Introduction to Monte Carlo
Event Generators

Stefan Gieseke

Institut für Theoretische Physik
KIT

Lectures at MCnet Vietnam summer school
ICISE, Quy Nhon, Vietnam
16/9–20/9 2019
Motivation: jets
Motivation: jets (at LHC of course)
Why Monte Carlos?

We want to understand

\[L_{\text{int}} \leftrightarrow \text{Final states} \, . \]
Why Monte Carlos?

LHC experiments require sound understanding of signals and backgrounds.

↑

Full detector simulation.

↑

Fully exclusive hadronic final state.

↑

Monte Carlo event generator with parton shower, hadronization model, decays of unstable particles.

↑

Parton level computations.
Experiment and Simulation

real life

Machine
LHC, Tevatron ...

Detector, Data Acquisition
CMS, ATLAS, CDF ...

virtual reality

Event Generator
Herwig, Pythia, Sherpa ...

Detector Simulation
Geant 4 ...

Event Reconstruction
ORCA ...

Analysis
ROOT ...

quick and dirty
Monte Carlo Event Generators

- Complex final states in full detail (jets).
- Arbitrary observables and cuts from final states.
- Studies of new physics models.

- Rates and topologies of final states.
- Background studies.
- Detector Design.
- Detector Performance Studies (Acceptance).

- *Obvious* for calculation of observables on the quantum level

\[|A|^2 \rightarrow \text{Probability}. \]
pp Event Generator
pp Event Generator
pp Event Generator
pp Event Generator
pp Event Generator
pp Event Generator
\textit{pp} Event Generator
Divide and conquer

Partonic cross section from Feynman diagrams

\[d\sigma = d\sigma_{\text{hard}} dP(\text{partons} \rightarrow \text{hadrons}) \]

\[dP(\text{partons} \rightarrow \text{hadrons}) = dP(\text{resonance decays}) \quad [\Gamma > Q_0] \]
\[\times dP(\text{parton shower}) \quad [\text{TeV} \rightarrow Q_0] \]
\[\times dP(\text{hadronisation}) \quad [\sim Q_0] \]
\[\times dP(\text{hadronic decays}) \quad [\mathcal{O}(\text{MeV})] \]

Underlying event from multiple partonic interactions

\[d\sigma \leftarrow d\sigma(\text{QCD } 2 \rightarrow 2) \]
Plan for these lectures

- Monte Carlo Methods
- Hard Scattering
- Parton Showers
- Hadronization and Hadronic Decays
- Underlying Event
- Multiple Parton Interactions (MPI) Modelling
Monte Carlo Methods
Monte Carlo Methods

Introduction to the most important MC sampling (= integration) techniques.

1 Hit and miss.
2 Simple MC integration.
3 (Some) methods of variance reduction.
4 Adaptive MC, VEGAS.
5 Multichannel.
6 Mini event generator in particle physics.
Probability

Probability density:

\[dP = f(x) \, dx \]

is probability to find value \(x\).

Example: \(f(x) = \cos(x) \).
Probability density:

\[dP = f(x) \, dx \]

is probability to find value \(x \).

\[F(x) = \int_{x_0}^{x} f(x) \, dx \]

is called probability distribution.

Example: \(f(x) = \cos(x) \).
Probability density:

\[dP = f(x) \, dx \]

is probability to find value \(x \).

\[F(x) = \int_{x_0}^{x} f(x) \, dx \]

is called probability distribution.

Example: \(f(x) = \cos(x) \).

Probability \(\sim \) Area
Hit and Miss

Hit and miss method:

- throw \(N \) random points \((x, y)\) into region.
- Count hits \(N_{\text{hit}} \), i.e. whenever \(y < f(x) \).

Then

\[I \approx V \frac{N_{\text{hit}}}{N}. \]

approaches 1 again in our example.
Hit and Miss

Hit and miss method:

- throw \(N \) random points \((x, y)\) into region.
- Count hits \(N_{\text{hit}} \), i.e. whenever \(y < f(x) \).

Then

\[
I \approx V \frac{N_{\text{hit}}}{N}.
\]

approaches 1 again in our example.

Example: \(f(x) = \cos(x) \).
Hit and Miss

Hit and miss method:

- throw N random points (x, y) into region.
- Count hits N_{hit}, i.e. whenever $y < f(x)$.

Then

$$I \approx V \frac{N_{\text{hit}}}{N}.$$

approaches 1 again in our example.

