
CFTd>2

1 Exercise: Conformal Algebra

In a CFT the stress tensor Tµν(x) is conserved and traceless

∂µT
µν(x) = 0, Tµµ(x) = 0. (1.1)

Given a vector field ε = εµ(x)∂µ we can then consider a conserved current ∂µJ
µ
ε (x) = 0

Jµε (x) = εµ(x)Tµν(x), (1.2)

out of which we can generate the charge (topological surface operator)

Qε(Σ) = −
∫

Σ
dSµJ

µ
ε (x). (1.3)

a) Apart from the obvious symmetries that follow from ∂µT
µν(x) = 0

pµ = ∂µ,

mµν = xν∂µ − xµ∂ν (1.4)

check that due to tracelessness Tµµ(x) = 0 there are extra conserved charges

d = xµ∂µ,

kµ = 2xµ(x · ∂)− x2∂µ . (1.5)

b) Using that

[Qε1 , Qε2 ] = Q−[ε1,ε2]. (1.6)

Check that the new charges satisfy the algebra

[D,Pµ] = Pµ, [D,Kµ] = −Kµ,

[Kµ, Pν ] = 2δµνD − 2Mµν . (1.7)

c) Conformal primary operators are annihilated by Kµ|O〉 = KµO(0)|Ω〉 = 0. Given a pri-

mary operator we can construct descendants by acting on it with derivatives Pµ1 ...PµnO(0)|Ω〉.
In the radial quantization

P †µ = Kµ. (1.8)

In a unitary CFT norms of the states are non-negative.1 Using this and conformal algebra

derive the following unitarity bounds:

1〈O| = 〈Ω|O†(0) = limy→∞ y2∆O(y).
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1. For a scalar primary operator O, ∆ ≥ d−2
2 ; when ∆ = d−2

2 , O is a free scalar.

2. For a spin one primary operator V µ, ∆ ≥ d− 1; when ∆ = d− 1, ∂µV
µ = 0.

3. Generalize to an arbitrary representation of SO(d) (section 7.3 in Simmons-Duffin).

d) The conformal Killing vectors found above generate infinitesimal diffeomorphisms xµ →
x′µ = xµ + εµ(x). Using the conformal Killing equation show that infinitesemal conformal

transformations locally look like a rotation and a scale transformation.

In the same way, finite conformal transformations take the form

∂x′µ

∂xν
= Ω(x′)Rµν(x′), RTR = 1, R ∈ SO(d). (1.9)

Indeed, this changes the metric by a scale factor

ds2 = δµνdx
µdxν =

δµνdx
′µdx′ν

Ω(x′)2
. (1.10)

Show that under conformal transformation (use the fact that special conformal transformation

is translation at infinity)

x2
ij =

x′
2

ij

Ω(x′i)Ω(x′j)
. (1.11)

2 Exercise: Correlation Functions

The action of the conformal charges on primary operators is given by

[Qε,O(x)] =

(
ε · ∂ +

∆

d
(∂ · ε)− 1

2
(∂µεν)Sµν

)
O(x),

[Mµν ,Oa(0)] = (Sµν) a
b Ob(0) , (2.1)

where a, b are indices for the SO(d) representation of O and we kept them implicit in the first

line. Conformal invariance of correlation functions is the statement that

〈Ω|[[Qε,O1(x1)...On(xn)]|Ω〉 = 0. (2.2)

These are called conformal Ward identities.

a) Show that (2.2) implies that for scalar primaries

〈O∆1(x1)O∆2(x2)〉 =
Cδ∆1,∆2

x2∆1
12

. (2.3)

For scalar primary operators the statement of conformal invariance takes the following

simple form
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〈O1(x1)...On(xn)〉 =

n∏
i=1

Ω(x′i)
∆i〈O1(x′1)...On(x′n)〉. (2.4)

b) Using (1.11) check that the famous result by Polyakov transforms in accordance with (2.4)

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
f∆1,∆2,∆3

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

. (2.5)

c) Write down the most general form of the four-point correlator

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 ∼ f(u, v), (2.6)

where the cross ratios are

u =
x2

12x
2
34

x2
13x

2
24

= zz, v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z) . (2.7)

d) What is the number of independent cross ratios in the n-point correlator? First, get the

answer assuming that all x2
ij are independent. Second, argue that for large enough n the

maximal number of cross ratios is nd− (d+2)(d+1)
2 .

