$$
\mathrm{CFT}_{d>2}
$$

1 Exercise: Conformal Algebra

In a CFT the stress tensor $T^{\mu \nu}(x)$ is conserved and traceless

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}(x)=0, \quad T_{\mu}^{\mu}(x)=0 \tag{1.1}
\end{equation*}
$$

Given a vector field $\epsilon=\epsilon^{\mu}(x) \partial_{\mu}$ we can then consider a conserved current $\partial_{\mu} J_{\epsilon}^{\mu}(x)=0$

$$
\begin{equation*}
J_{\epsilon}^{\mu}(x)=\epsilon_{\mu}(x) T^{\mu \nu}(x) \tag{1.2}
\end{equation*}
$$

out of which we can generate the charge (topological surface operator)

$$
\begin{equation*}
Q_{\epsilon}(\Sigma)=-\int_{\Sigma} d S_{\mu} J_{\epsilon}^{\mu}(x) \tag{1.3}
\end{equation*}
$$

a) Apart from the obvious symmetries that follow from $\partial_{\mu} T^{\mu \nu}(x)=0$

$$
\begin{align*}
p_{\mu} & =\partial_{\mu} \\
m_{\mu \nu} & =x_{\nu} \partial_{\mu}-x_{\mu} \partial_{\nu} \tag{1.4}
\end{align*}
$$

check that due to tracelessness $T_{\mu}^{\mu}(x)=0$ there are extra conserved charges

$$
\begin{align*}
d & =x^{\mu} \partial_{\mu} \\
k_{\mu} & =2 x_{\mu}(x \cdot \partial)-x^{2} \partial_{\mu} \tag{1.5}
\end{align*}
$$

b) Using that

$$
\begin{equation*}
\left[Q_{\epsilon_{1}}, Q_{\epsilon_{2}}\right]=Q_{-\left[\epsilon_{1}, \epsilon_{2}\right]} \tag{1.6}
\end{equation*}
$$

Check that the new charges satisfy the algebra

$$
\begin{align*}
{\left[D, P_{\mu}\right] } & =P_{\mu}, \quad\left[D, K_{\mu}\right]=-K_{\mu} \\
{\left[K_{\mu}, P_{\nu}\right] } & =2 \delta_{\mu \nu} D-2 M_{\mu \nu} \tag{1.7}
\end{align*}
$$

c) Conformal primary operators are annihilated by $K_{\mu}|\mathcal{O}\rangle=K_{\mu} \mathcal{O}(0)|\Omega\rangle=0$. Given a primary operator we can construct descendants by acting on it with derivatives $P_{\mu_{1}} \ldots P_{\mu_{n}} \mathcal{O}(0)|\Omega\rangle$. In the radial quantization

$$
\begin{equation*}
P_{\mu}^{\dagger}=K_{\mu} \tag{1.8}
\end{equation*}
$$

In a unitary CFT norms of the states are non-negative. ${ }^{1}$ Using this and conformal algebra derive the following unitarity bounds:

$$
{ }^{1}\langle\mathcal{O}|=\langle\Omega| \mathcal{O}^{\dagger}(0)=\lim _{y \rightarrow \infty} y^{2 \Delta} \mathcal{O}(y)
$$

1. For a scalar primary operator $\mathcal{O}, \Delta \geq \frac{d-2}{2}$; when $\Delta=\frac{d-2}{2}, \mathcal{O}$ is a free scalar.
2. For a spin one primary operator $V^{\mu}, \Delta \geq d-1$; when $\Delta=d-1, \partial_{\mu} V^{\mu}=0$.
3. Generalize to an arbitrary representation of $\mathrm{SO}(d)$ (section 7.3 in Simmons-Duffin).
d) The conformal Killing vectors found above generate infinitesimal diffeomorphisms $x^{\mu} \rightarrow$ $x^{\prime \mu}=x^{\mu}+\epsilon^{\mu}(x)$. Using the conformal Killing equation show that infinitesemal conformal transformations locally look like a rotation and a scale transformation.

