1 CFT and renormalization

1. Consider Maxwell theory in $d=4$,

$$
\begin{equation*}
S=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right) \tag{1}
\end{equation*}
$$

and the operator $O_{4}=: F_{\mu \nu} F^{\mu \nu}$:. We would like to compute the 2-point function of this operator. To this aim we introduce a source Φ_{0} and consider the coupling $S_{s r c}=\int d^{4} x \Phi_{0} O_{4}$. (The subscripts denote the dimension of the operator or source).
(a) Use dimensional regularisation, $d=4+\epsilon$, to show that that the regulated 2-point function is given by

$$
\begin{equation*}
\left\langle O_{4}\left(p_{1}\right) O_{4}\left(p_{2}\right)\right\rangle_{r e g}=(2 \pi)^{4} \delta\left(p_{1}+p_{2}\right)\left(\frac{\left(p_{1}^{2}\right)^{2}}{(2 \pi)^{2}}\left(\frac{2}{\epsilon}+\ln p_{1}^{2}+\gamma-2-\ln 4 \pi\right)+O(\epsilon)\right) . \tag{2}
\end{equation*}
$$

(b) Show the infinity may be canceled with a counterterm of the form,

$$
\begin{equation*}
S_{c t}=a_{c t} \frac{1}{\epsilon} \int d^{4+\epsilon} x \mu^{-\epsilon} \Phi_{0} \square^{2} \Phi_{0} \tag{3}
\end{equation*}
$$

for an appropriate constant $a_{c t}$. Determine this value.
(c) Show that the renormalised correlator is

$$
\begin{equation*}
\left\langle O_{4}\left(p_{1}\right) O_{4}\left(p_{2}\right)\right\rangle_{\text {ren }}=(2 \pi)^{4} \delta\left(p_{1}+p_{2}\right) \frac{\left(p_{1}^{2}\right)^{2}}{(2 \pi)^{2}}\left(\ln \frac{p_{1}^{2}}{\mu^{2}}+c_{0}\right) \tag{4}
\end{equation*}
$$

where $c_{0}=\gamma-2-\ln 4 \pi$. Show that one can set c_{0} to any value by using a local finite counterterm.
(d) What is the meaning of the μ dependence?
(e) (Bonus question) Fourier transform the answer to position space. Does it agree with what you expect?

The following integral may be useful

$$
\begin{equation*}
\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}\right)^{\alpha}\left((p-k)^{2}\right)^{\beta}}=\frac{\Gamma\left(\alpha+\beta-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}-\alpha\right) \Gamma\left(\frac{d}{2}-\beta\right)}{(4 \pi)^{d / 2} \Gamma(\alpha) \Gamma(\beta) \Gamma(d-\alpha-\beta)} \frac{1}{\left(p^{2}\right)^{\alpha+\beta-d / 2}} . \tag{5}
\end{equation*}
$$

2 AdS/CFT

1. Consider AdS in domain-wall coordinates

$$
\begin{equation*}
d s^{2}=d r^{2}+e^{2 r} d x^{i} d x^{i} \tag{6}
\end{equation*}
$$

Show that the two independent solution of a free massive scalar equation

$$
\begin{equation*}
\left(\square-m^{2}\right) \Phi(r)=0, \quad m^{2}=\Delta(\Delta-d) \tag{7}
\end{equation*}
$$

that only depend on r are for general Δ

$$
\begin{equation*}
\Phi_{1}=e^{-(d-\Delta) r}, \quad \Phi_{2}=e^{-\Delta r} \tag{8}
\end{equation*}
$$

Is there any special value of Δ ?
Consider $\Delta=d / 2+k, k=0,1, \ldots$, and check whether these solutions are normalizable, i.e. whether the radial integration in

$$
\begin{equation*}
\int_{0}^{\infty} d r \sqrt{G} \Phi^{2} \tag{9}
\end{equation*}
$$

(G is the determinant of (6)) is convergent or not.
2. Consider a free massless scalar Φ in $A d S_{5}$,

$$
\begin{equation*}
S=\int d^{5} x \sqrt{g}\left(\frac{1}{2} g^{\mu \nu} \partial_{\mu} \Phi \partial_{\nu} \Phi\right) \tag{10}
\end{equation*}
$$

where $g_{\mu \nu}$ is the $A d S_{5}$ metric. Work in domain-wall coordinates, as in the previous exercise.
a) What is the dimension of the dual operator?
b) Show that the radial canonical momentum admits the following expansion

$$
\begin{equation*}
\pi(\Phi)=\pi_{(2)}+\pi_{(4)}+\tilde{\pi}_{(4)} \log e^{-2 \epsilon}+\cdots \tag{11}
\end{equation*}
$$

with $\pi_{(4)}$ undetermined and

$$
\begin{equation*}
\tilde{\pi}_{(2)}[\Phi]=-\frac{1}{2} \square \Phi, \quad \tilde{\pi}_{(4)}=\frac{1}{8} \square^{2} \Phi, \tag{12}
\end{equation*}
$$

where $\square=\partial^{i} \partial_{i}$ and ϵ is the cut-off $r \leq \epsilon$.
c) Compute the counterterm action.
d) Compute the 2-point function of the dual operator.