Every accepted value of x can be considered an event in this picture. As $f(x)$ is the ’histogram’ of x, it seems obvious that the x values are distributed as $f(x)$ from this picture.
How well does it converge?

Error $1/\sqrt{N}$.

$I_{MC}(N) - I \pm 1/\sqrt{N}$
Hit and Miss

\[I_{MC}(N) - I \pm \frac{1}{\sqrt{N}} \]

More points, zoom in…

Error \(\frac{1}{\sqrt{N}} \).
Hit and Miss

\[I_{MC}(N) - I = \frac{1}{\sqrt{N}} \]

Error \(1/\sqrt{N}\).
Hit and Miss

This method is used in many event generators. However, it is not sufficient as such.

• Can handle any density $f(x)$, however wild and unknown it is.
• $f(x)$ should be bounded from above.
• Sampling will be very inefficient whenever $\text{Var}(f)$ is large.

Improvements go under the name variance reduction as they improve the error of the crude MC at the same time.
Simple MC integration

Mean value theorem of integration:

\[I = \int_{x_0}^{x_1} f(x) \, dx = (x_1 - x_0) \langle f(x) \rangle \]

(Riemann integral).
Simple MC integration

Mean value theorem of integration:

\[I = \int_{x_0}^{x_1} f(x) \, dx \]
\[= (x_1 - x_0) \langle f(x) \rangle \]
\[\approx (x_1 - x_0) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

(Riemann integral).
Simple MC integration

Mean value theorem of integration:

\[I = \int_{x_0}^{x_1} f(x) \, dx = (x_1 - x_0) \langle f(x) \rangle \approx (x_1 - x_0) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

(Riemann integral).

Sum doesn’t depend on ordering

\[\rightarrow \text{randomize} \, x_i. \]
Simple MC integration

Mean value theorem of integration:

\[I = \int_{x_0}^{x_1} f(x) \, dx \]

\[= (x_1 - x_0) \langle f(x) \rangle \]

\[\approx (x_1 - x_0) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

(Riemann integral).

Sum doesn’t depend on ordering
\[\rightarrow \text{randomize } x_i. \]

Yields a flat distribution of events \(x_i \),
but weighted with weight \(f(x_i) \) (\(\rightarrow \) unweighting).
Simple MC integration

Pictorially:

\[
I = \int_{x_0}^{x_1} f(x) \, dx
= (x_1 - x_0) \langle f(x) \rangle
\]
Simple MC integration

Pictorially:

\[I = \int_{x_0}^{x_1} f(x) \, dx = (x_1 - x_0) \langle f(x) \rangle \]
Simple MC integration

What’s the error?

Again, looks like

\[\sigma \sim \frac{1}{\sqrt{N}} \]
Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

In general: \textit{Crude MC}

\[
I = \int f dV \\
\approx V \langle f \rangle \pm V \sqrt{\frac{\langle f \rangle^2 - \langle f^2 \rangle}{N}} \\
\approx V \langle f \rangle \pm V \frac{\sigma}{\sqrt{N}}
\]
Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Our example: \(\cos(x), 0 \leq x \leq \pi/2, \) compute \(\sigma_{MC} \) from

\[
\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)
\]

\[
\langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} f^2(x_i).
\]
Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Compute σ directly ($V = \pi/2$):

$$\langle f \rangle = \int_{0}^{\pi/2} \cos(x) \, dx = 1$$

$$\langle f^2 \rangle = \int_{0}^{\pi/2} \cos^2(x) \, dx = \frac{\pi}{4}$$

then

$$\sigma = \sqrt{1^2 - \frac{\pi}{4}} \approx 0.4633.$$
Simple MC integration

What’s the error?

Now, compare

\[\sigma_{MC} = \frac{0.4633}{\sqrt{N}} \]

with error estimate from MC.
Simple MC integration

What’s the error?

Now, compare

$$\sigma_{MC} = \frac{0.4633}{\sqrt{N}}$$

with error estimate from MC.