3 Exercise: Operator Product Expansion

Consider a four-point function of identical scalar operators. It takes the form

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
∆φ

12 x
∆φ

34

. (3.1)

Permutation or crossing symmetry implies (check that)

g(u, v) = g(
u

v
,

1

v
) =

(u
v

)∆φ

g(v, u). (3.2)

It becomes a powerful tool when combined with the OPE

φ(x1)φ(x2) =
∑
O
fφφOCa(x12, ∂2)Oa(x2) . (3.3)

a) The exact form of Ca(x12, ∂2) is fixed by conformal symmetry. Show that by evaluating

(3.3) inside a three-point function and expanding in xµ12. For scalar O(x2) we get using (2.5)

〈φ(x1)φ(x2)O∆(x3)〉 =
f∆φ∆φ∆

x
2∆φ−∆
12 x∆

23x
∆
13

= C(x12, ∂2)
1

x2∆
23

= C(x12, ∂2)〈O(x2)O(x3)〉. (3.4)

Derive first few terms in the small x12 expansion of Ca(x12, ∂2).
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b) Argue that the only operators that can appear in the OPE (3.3) are symmetric traceless

operators of even spin. To do this consider 〈φ|φ(x)|Oa〉. To argue that the only even spin is

allowed recall that conformal invariance fixes the three-point function to be

〈φ1(x1)φ2(x2)Oµ1...µJ (x3)〉 =
fφ1φ2OJ (Zµ1 ...ZµJ − traces)

x∆1+∆2−∆3+J
12 x∆2+∆3−∆1−J

23 x∆1+∆3−∆2−J
13

,

Zµ ≡ xµ13

x2
13

− xµ12

x2
12

. (3.5)

c) Normalize 〈φ(x)φ(0)〉 = 1
x2∆ . Show that

fφφT = − d∆

d− 1

1

VolSd−1

. (3.6)

An instructive way to do that is to consider the Wightman function 〈φ(x1)T−−(x2)φ(x3)〉 in

the light-cone coordinates and recall that the generator of translations is P− =
∫
dx−dd−2~x⊥T−−.

d) In this way we can write g(u, v) from (3.1) as a sum of conformal blocks

g(u, v) =
∑
O
f2
φφOg∆O,JO(u, v),

g∆O,JO(u, v) ≡ x∆φ

12 x
∆φ

34 Ca(x12, ∂2)Cb(x34, ∂4)〈Oa(x2)Ob(x4)〉, (3.7)

where g∆O,JO(u, v) is a conformal block that represents the contribution of a single conformal

multiplet to a four-point function.

Check that g∆O,JO(u, v) does not depend on normalization ofO. Using the form Ca(x12, ∂2)

derived in a) show that

lim
u→0

g∆O,0(u, v) = u∆/2 + ... . (3.8)

Using (3.7) and (3.4), argue that g∆O,0(u, v) does not depend on ∆φ.

e) Conformal blocks are eigenfunctions of the conformal Casimir operator2 C = −1
2L

abLab
that acts with the same eigenvalue on all states in an irreducible representation. This leads

to the differential equation satisfied by conformal blocks

DCg∆,J(u, v) = (∆(∆− d) + J(J + d− 2)) g∆,J(u, v) ,

DC = 2
(
z2(1− z)∂2

z − z2∂z
)

+ 2
(
z2(1− z)∂2

z − z2∂z
)

+ 2(d− 2)
zz

z − z
((1− z)∂z − (1− z)∂z) . (3.9)

Check that the following expressions for the conformal blocks satisfy (3.9) in d = 2 and

d = 4 with the correct boundary condition (3.8) 3

2Recall that the conformal algebra is isomorphic to SO(d + 1, 1) with generators Lab.
3For operators with the spin the correct boundary condition is g∆O,J(u, v) = u∆/2(1− v)J + ....
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kβ(x) ≡ xβ/2 2F1

(
β

2
,
β

2
, β, x

)
,

g
(2d)
∆,J (u, v) = k∆+J(z)k∆−J(z) + k∆−J(z)k∆+J(z) ,

g
(4d)
∆,J (u, v) =

zz

z − z
(k∆+J(z)k∆−J−2(z) + k∆−J−2(z)k∆+J(z)) . (3.10)

For a unit operator we have g
(d)
0,0 = 1.