In the same way, finite conformal transformations take the form

$$
\begin{equation*}
\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}=\Omega\left(x^{\prime}\right) R_{\nu}^{\mu}\left(x^{\prime}\right), \quad R^{T} R=1, \quad R \in \mathrm{SO}(d) \tag{1.9}
\end{equation*}
$$

Indeed, this changes the metric by a scale factor

$$
\begin{equation*}
d s^{2}=\delta_{\mu \nu} d x^{\mu} d x^{\nu}=\frac{\delta_{\mu \nu} d x^{\prime \mu} d x^{\prime \nu}}{\Omega\left(x^{\prime}\right)^{2}} \tag{1.10}
\end{equation*}
$$

Show that under conformal transformation (use the fact that special conformal transformation is translation at infinity)

$$
\begin{equation*}
x_{i j}^{2}=\frac{x_{i j}^{\prime 2}}{\Omega\left(x_{i}^{\prime}\right) \Omega\left(x_{j}^{\prime}\right)} . \tag{1.11}
\end{equation*}
$$

2 Exercise: Correlation Functions

The action of the conformal charges on primary operators is given by

$$
\begin{align*}
{\left[Q_{\epsilon}, \mathcal{O}(x)\right] } & =\left(\epsilon \cdot \partial+\frac{\Delta}{d}(\partial \cdot \epsilon)-\frac{1}{2}\left(\partial^{\mu} \epsilon^{\nu}\right) \mathcal{S}_{\mu \nu}\right) \mathcal{O}(x), \\
{\left[M_{\mu \nu}, \mathcal{O}^{a}(0)\right] } & =\left(\mathcal{S}_{\mu \nu}\right)_{b}^{a} \mathcal{O}^{b}(0), \tag{2.1}
\end{align*}
$$

where a, b are indices for the $\mathrm{SO}(d)$ representation of \mathcal{O} and we kept them implicit in the first line. Conformal invariance of correlation functions is the statement that

$$
\begin{equation*}
\langle\Omega|\left[\left[Q_{\epsilon}, \mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right]|\Omega\rangle=0\right. \tag{2.2}
\end{equation*}
$$

These are called conformal Ward identities.
a) Show that (2.2) implies that for scalar primaries

$$
\begin{equation*}
\left\langle\mathcal{O}_{\Delta_{1}}\left(x_{1}\right) \mathcal{O}_{\Delta_{2}}\left(x_{2}\right)\right\rangle=\frac{C \delta_{\Delta_{1}, \Delta_{2}}}{x_{12}^{2 \Delta_{1}}} . \tag{2.3}
\end{equation*}
$$

For scalar primary operators the statement of conformal invariance takes the following simple form

$$
\begin{equation*}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\prod_{i=1}^{n} \Omega\left(x_{i}^{\prime}\right)^{\Delta_{i}}\left\langle\mathcal{O}_{1}\left(x_{1}^{\prime}\right) \ldots \mathcal{O}_{n}\left(x_{n}^{\prime}\right)\right\rangle \tag{2.4}
\end{equation*}
$$

b) Using (1.11) check that the famous result by Polyakov transforms in accordance with (2.4)

$$
\begin{equation*}
\left\langle\mathcal{O}_{\Delta_{1}}\left(x_{1}\right) \mathcal{O}_{\Delta_{2}}\left(x_{2}\right) \mathcal{O}_{\Delta_{3}}\left(x_{3}\right)\right\rangle=\frac{f_{\Delta_{1}, \Delta_{2}, \Delta_{3}}}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta_{1}} x_{13}^{\Delta_{1}+\Delta_{3}-\Delta_{2}}} \tag{2.5}
\end{equation*}
$$

c) Write down the most general form of the four-point correlator

$$
\begin{equation*}
\left\langle\mathcal{O}_{\Delta_{1}}\left(x_{1}\right) \mathcal{O}_{\Delta_{2}}\left(x_{2}\right) \mathcal{O}_{\Delta_{3}}\left(x_{3}\right) \mathcal{O}_{\Delta_{4}}\left(x_{4}\right)\right\rangle \sim f(u, v) \tag{2.6}
\end{equation*}
$$

where the cross ratios are

$$
\begin{equation*}
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}=z \bar{z}, \quad v=\frac{x_{11}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}=(1-z)(1-\bar{z}) . \tag{2.7}
\end{equation*}
$$

d) What is the number of independent cross ratios in the n-point correlator? First, get the answer assuming that all $x_{i j}^{2}$ are independent. Second, argue that for large enough n the maximal number of cross ratios is $n d-\frac{(d+2)(d+1)}{2}$.