Spot on.
Another basic MC method, based on the observation that

\[\text{Probability} \sim \text{Area} \]
Inverting the Integral

- Probability density \(f(x) \). Not necessarily normalized.
Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P(x < x_s) = F(x_s)$.
Inverting the Integral

- Probability density \(f(x) \). Not necessarily normalized.
- Integral \(F(x) \) known,
- \(P(x < x_s) = F(x_s) \).
- Probability = 'area', distributed evenly,

\[
\int_{x_0}^{x} dP = r
\]
Inverting the Integral

- Probability density $f(x)$. Not necessarily normalized.
- Integral $F(x)$ known,
- $P(x < x_s) = F(x_s)$.
- Probability = ‘area’, distributed evenly,

$$\int_{x_0}^{x} dP = r$$

Sample x according to $f(x)$ with

$$x = F^{-1}\left[F(x_0) + r(F(x_1) - F(x_0))\right].$$
Inverting the Integral

Another basic MC method, based on the observation that

\[\text{Probability} \sim \text{Area} \]

Sample \(x \) according to \(f(x) \) with

\[
x = F^{-1}\left[F(x_0) + r(F(x_1) - F(x_0)) \right].
\]

Optimal method, but we need to know

- The integral \(F(x) = \int f(x) \, dx \),
- Its inverse \(F^{-1}(y) \).

That’s rarely the case for real problems.

But very powerful in combination with other techniques.
Importance sampling

Error on Crude MC $\sigma_{MC} = \sigma / \sqrt{N}$.

\implies Reduce error by reducing variance of integrand.
Importance sampling

Error on Crude MC $\sigma_{MC} = \sigma / \sqrt{N}$.

\implies Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

$$I = \int f \, dV = \int \frac{f}{p} \, p \, dV \approx \left\langle \frac{f}{p} \right\rangle \pm \sqrt{\frac{\langle f^2 / p^2 \rangle - \langle f / p \rangle^2}{N}}.$$

where we have chosen $\int p \, dV = 1$ for convenience.

Note: need to sample flat in $p \, dV$, so we better know $\int p \, dV$ and it’s inverse.
Consider error term:

\[
E = \left\langle \frac{f^2}{p^2} \right\rangle - \left\langle \frac{f}{p} \right\rangle^2 = \int \frac{f^2}{p^2} p \, dV - \left[\int \frac{f}{p} p \, dV \right]^2
\]

\[
= \int \frac{f^2}{p} \, dV - \left[\int f \, dV \right]^2.
\]
Importance sampling

Consider error term:

\[E = \int \frac{f^2}{p} \, dV - \left[\int f \, dV \right]^2. \]

Best choice of \(p \)? Minimises \(E \) \(\rightarrow \) functional variation of error term with (normalized) \(p \):

\[0 = \delta E = \delta \left(\int \frac{f^2}{p} \, dV - \left[\int f \, dV \right]^2 + \lambda \int p \, dV \right) \]

\[= \int \left(-\frac{f^2}{p^2} + \lambda \right) \, dV \delta p, \]
Importance sampling

Consider error term:

\[E = \int \frac{f^2}{p} \, dV - \left[\int f \, dV \right]^2. \]

Best choice of \(p \)? Minimises \(E \) \(\rightarrow \) functional variation of error term with (normalized) \(p \):

\[0 = \delta E = \int \left(-\frac{f^2}{p^2} + \lambda \right) \, dV \delta p, \]

hence

\[p = \frac{|f|}{\sqrt{\lambda}} = \frac{|f|}{\int |f| \, dV}. \]

Choose \(p \) as close to \(f \) as possible.
Importance sampling — example

Improving \(\cos(x) \) sampling,

\[
I = \frac{1}{2} \int_{0}^{\pi} \cos(x) \, dx = \frac{1}{2} \int_{1}^{p} \cos(x) \, dx.
\]
Importance sampling — example

Improving \(\cos(x) \) sampling,

\[
I = \int_{0}^{\pi/2} \cos(x) \, dx \\
= \int_{0}^{\pi/2} \frac{\cos(x)}{1 - \frac{2}{\pi} x} \left(1 - \frac{2}{\pi} x\right) \, dx \\
= \int_{0}^{1} \frac{\cos(x)}{1 - \frac{2}{\pi} x} \bigg|_{x=x(\rho)} \, d\rho.
\]
Importance sampling — example

Improving $\cos(x)$ sampling,

\[
I = \int_0^{\pi/2} \cos(x) \, dx \\
= \int_0^{\pi/2} \frac{\cos(x)}{1 - \frac{2}{\pi}x} \left(1 - \frac{2}{\pi}x\right) \, dx \\
= \int_0^{1} \frac{\cos(x)}{1 - \frac{2}{\pi}x} \bigg|_{x=x(\rho)} \, d\rho.
\]

Sample x with *inverting the integral* technique (flat random number ρ),

\[
x = \frac{\pi}{2} \left(1 - \sqrt{1 - \rho}\right) = \frac{\pi}{2} (1 - \sqrt{\rho}) \\
I = \int_0^{1} \frac{\cos \left(\frac{\pi}{2} \left(1 - \sqrt{\rho}\right)\right)}{\sqrt{\rho}} \, d\rho.
\]
Importance sampling — example

Improving $\cos(x)$ sampling,

much better convergence,

about 80% “accepted events”.