4 Exercise: Conformal Bootstrap

Consider a four-point function of identical scalar operators. We get the crossing equation

v∆φg(u, v) = v∆φ
∑
O
f2
φφOg∆O,JO(u, v) = u∆φ

∑
O
f2
φφOg∆O,JO(v, u) = u∆φg(v, u). (4.1)

a) Argue any solution to the crossing equation (4.1) necessarily contains an infinite number

of primaries.

b) One of the simplest solutions to (4.1) is called Generalized Free Field (GFF). It corresponds

to a scalar free field theory in AdS. The correlator takes the form

g(u, v) = 1 + u∆φ +
(u
v

)∆φ

. (4.2)

Using the explicit expression for 2d or 4d conformal blocks read off the low-energy spectrum

of conformal primaries in the model. What do they correspond to in AdS?

c) Euclidean bootstrap. Let’s set z = z = e−β and consider β → 0 limit. It corresponds to

the short distance limit x2 → x3 which is dominated by the unit operator. Using conformal

block expansion check that

g(z = e−β, z = e−β) =

∫ ∞
0

d∆e−β∆ρ(∆) =
1

β2∆
(1 +O(β)) , (4.3)

where ρ(∆) =
∑

i ciδ(∆−∆i) is a positive spectral density of both primaries and descendants.

The Hardy-Littlewood tauberian theorem states that (4.3) implies that4

F (E) ≡
∫ E

0
dE′ρ(E′) ∼ E2∆φ

Γ(2∆φ + 1)
. (4.4)

An elegant proof of this result by Karamata can be found in appendix E of Rychkov and

Qiao paper. What is the large ∆ asymptotic of ρ(∆) for a single primary operator? Was

it important for this result that we considered GFF? Was it important that we considered

CFTd>2?

4Here a ∼ b means a/b→ 1 in the assumed limit.
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d) Lorentzian/analytic bootstrap. Consider the limit 1− z � z � 1, check that in this limit

point 2 becomes light-like separated from points 1 and 3. The limit is again dominated by

the unit operator. The leading asymptotic of the correlator takes the form

g(z, z) =
z∆

(1− z)∆
+ ... , 1− z � z � 1 . (4.5)

We would like to show that this result is reproduced by the large spin operators in the dual

channel of dimension ∆ = 2∆φ + J . To do this first show (using the Casimir equation (3.9))

that in the limit z → 0 conformal blocks take the form

lim
z→0

g∆,J(z, z) = z
∆−J

2 k∆+J(z) + ... , (4.6)

in any d. In this way the z-dependence of (4.5) is easily reproduced. To reproduce the z

dependence show that for large J � 1

k2J(1− y2

J2
) =

Γ(2J)

Γ(J)2

(
2K0(2y) +O(J−1)

)
. (4.7)

Using this to make a prediction for the large spin behavior of the three-point couplings

fφφO2∆φ+J,J
by reproducing the result (4.5).

Was it important for this result that we considered GFF? Was it important that we

considered CFTd>2? What is the interpretation of this result for Quantum Gravity in AdS?

e) Bound on the gap (Numerical bootstrap). Let us introduce the so-called ρ-coordinate that

is obtained by mapping the cut plane C\(1,∞) inside the unit disc

z =
4ρ

(1 + ρ)2
. (4.8)

Expanding conformal blocks in terms ρ-variable converges faster. Let us approximate the

conformal blocks by the first term in their ρ-expansion for 0 < z = z < 1

g∆,J(z) ' ρ(z)∆. (4.9)

Estimate the error of this approximation around z = z = 1
2 . We rewrite the crossing equation

(4.1) as follows

(1− z)2∆φ − z2∆φ +
∑
∆

f2
∆

(
(1− z)2∆φρ(z)∆ − z2∆φρ(1− z)∆

)
= 0, (4.10)

where we isolated the contribution of the unit operator from the rest. We will this equation

to show that there is an upper bound on the lowest primary dimension ∆min that appears in

the φ× φ OPE. To do this expand the crossing equation (4.10) around z = 1
2 + x and collect

x and x3 terms. Use these equations and unitarity (or the fact that f2
∆ > 0) to show that

∆min ≤
√

(∆φ − 1)(2∆φ − 1). (4.11)
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5 Literature

The basic lecture notes are

• S. Rychkov, “EPFL Lectures on Conformal Field Theory in d ≥ 3 Dimensions,” [1]

• D. Simmons-Duffin, “The Conformal Bootstrap,” [2]

• D. Poland, S. Rychkov and A. Vichi, “The Conformal Bootstrap: Theory, Numerical

Techniques, and Applications,” [3]

We mostly used [2] in our lectures and problems. Some more AdS/CFT-oriented readers

might benefit from

• J. Kaplan, “Lectures on AdS/CFT from the Bottom Up” [4]

• J. Penedones, “TASI lectures on AdS/CFT,” [5]

Many of the standard results about conformal blocks can be found in the classic papers

by Dolan and Osborn, see e.g [6]. The ρ-coordinate, tauberian theorems and convergence of

OPE is well-explained in [7]. For bootstrap at large N the standard reference is [8]. For the

analytic bootstrap, see [9, 10].
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