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•  Compute those Function Analytically
•  Code in Python
•  Can handle

➡ all spin up to 2
➡ custom propagator
➡ Majorana (but in 4 fermion operator)
➡ Any dimensional operator

•  Only use in MadGraph5_aMC@NLO 
•  Plan to have similar tools for the other 
generator

 X

ALOHA
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•  Numerical computation faster than 
analytical computation

•  We are able to compute matrix-elment
➡ for large number of final state
➡ for any BSM theory
➡ actually also for loop

 36

To Remember
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BSM: decay
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Decay
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Diagrams made by MadGraph5_aMC@NLO
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•  Process complicated to have the full 
process
➡Including off-shell contribution

 38

Decay
Non Resonant Diagram

Problem

c u > c u e+ ve e- ve~ NP=2 WEIGHTED=20 HIW=1 HIG=1 page 3/12

Diagrams made by MadGraph5
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•  Process complicated to have the full 
process
➡Including off-shell contribution
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Decay

Solution
•  Only keep on-shell contribution

Non Resonant Diagram

Problem
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Diagrams made by MadGraph5
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Theory
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•  This is an Approximation!
•  This force the particle to be on-shell!

•  Recover by re-introducing the Breit-
wigner up-to a cut-off
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Decay chain

   KIAS MadGrace school, Oct 24-29 2011                                                                                MadGraph 5 Olivier Mattelaer

Decay chains

• p p > t t~ w+, (t > w+ b, w+ > l+ vl), \
                     (t~ > w- b~, w- > j j), \
                     w+ > l+ vl

• Separately generate core process and each decay
- Decays generated with the decaying particle as 
resulting wavefunction

• Iteratively combine decays and core processes

• Difficulty: Multiple diagrams in decays

mardi 25 octobre 2011

 40

very long  
decay chains possible to simulate 

directly in MadGraph!
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Decay chains

• p p > t t~ w+, (t > w+ b, w+ > l+ vl), \
                     (t~ > w- b~, w- > j j), \
                     w+ > l+ vl

• Separately generate core process and each decay
- Decays generated with the decaying particle as 
resulting wavefunction

• Iteratively combine decays and core processes

• Difficulty: Multiple diagrams in decays

mardi 25 octobre 2011
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very long  
decay chains possible to simulate 

directly in MadGraph!

•  Full spin-correlation
•Off-shell effects (up to cut-off)
•NWA not used for the cross-section
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MadSpin
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Figure 5: Next-to-leading-order cross sections differential in pT (l+) (left pane) and in cosφ (right
pane) for tt̄H events with or without spin correlation effects. For comparison, also the leading-
order results are shown. Events were generated with aMC@NLO, then decayed with MadSpin,
and finally passed to Herwig for shower and hadronization.
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Figure 6: Next-to-leading-order cross sections differential in pT (l+) (left pane) and in cosφ
(right pane) for tt̄A events with or without spin correlation effects. Events were generated with
aMC@NLO, then decayed with MadSpin, and finally passed to Herwig for shower and hadroniza-
tion.

that preserving spin correlations is more important than including NLO corrections for this

observable. However, we observe that the inclusion of both, as it is done here, is necessary

for an accurate prediction of the distribution of events with respect to cos(φ). In general, a

scheme including both spin correlation effects and QCD corrections is preferred: it retains

the good features of a NLO calculation, i.e. reduced uncertainties due to scale dependence

(not shown), while keeping the correlations between the top decay products.

The results for the pseudo-scalar Higgs boson are shown in Figure 6. The effects of the

spin correlations on the transverse momentum of the charged lepton are similar as in the

case of a scalar Higgs boson: about 10% at small pT , increasing to about 40% at pT = 200

GeV. On the other hand, the cos(φ) does not show any significant effect from the spin-

correlations. Therefore this observable could possibly help in determining the CP nature of

the Higgs boson, underlining the importance of the inclusion of the spin correlation effects.

– 14 –

Decay as post-processing 
Independently of event generation
But same accuracy (spin-correlation)
Use NWA for cross-section

t t > w+ b
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Spin-correlation
Full Spin correlation

Flat Decay

MadSpin Herwig

BridGe

Pythia

MadGraph
Slow

Fast

Exact Matrix-Element integration

Re-weighting method

Diagonal Density Matrix Method

Pure Flat Decay

Full Density Matrix Method

Sherpa
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Very small width

• Slows down the code
• Can lead to numerical instability

 43

Γ < 10−8M
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Very small width

• Slows down the code
• Can lead to numerical instability

 43

Γ < 10−8M

Solution

• Use a Fake-Width for the 
evaluation of the matrix-element

• Correct cross-section according to 
NWA formula Γfake

Γtrue
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To Remember

• BSM only occurs at High Energy
➡ But need correct understanding of the Low 

Energy to simulate events
• Matrix-Element evaluation

➡ Numeric method faster than analytical one
• Narrow-width approximation

➡ Know/check your hyppothesis
➡ Careful about the width

 44


