 + ρ2dΩ2

)
, (23)

show that, we recover the Schwarzschild metric in Schwarzschild coordinates via the coordi-

nate transformation

r = ρ

(
1 +

m

2ρ

)2

. (24)

Lecture 3 : Bondi energy and BMS charges

1. Asymptotically flat spacetimes are defined as those for which Bondi coordinates

(t, r, xI = {θ, ϕ}) can be introduced such that the metric takes the Bondi form

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ (dx
I − CIdu)(dxJ − CJdu), (25)
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with the metric functions satisfying the following fall-off conditions at large r

F (u, r, xI) = 1 +
F0(u, x

I)

r
+ . . . ,

β(u, r, xI) =
β0(u, x

I)

r2
+ . . . ,

CI(u, r, xI) =
CI

0 (u, x
I)

r2
+ . . . ,

hIJ(u, r, x
I) = ωIJ +

CIJ

r
+ . . . , (26)

as well as the gauge condition

h = ω, (27)

where h ≡ det(hIJ) and ω ≡ det(ωIJ) = sin2 θ.

Consider all diffeomorphisms that leave the form of the Bondi metric invariant and show

that these take the form

ξ = f∂u + ξI∂I −
r

2

(
DIξ

I − CIDIf
)
∂r, (28)

where

ξI = Y I(xI)−
∫ ∞

r

dr′
e2β

r′2
hIJDJf, f = s(xI)+

u

2
DIY

I , D(IYJ) =
1

2
DKY

KωIJ (29)

and DI is the metric associated with the metric ωIJ . The set of vectors ξ defined above

generate the BMS algebra.

Hint: You may use the fact that a conformal Killing vector on the two-sphere, Y I , satisfies

the following equation

D2(DIY
I) + 2DIY

I = 0. (30)

2. The general expression for the variation of an asymptotic charge for asymptotically

flat spacetimes is

δ/Qξ[δg, g] =
1

8π
lim
r→∞

∫
S2

(d2x)ab
√
−g

{
ξbgcd∇aδgcd − ξbgac∇dδgcd + ξcgad∇bδgcd

+
1

2
gcdδgcd∇bξa +

1

2
gbdδgcd(∇aξc −∇cξa)

}
, (31)

where

(d2x)ab =
1

4
ηabIJ dxJ ∧ dxJ , (32)
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Take the background metric to be a subset of the class of asymptotically flat spacetimes

with metric

ds2 = −Fdu2 − 2dudr + r2Ω2, (33)

so that the only non-zero component of δgab is

δguu = −δF0

r
+ . . . . (34)

Furthermore, choose

ξ = ∂u. (35)

Using the fact that

Γu
IJ = r ωIJ , (36)

show that the right hand side of the above expression becomes integrable and conclude that

Qξ = − 1

8π

∫
S2

dΩ F0, (37)

i.e. we recover the Bondi energy.
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