MG5aMC tutorial

Eleni Vryonodou, Cen Zhang, Ilaria Brivio And O. Mattelaer

Avoid internet!

- We are many on the room.
- External network is bounded to be slow
- Setup Madgraph to use the local network
- export MG5aMC_WWW="http://I92.I68.XXX.YYY:8000"
\Rightarrow This requires version 2.6.5
- Need to download MG5aMC
- http://192.168.XXX.YYY:8000/MG5
- For PDF:
- http://I92.168.XXX.YYY:8000/PDF

Ex. I: Install MadGraph 5!

- http://192.168.000.000:8000/MG5/
- untar it (tar -xzpvf MG5_XXX.tgz)
- launch it (\$./bin/mg5 amc)
- learn it!
- Type tutorial and follow instructions
- install external package
- install pythia8
- install MadAnalysis5
- Be sure that you have run export amd in that shell
- export MG5aMC_WWW="http://I92.168.XXX.YYY:8000"

Where to find help (after the school)?

- Type tutorial
- Use the command "help" / "help XXX"
- "help" tell you the next command that you need to do.
- Launchpad:
- https://answers.launchpad.net/madgraph5
- FAQ: https://answers.launchpad.net/madgraph5/+faqs

Ex. II : Order

Goal - What's the default choice for QED/QCD order

Learn • What's the difference between
$\Rightarrow P p>t \sim$
$\Rightarrow P p>t \mathrm{t} \sim \mathrm{QED}=0$

$$
\Rightarrow \mathrm{pp}>\mathrm{t} \mathrm{t} \sim \mathrm{QED}<=2
$$

- Compute the cross-section for each of those and check the diagram
- Generate VBF process (two jet + two W in final state) only the diagram!
- check that you have the QED diagram that you want:

Solution I : Syntax

- What's the meaning of the order QED/QCD
- By default MG5 takes the lowest order in QED!

INFO: Trying coupling order WEIGHTED<=2: WEIGTHED IS 2*QED+QCD
\Rightarrow Pp>tt~ IS the same as $p p>t \mathrm{t} \sim$ QED=0
$\Rightarrow P P>t \mathrm{t} \sim \mathrm{QED}<=2$ has additional diagrams (photon/z exchange)

P P > t t~

$P p^{>}+t \sim Q E D=2$
Cross section (pb)

$$
\underline{555.8 \pm 0.91}
$$

No significant QED contribution

Solution I Syntax

- generate p p > w $+w-j j$
- 76 processes
- 1432 diagrams
- generate p p > w+ w- j j QED $<=2$
- 76 processes
- 1432 diagrams
- None of them are VBF
generate p p > w $+w-j$ j QED $<=4$
- 76 processes
- 5332 diagrams
\Rightarrow VBF present! + those not VBF
- generate p p > w+ w- j j QCD=0
- 60 processes
- 3900 diagrams
- VBF present!
generate p p > w $+w-j$ j QCD $<=2$
- 76 processes
- 5332 diagrams
- generate p p > w+ w- jj QCD $<=4$
- 76 processes

Ex III:What are those cards?

- Read the Cards and identify what they do
- param_card
\Rightarrow run_card:
- To see such cards run:
\Rightarrow Generate p p > t t~
- Output
\Rightarrow Launch
- Type enter to the first question
- Now you can type I or 2 to see the files

Exercise III: Cards Meaning

- How do you change
\Rightarrow top mass
\Rightarrow top width
\Rightarrow W mass
\Rightarrow beam energy
\Rightarrow pt cut on the lepton

Ex III:What are those cards? (Solution)

- Read the Cards and identify what they do
- param_card: model parameters
- Note aS is not typically not read from the param_card but from the PDF set chosen (if any)
\Rightarrow run_card: beam/run parameters and cuts
- https://answers.launchpad.net/madgraph5/+faq/2014

Exercise II: Cards Meaning (Solution)

- How do you change
\Rightarrow top mass
- Set mt 180 \# or edit param_card
\Rightarrow top width
- Set wt 2.I \# or edit param_card
$\Rightarrow W$ mass
- Set mZ 80 \# or change GF/aEW !! MW is not free!
\Rightarrow beam energy
- set ebeam 7000 \# or change run_card
\Rightarrow pt cut on the lepton
- set ptl 20 \# or change run_card

Ex. IV: Syntax

- Generate the cross-section and the distribution (invariant mass) for
- pp>e+e-
- pp>z,z>e+e-
- $p p>z>e^{+}$e-
- pp>e+e-\$z
- pp>e+e-/z

Hint :To plot automatically distributions: mg5> install MadAnalysis5

- Use the invariant mass distribution to determine the meaning of each syntax.

$p p>e+e-/ z$

P P > z , z > e+e-

$p p^{>} e+e-\$ z$

Z- onshell veto

P p > e+ e-/z

P P > z , z > e+e-

P P > e+ e- \$ z

Z- onshell veto

P P > e+e-/z
Z Peak P P > z , z > e+e(8 diagrams)
(8 diagrams)

NoZ^{2}
NO Z Peak

Z- onshell veto

P P > e+ e- /z

No Z

P P > z , z > e+e-

Z Peak
(8 diagrams) NO Z Peak

Z- onshell veto

P p > e+e-/z
(8 diagrams) NO Z Peak

No ${ }^{2}$
Z Peak

No z/a interference
Wrong tail P P > z , z > e+e(8 diagrams)

Z- onshell veto

Onshell cut: BW_cut

$$
\left|M^{*}-M\right|<B W_{c u t} * \Gamma
$$

- The Physical distribution is (very close to) exact sum of the two other one.
- The " $\$$ " forbids the Z to be onshell but the photon invariant mass can be at MZ (i.e. on shell substraction).
- The " $/$ " is to be avoid if possible since this leads to violation of gauge invariance.