Reduced variance $(\sigma' = 0.027)$
⇒ better efficiency.
More interesting for divergent integrands, eg

\[\frac{1}{2\sqrt{x}} \]
Importance sampling — better example

More interesting for *divergent integrands*, eg

\[
\frac{1}{2\sqrt{x}}
\]

with some wiggles,

\[p(x) = 1 - 8x + 40x^2 - 64x^3 + 32x^4.\]
More interesting for divergent integrands, e.g.

\[\frac{1}{2\sqrt{x}} , \]

with some wiggles,

\[p(x) = 1 - 8x + 40x^2 - 64x^3 + 32x^4 . \]

i.e. we want to integrate

\[f(x) = \frac{p(x)}{2\sqrt{x}} . \]
Importance sampling — better example

- Crude MC gives result in reasonable 'time'.
- Error a bit unstable.
- Event generation with maximum weight $w_{\text{max}} = 20$. (that’s arbitrary.)
- hit/miss/events with $(w > w_{\text{max}}) = 36566/963434/617$ with 1M generated events.
Importance sampling — better example

Want events:
use hit+mass variant here:

- Choose new random number \(r \)
- \(w = f(x) \) in this case.
- if \(r < w / w_{\text{max}} \) then "hit".
- MC efficiency = hit/N.
Importance sampling — better example

Want events:
use hit+mass variant here:

- Choose new random number r
- $w = f(x)$ in this case.
- if $r < w/w_{\text{max}}$ then "hit".
- MC efficiency = hit/N.
- Efficiency for MC events only 3.7%.
- Note the wiggly histogram.
Importance sampling — better example

Now importance sampling, i.e. divide out $1/2\sqrt{x}$.

$$\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 \left(\frac{p(x)}{2\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \right) \, dx$$

$$= \int_0^1 p(x) \, d\sqrt{x}$$

$$= \int_0^1 p(x(\rho)) \, d\rho$$

$$= \int_0^1 1 - 8\rho^2 + 40\rho^4 - 64\rho^6 + 32\rho^8 \, d\rho$$

so,

$$\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}}$$

x sampled with inverting the integral from flat random numbers ρ, $x = \rho^2$.

Stefan Gieseke · Monte Carlo · MCnet Vietnam summer school 2019 · ICISE, 16-20 Sept 2019, Quy Nhon, Vietnam
Importance sampling — better example

\[\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 p(x(\rho)) \, d\rho \]

with

\[\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}} \]

Events generated with \(w_{\text{max}} = 1 \), as \(p(x) \leq 1 \), no guesswork needed here! Now, we get 74.6% MC efficiency.
Importance sampling — better example

\[\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 p(x(\rho)) \, d\rho \]

with

\[\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}} \]

Events generated with \(w_{\text{max}} = 1 \), as \(p(x) \leq 1 \), no guesswork needed here! Now, we get 74.6\% MC efficiency.

… as opposed to 3.7\%.

Stefan Gieseke · Monte Carlos · MCnet Vietnam summer school 2019 · ICISE, 16-20 Sept 2019, Quy Nhon, Vietnam
Importance sampling — better example

Crude MC vs Importance sampling.

$100 \times$ more events needed to reach same accuracy.
Importance sampling — another useful example

Breit–Wigner peaks appear in many realistic MEs for cross sections and decays.

\[I = \int_{s_0}^{s_1} \frac{ds}{(s - m^2)^2 + m^2 \Gamma^2} \]
Importance sampling — another useful example

Breit–Wigner peaks appear in many realistic MEs for cross sections and decays.

\[I = \int_{s_0}^{s_1} \frac{ds}{(s-m^2)^2 + m^2 \Gamma^2} = \frac{1}{m \Gamma} \int_{y_0}^{y_1} \frac{dy}{y^2 + 1} \quad (y = \frac{s-m^2}{m \Gamma}) \]

Inverting the integral gives (“tan mapping”).