3 Exercise: Operator Product Expansion

Consider a four-point function of identical scalar operators. It takes the form

$$
\begin{equation*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{x_{12}^{\Delta_{\phi}} x_{34}^{\Delta_{\phi}}} . \tag{3.1}
\end{equation*}
$$

Permutation or crossing symmetry implies (check that)

$$
\begin{equation*}
g(u, v)=g\left(\frac{u}{v}, \frac{1}{v}\right)=\left(\frac{u}{v}\right)^{\Delta_{\phi}} g(v, u) \tag{3.2}
\end{equation*}
$$

It becomes a powerful tool when combined with the OPE

$$
\begin{equation*}
\phi\left(x_{1}\right) \phi\left(x_{2}\right)=\sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}} C_{a}\left(x_{12}, \partial_{2}\right) \mathcal{O}^{a}\left(x_{2}\right) . \tag{3.3}
\end{equation*}
$$

a) The exact form of $C_{a}\left(x_{12}, \partial_{2}\right)$ is fixed by conformal symmetry. Show that by evaluating (3.3) inside a three-point function and expanding in x_{12}^{μ}. For scalar $\mathcal{O}\left(x_{2}\right)$ we get using (2.5)

$$
\begin{equation*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \mathcal{O}_{\Delta}\left(x_{3}\right)\right\rangle=\frac{f_{\Delta_{\phi} \Delta_{\phi} \Delta}}{x_{12}^{2 \Delta_{\phi}-\Delta} x_{23}^{\Delta} x_{13}^{\Delta}}=C\left(x_{12}, \partial_{2}\right) \frac{1}{x_{23}^{2 \Delta}}=C\left(x_{12}, \partial_{2}\right)\left\langle\mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle \tag{3.4}
\end{equation*}
$$

Derive first few terms in the small x_{12} expansion of $C_{a}\left(x_{12}, \partial_{2}\right)$.
b) Argue that the only operators that can appear in the OPE (3.3) are symmetric traceless operators of even spin. To do this consider $\langle\phi| \phi(x)\left|\mathcal{O}^{a}\right\rangle$. To argue that the only even spin is allowed recall that conformal invariance fixes the three-point function to be

$$
\begin{align*}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \mathcal{O}^{\mu_{1} \ldots \mu_{J}}\left(x_{3}\right)\right\rangle & =\frac{f_{\phi_{1} \phi_{2} \mathcal{O}_{J}}\left(Z^{\mu_{1}} \ldots Z^{\mu_{J}}-\text { traces }\right)}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}+J} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta_{1}-J} x_{13}^{\Delta_{1}+\Delta_{3}-\Delta_{2}-J}}, \\
Z^{\mu} & \equiv \frac{x_{13}^{\mu}}{x_{13}^{2}}-\frac{x_{12}^{\mu}}{x_{12}^{2}} . \tag{3.5}
\end{align*}
$$

c) Normalize $\langle\phi(x) \phi(0)\rangle=\frac{1}{x^{2 \Delta}}$. Show that

$$
\begin{equation*}
f_{\phi \phi T}=-\frac{d \Delta}{d-1} \frac{1}{\mathrm{Vol}_{S^{d-1}}} \tag{3.6}
\end{equation*}
$$

An instructive way to do that is to consider the Wightman function $\left\langle\phi\left(x_{1}\right) T_{--}\left(x_{2}\right) \phi\left(x_{3}\right)\right\rangle$ in the light-cone coordinates and recall that the generator of translations is $P_{-}=\int d x^{-} d^{d-2} \vec{x}_{\perp} T_{--}$. d) In this way we can write $g(u, v)$ from (3.1) as a sum of conformal blocks

$$
\begin{align*}
g(u, v) & =\sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}}^{2} g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(u, v), \\
g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(u, v) & \equiv x_{12}^{\Delta_{\phi}} x_{34}^{\Delta_{\phi}} C_{a}\left(x_{12}, \partial_{2}\right) C_{b}\left(x_{34}, \partial_{4}\right)\left\langle\mathcal{O}^{a}\left(x_{2}\right) \mathcal{O}^{b}\left(x_{4}\right)\right\rangle, \tag{3.7}
\end{align*}
$$

where $g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(u, v)$ is a conformal block that represents the contribution of a single conformal multiplet to a four-point function.