\[f(s) = m \Gamma \]

\[F(s) = \arctan \frac{s-m^2}{m \Gamma} = \rho \]

\[F^{-1}(\rho) = m^2 + m \Gamma \tan \rho \]
Importance sampling — another useful example

$f(s), m = 10, \Gamma = 3$

10M evts
• Classic algorithm.
• Automatic importance sampling.
• Adopt grid size.
• Often used for multidimensional integration.
• Very robust.
VEGAS

- start with equidistant grid \(x_0, x_1, \ldots, x_N \).
- Sample a number of points \((x_{s,i}, f(x_{s,i})) \), compute first estimate of integral as \(\langle f \rangle \).
- Resize grid:
 choose \(x'_i \) such that contribution from partial areas inside \(x_i < x < x_{i+1} \) to integral is \(\langle f \rangle / N \).
- Remember, optimal \(p(x) \sim |f(x)| \).
- Sample again with same number of points into every bin \(x_i < x < x_{i+1} \). Results in step weight function with steps

\[
p_i = \frac{1}{N(x_i - x_{i-1})}, \quad x_i < x < x_{i+1}.
\]

- \(\Rightarrow \) Sample often where density is high.
Rebinning:

\[f_i \propto m_i x_i \]

Figure 5.4: Typical weights used in the rebinning algorithm.

\[\text{from T. Ohl, VAMP} \]
Example: $\cos\left(\frac{\pi x}{2}\right)$

$N_{\text{grid}} = 20, 100$

Convergence improved.
VEGAS

Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\[N_{\text{grid}} = 20, 100 \]

Convergence improved.
Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Example: $\cos\left(\frac{\pi x}{2}\right)$

$N_{\text{grid}} = 20, 100$

Convergence improved.
VEGAS

Example: \(\cos \left(\frac{\pi x}{2} \right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Example: $\cos\left(\frac{\pi x}{2}\right)$

$N_{\text{grid}} = 20, 100$

Convergence improved.
Example: \(\cos\left(\frac{\pi x}{2}\right) \)

\(N_{\text{grid}} = 20, 100 \)

Convergence improved.
Second example:
\(p(x)/\sqrt{x} \)
(divergence with wiggles)
Second example:
\(\frac{p(x)}{\sqrt{x}} \)
(divergence with wiggles)
Second example:
\[p(x)/\sqrt{x} \]
(divergence with wiggles)
Second example:

\[p(x) / \sqrt{x} \]

(divergence with wiggles)

Acc \(10^{-4}\) after \(N = 10^6\) comparable with 'inverting the integral'.

\[
\begin{align*}
N & \quad \text{MC Error} \\
10^4 & \quad 10^{-2} \\
10^5 & \quad 10^{-3} \\
10^6 & \quad 10^{-4} \\
10^7 & \quad 10^{-5} \\
10^8 & \quad 10^{-6}
\end{align*}
\]
Second example:
\(p(x) / \sqrt{x} \)
(divergence with wiggles)
VEGAS

Problem to adapt in multiple dimensions:

Figure 5.1: Vegas grid structure for non-stratified sampling. N.B.: the grid and the weight functions $p_1(x_1)$, $p_2(x_2)$ are only in qualitative agreement.

Figure 5.2: Vegas grid structure for genuinely stratified sampling, which is used in low dimensions. N.B.: the grid and the weight functions p_1, p_2 are only in qualitative agreement.

[from T. Ohl, VAMP]
Multichannel MC

Typical problem:
- $f(s)$ has multiple peaks (\times wiggles from ME).

$$f(s) = \sum_i a_i g_i(s)$$
Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.
Multichannel MC

Typical problem:
- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.
- Encode this in sum of sample functions $g_i(s)$ with weights α_i, $\sum \alpha_i = 1$.

$$g(s) = \sum_i \alpha_i g_i(s).$$
Now rewrite

\[
\int_{s_0}^{s_1} f(s) \, ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) \, ds
\]

\[
= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) \, ds
\]

\[
= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) \, ds
\]

Now \(g_i(s) \, ds = d\rho_i \) (inverting the integral).
Now rewrite

$$
\int_{s_0}^{s_1} f(s) ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) ds \\
= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) ds \\
= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) ds
$$

Now $g_i(s) ds = d\rho_i$ (inverting the integral).

Select the distribution $g_i(s)$ you’d like to sample next event from acc to weights α_i.

α_i can be optimized after a number of trials.
Multichannel MC
Works quite well:

![Graph showing Multichannel error and Crude MC error](image)
Hard Scattering
Hard scattering
Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs ($O(1)$).