Check that $g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(u, v)$ does not depend on normalization of \mathcal{O}. Using the form $C_{a}\left(x_{12}, \partial_{2}\right)$ derived in a) show that

$$
\begin{equation*}
\lim _{u \rightarrow 0} g_{\Delta_{\mathcal{O}}, 0}(u, v)=u^{\Delta / 2}+\ldots \tag{3.8}
\end{equation*}
$$

Using (3.7) and (3.4), argue that $g_{\Delta_{\mathcal{O}}, 0}(u, v)$ does not depend on Δ_{ϕ}.
e) Conformal blocks are eigenfunctions of the conformal Casimir operator ${ }^{2} C=-\frac{1}{2} L^{a b} L_{a b}$ that acts with the same eigenvalue on all states in an irreducible representation. This leads to the differential equation satisfied by conformal blocks

$$
\begin{align*}
\mathcal{D}_{C} g_{\Delta, J}(u, v) & =(\Delta(\Delta-d)+J(J+d-2)) g_{\Delta, J}(u, v), \\
\mathcal{D}_{C} & =2\left(z^{2}(1-z) \partial_{z}^{2}-z^{2} \partial_{z}\right)+2\left(\bar{z}^{2}(1-\bar{z}) \partial_{\bar{z}}^{2}-\bar{z}^{2} \partial_{\bar{z}}\right) \\
& +2(d-2) \frac{z \bar{z}}{z-\bar{z}}\left((1-z) \partial_{z}-(1-\bar{z}) \partial_{\bar{z}}\right) . \tag{3.9}
\end{align*}
$$

Check that the following expressions for the conformal blocks satisfy (3.9) in $d=2$ and $d=4$ with the correct boundary condition (3.8) ${ }^{3}$

[^0]\[

$$
\begin{align*}
k_{\beta}(x) & \equiv x^{\beta / 2}{ }_{2} F_{1}\left(\frac{\beta}{2}, \frac{\beta}{2}, \beta, x\right), \\
g_{\Delta, J}^{(2 d)}(u, v) & =k_{\Delta+J}(z) k_{\Delta-J}(\bar{z})+k_{\Delta-J}(z) k_{\Delta+J}(\bar{z}), \\
g_{\Delta, J}^{(4 d)}(u, v) & =\frac{z \bar{z}}{z-\bar{z}}\left(k_{\Delta+J}(z) k_{\Delta-J-2}(\bar{z})+k_{\Delta-J-2}(z) k_{\Delta+J}(\bar{z})\right) . \tag{3.10}
\end{align*}
$$
\]

For a unit operator we have $g_{0,0}^{(d)}=1$.

4 Exercise: Conformal Bootstrap

Consider a four-point function of identical scalar operators. We get the crossing equation

$$
\begin{equation*}
v^{\Delta_{\phi}} g(u, v)=v^{\Delta_{\phi}} \sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}}^{2} g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(u, v)=u^{\Delta_{\phi}} \sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}}^{2} g_{\Delta_{\mathcal{O}}, J_{\mathcal{O}}}(v, u)=u^{\Delta_{\phi}} g(v, u) . \tag{4.1}
\end{equation*}
$$

a) Argue any solution to the crossing equation (4.1) necessarily contains an infinite number of primaries.
b) One of the simplest solutions to (4.1) is called Generalized Free Field (GFF). It corresponds to a scalar free field theory in AdS. The correlator takes the form

$$
\begin{equation*}
g(u, v)=1+u^{\Delta_{\phi}}+\left(\frac{u}{v}\right)^{\Delta_{\phi}} . \tag{4.2}
\end{equation*}
$$

Using the explicit expression for 2 d or 4 d conformal blocks read off the low-energy spectrum of conformal primaries in the model. What do they correspond to in AdS?
c) Euclidean bootstrap. Let's set $z=\bar{z}=e^{-\beta}$ and consider $\beta \rightarrow 0$ limit. It corresponds to the short distance limit $x_{2} \rightarrow x_{3}$ which is dominated by the unit operator. Using conformal block expansion check that

$$
\begin{equation*}
g\left(z=e^{-\beta}, \bar{z}=e^{-\beta}\right)=\int_{0}^{\infty} d \Delta e^{-\beta \Delta} \rho(\Delta)=\frac{1}{\beta^{2 \Delta}}(1+O(\beta)), \tag{4.3}
\end{equation*}
$$

where $\rho(\Delta)=\sum_{i} c_{i} \delta\left(\Delta-\Delta_{i}\right)$ is a positive spectral density of both primaries and descendants. The Hardy-Littlewood tauberian theorem states that (4.3) implies that ${ }^{4}$

$$
\begin{equation*}
F(E) \equiv \int_{0}^{E} d E^{\prime} \rho\left(E^{\prime}\right) \sim \frac{E^{2 \Delta_{\phi}}}{\Gamma\left(2 \Delta_{\phi}+1\right)} . \tag{4.4}
\end{equation*}
$$

An elegant proof of this result by Karamata can be found in appendix E of Rychkov and Qiao paper. What is the large Δ asymptotic of $\rho(\Delta)$ for a single primary operator? Was it important for this result that we considered GFF? Was it important that we considered $\mathrm{CFT}_{d>2}$?

[^1]d) Lorentzian/analytic bootstrap. Consider the limit $1-\bar{z} \ll z \ll 1$, check that in this limit point 2 becomes light-like separated from points 1 and 3 . The limit is again dominated by the unit operator. The leading asymptotic of the correlator takes the form
\[

$$
\begin{equation*}
g(z, \bar{z})=\frac{z^{\Delta}}{(1-\bar{z})^{\Delta}}+\ldots, \quad 1-\bar{z} \ll z \ll 1 . \tag{4.5}
\end{equation*}
$$

\]

We would like to show that this result is reproduced by the large spin operators in the dual channel of dimension $\Delta=2 \Delta_{\phi}+J$. To do this first show (using the Casimir equation (3.9)) that in the limit $z \rightarrow 0$ conformal blocks take the form

$$
\begin{equation*}
\lim _{z \rightarrow 0} g_{\Delta, J}(z, \bar{z})=z^{\frac{\Delta-J}{2}} k_{\Delta+J}(\bar{z})+\ldots \tag{4.6}
\end{equation*}
$$

in any d. In this way the z-dependence of (4.5) is easily reproduced. To reproduce the \bar{z} dependence show that for large $J \gg 1$

$$
\begin{equation*}
k_{2 J}\left(1-\frac{y^{2}}{J^{2}}\right)=\frac{\Gamma(2 J)}{\Gamma(J)^{2}}\left(2 K_{0}(2 y)+O\left(J^{-1}\right)\right) . \tag{4.7}
\end{equation*}
$$

Using this to make a prediction for the large spin behavior of the three-point couplings $f_{\phi \phi \mathcal{O}_{2 \Delta_{\phi}+J, J}}$ by reproducing the result (4.5).

Was it important for this result that we considered GFF? Was it important that we considered $\mathrm{CFT}_{d>2}$? What is the interpretation of this result for Quantum Gravity in AdS? e) Bound on the gap (Numerical bootstrap). Let us introduce the so-called ρ-coordinate that is obtained by mapping the cut plane $\mathbb{C} \backslash(1, \infty)$ inside the unit disc

$$
\begin{equation*}
z=\frac{4 \rho}{(1+\rho)^{2}} . \tag{4.8}
\end{equation*}
$$

Expanding conformal blocks in terms ρ-variable converges faster. Let us approximate the conformal blocks by the first term in their ρ-expansion for $0<z=\bar{z}<1$

$$
\begin{equation*}
g_{\Delta, J}(z) \simeq \rho(z)^{\Delta} \tag{4.9}
\end{equation*}
$$