 ![Feynman diagram]

- OK for very inclusive observables.
Matrix elements

• Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs ($O(1)$).

• OK for very inclusive observables.
• Starting point for further simulation.
• Want exclusive final state at the LHC ($O(100)$).
Matrix elements

- Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs ($O(1)$).
- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC ($O(100)$).
- Want arbitrary cuts.
- \rightarrow use Monte Carlo methods.
Matrix elements

Where do we get (LO) $|M|^2$ from?

• Most/important simple processes (SM and BSM) are ‘built in’.

• Calculate yourself (≤ 3 particles in final state).

• Matrix element generators:
 • MadGraph/MadEvent.
 • Comix/AMEGIC (part of Sherpa).
 • HELAC/PHEGAS.
 • Whizard.
 • CalcHEP/CompHEP.

 generate code or event files that can be further processed.

• \rightarrow FeynRules interface to ME generators.

Also NLO mostly automatically available.
See “Matching and Merging”.

Stefan Gieseke · Monte Carlos · MCnet Vietnam summer school 2019 · ICISE, 16-20 Sept 2019, Quy Nhon, Vietnam
Cross section formula

From Matrix element, we calculate

$$\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \ dx_1 dx_2 d\Phi_n ,$$
Cross section formula

From Matrix element, we calculate

\[\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 dx_2 d\Phi_n , \]
Cross section formula

From Matrix element, we calculate

\[\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 dx_2 d\Phi_n , \]

now,

\[\frac{1}{F} dx_1 dx_2 d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} \, dx_i \quad \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{d^3p}{(2\pi)^3 2E_i} \right) \]

such that

\[\sigma = \int g(\vec{x}) \, d^{3n-2} \vec{x} , \quad \left(g(\vec{x}) = J(\vec{x}) f_i f_j \sum |M|^2 \Theta(\text{cuts}) \right) \]

\[= \frac{1}{N} \sum_{i=1}^{N} \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^{N} w_i . \]
Cross section formula

From Matrix element, we calculate

\[
\sigma = \int f_i(x_1, \mu^2)f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 dx_2 d\Phi_n,
\]

now,

\[
\frac{1}{F} \, dx_1 dx_2 d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} dx_i \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{d^3p}{(2\pi)^3 2E_i} \right)
\]

such that

\[
\sigma = \int g(\vec{x}) \, d^{3n-2}\vec{x}, \quad \left(g(\vec{x}) = J(\vec{x})f_i f_j \sum |M|^2 \Theta(\text{cuts}) \right)
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^{N} w_i.
\]

We generate events \(\vec{x}_i \) with weights \(w_i \).
Mini event generator

- We generate pairs \((\tilde{x}_i, \omega_i)\).
Mini event generator

- We generate pairs (\tilde{x}_i, w_i).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
Mini event generator

- We generate pairs \((\tilde{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \(\tilde{x}_i\) with probability

\[
P_i = \frac{w_i}{w_{\text{max}}}.\]

Generate events with same frequency as in nature!
Mini event generator

- We generate pairs \((\tilde{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \(\tilde{x}_i\) with probability

\[
P_i = \frac{w_i}{w_{\text{max}}} ,
\]

where \(w_{\text{max}}\) has to be chosen sensibly.

→ reweighting, when \(\max(w_i) = \bar{w}_{\text{max}} > w_{\text{max}}\), as

\[
P_i = \frac{w_i}{\bar{w}_{\text{max}}} = \frac{w_i}{w_{\text{max}}} \cdot \frac{w_{\text{max}}}{\bar{w}_{\text{max}}} ,
\]

i.e. reject events with probability \((w_{\text{max}}/\bar{w}_{\text{max}})\) afterwards.
Mini event generator

• We generate pairs (\tilde{x}_i, w_i).
• Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
• Keep event \tilde{x}_i with probability

$$P_i = \frac{w_i}{w_{\text{max}}}.$$

Generate events with same frequency as in nature!
Matrix elements

Some comments:

• Use common Monte Carlo techniques to generate events efficiently. Goal: small variance in \(w_i \) distribution!
Some comments:

• Use common Monte Carlo techniques to generate events efficiently. Goal: small variance in w_i distribution!

• Efficient generation closely tied to knowledge of $f(\tilde{x}_i)$, i.e. the matrix element’s propagator structure.
 → build phase space generator already while generating ME’s automatically.