Estimate the error of this approximation around $z=\bar{z}=\frac{1}{2}$. We rewrite the crossing equation (4.1) as follows

$$
\begin{equation*}
(1-z)^{2 \Delta_{\phi}}-z^{2 \Delta_{\phi}}+\sum_{\Delta} f_{\Delta}^{2}\left((1-z)^{2 \Delta_{\phi}} \rho(z)^{\Delta}-z^{2 \Delta_{\phi}} \rho(1-z)^{\Delta}\right)=0, \tag{4.10}
\end{equation*}
$$

where we isolated the contribution of the unit operator from the rest. We will this equation to show that there is an upper bound on the lowest primary dimension $\Delta_{\text {min }}$ that appears in the $\phi \times \phi$ OPE. To do this expand the crossing equation (4.10) around $z=\frac{1}{2}+x$ and collect x and x^{3} terms. Use these equations and unitarity (or the fact that $f_{\Delta}^{2}>0$) to show that

$$
\begin{equation*}
\Delta_{\min } \leq \sqrt{\left(\Delta_{\phi}-1\right)\left(2 \Delta_{\phi}-1\right)} \tag{4.11}
\end{equation*}
$$

5 Literature

The basic lecture notes are

- S. Rychkov, "EPFL Lectures on Conformal Field Theory in $d \geq 3$ Dimensions," [1]
- D. Simmons-Duffin, "The Conformal Bootstrap," [2]
- D. Poland, S. Rychkov and A. Vichi, "The Conformal Bootstrap: Theory, Numerical Techniques, and Applications," [3]

We mostly used [2] in our lectures and problems. Some more AdS/CFT-oriented readers might benefit from

- J. Kaplan, "Lectures on AdS/CFT from the Bottom Up" [4]
- J. Penedones, "TASI lectures on AdS/CFT," [5]

Many of the standard results about conformal blocks can be found in the classic papers by Dolan and Osborn, see e.g [6]. The ρ-coordinate, tauberian theorems and convergence of OPE is well-explained in [7]. For bootstrap at large N the standard reference is [8]. For the analytic bootstrap, see [9, 10].

References

[1] S. Rychkov, "EPFL Lectures on Conformal Field Theory in $d \geq 3$ Dimensions," doi:10.1007/978-3-319-43626-5 arXiv:1601.05000 [hep-th].
[2] D. Simmons-Duffin, "The Conformal Bootstrap," arXiv:1602.07982 [hep-th].
[3] D. Poland, S. Rychkov and A. Vichi, "The Conformal Bootstrap: Theory, Numerical Techniques, and Applications," Rev. Mod. Phys. 91 (2019) no.1, 15002 [arXiv:1805.04405 [hep-th]].
[4] J. Kaplan, "Lectures on AdS/CFT from the Bottom Up," https://sites.krieger.jhu.edu/jaredkaplan/files/2016/05/AdSCFTCourseNotesCurrentPublic.pdf
[5] J. Penedones, "TASI lectures on AdS/CFT," arXiv:1608.04948 [hep-th].
[6] F. A. Dolan and H. Osborn, "Conformal Partial Waves: Further Mathematical Results," arXiv:1108.6194 [hep-th].
[7] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, "OPE Convergence in Conformal Field Theory," Phys. Rev. D 86, 105043 (2012) [arXiv:1208.6449 [hep-th]].
[8] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, "Holography from Conformal Field Theory," JHEP 0910, 079 (2009) doi:10.1088/1126-6708/2009/10/079 [arXiv:0907.0151 [hep-th]].
[9] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, "The Analytic Bootstrap and AdS Superhorizon Locality," JHEP 1312, 004 (2013) doi:10.1007/JHEP12(2013)004 [arXiv:1212.3616 [hep-th]].
[10] Z. Komargodski and A. Zhiboedov, "Convexity and Liberation at Large Spin," JHEP 1311, 140 (2013) doi:10.1007/JHEP11(2013)140 [arXiv:1212.4103 [hep-th]].

[^0]: ${ }^{2}$ Recall that the conformal algebra is isomorphic to $\mathrm{SO}(d+1,1)$ with generators $L_{a b}$.
 ${ }^{3}$ For operators with the spin the correct boundary condition is $g_{\Delta_{\mathcal{O}}, J}(u, v)=u^{\Delta / 2}(1-v)^{J}+\ldots$.

[^1]: ${ }^{4}$ Here $a \sim b$ means $a / b \rightarrow 1$ in the assumed limit.