WARNING

- NEXT SLIDE is generated with bw_cut $=5$
- This is TOO SMALL to have a physical meaning (I5 the default value used in previous plot is better)
- This was done to illustrate more in detail how the " $\$$ " syntax works.

See previous slide warning

$p p>e+e-/ Z$

See previous slide warning
$\mathrm{P} P>\mathrm{e}+\mathrm{e}-/ \mathrm{Z} \quad$ adding $\mathrm{P} P>\mathrm{e}+\mathrm{e}-\$ \mathrm{Z}$

See previous slide warning
$\mathrm{P} P>\mathrm{e}+\mathrm{e}-\mathrm{l}$ (redane) $\mathrm{Z} \quad$ adding $\mathrm{P} P>\mathrm{e}+\mathrm{e}-\$ \mathrm{Z}$

- Z onshell veto

5 times width area

See previous slide warning
$p p>e+e-/ Z$ adding P P > e+e- $\$$ fibueanee

- Z onshell veto
- In veto area only photon contribution

5 times width area

See previous slide warning
$p \mathrm{P}>\mathrm{e}+\mathrm{e}-\mathrm{l} / \mathrm{Z}$ (resune) adding P P $>\mathrm{e}+\mathrm{e}-\$ \mathrm{Z}$

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak

5 times width area

I5 times width area

See previous slide warning
$p \mathrm{P}>\mathrm{e}+\mathrm{e}-\mathrm{l} / \mathrm{Z}$ (socane)
adding P P > e+e- \$ Z

5 times width area
I5 times width area
> 15 times width area

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak
- very off-shell Z, the difference between the curve is due to interference which are need to be KEPT in simulation.

See previous slide warning
$p p>e+e-/ Z$
adding P P > e+e- \$ Z

5 times width area
I5 times width area
>15 times width area
The "\$" can be use to split the sample in BG/SG area

- Syntax Like
$\Rightarrow p p>z>e+e-$
$\Rightarrow p p>e+e-/ z$
(ask one S-channel z)
(forbids any z)
$\Rightarrow p p>e+e-\$ \$ z$
(forbids any z in s-channel)
- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.
- Syntax Like
$\Rightarrow p p>z>e+e-$
$\Rightarrow P p>e+e-/ z$
(ask one S-channel z)
(forbids any z)
$\Rightarrow p p>e+e-\$ \$ z$
(forbids any z in s-channel)
- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

- Syntax Like
\Rightarrow P P > z > e+ e- (ask one S-channel z)
$\Rightarrow P p>e+e-/ z$
(forbids any z)
$\Rightarrow p p>e+e-\$ \$ z$
(forbids any z in s-channel)
- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

- Syntax like
- $P P^{>} z, z>e+e-$ (on-shell z decaying)
- P P $>\mathrm{e}+\mathrm{e}-\$ \mathrm{z}$ (forbids s-channel z to be on-shell)
- Are linked to cut $\left|M^{*}-M\right|<B W_{c u t} * \Gamma$
- Are more safer to use
- Prefer those syntax to the previous slides one

ExerciseV

- Generate top pair production at LO,
- Do the fully leptonic decay of the top pair
- Shower event with pythia8
- Plot the pt distribution of the first jet
- How to improve the simulation
- Of the cross-section
- Of the pt of the first/second jet

Two methods for the decay

- Generate p p > t t~, ($\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}),(\mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim, \mathrm{w}->\mathrm{e}-$ ve~)
- output
- launch
- Ask for Pythia8 and MA5 (rest keep on OFF)
\Rightarrow set mpi OFF \#This is for speed issue for the tuto
- Generate p p>t t~
- Output; Launch
\Rightarrow Ask for MadSpin and Pythia8 and MA5
\Rightarrow set mpi OFF \#This is for speed issue for the tuto
\Rightarrow decay $\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
\Rightarrow decay $\mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim, \mathrm{w}->\mathrm{e}-\mathrm{ve} \sim$

Two methods for the decay

- Generate p p > t t~, (t > w+b, w+ > e+ ve), (t~>w-b~, w-> eve~)
- Full phase-space integration
\Rightarrow Does not rely on the Branching ratio
\Rightarrow Rely on the full width
\Rightarrow cut-off to avoid be too much off-shell
- Generate p p > t t~ + Madspin
- Rely on the Branching ratio
\Rightarrow Keep the full spin-correlation
- Keep off-shell effects: cut-off to avoid be too much off-shell

Improve Precision

- cross-section
\Rightarrow Need to go to NLO
- No decay chain syntax (only MadSpin option)
* generate pp>t $\mathrm{t} \sim$ [QCD]
\Rightarrow To generate events we need to know which PartonShower, you will use!!
- Events generated for that specific PS
- Using another will break NLO accuracy
\Rightarrow MadSpin decay is based on LO and NWA.

Improve Precision

- Pt of the first jet
\Rightarrow Add the jet at LO:
- generate P P > t t~ j
- Valid for hard jet only!
\Rightarrow Going to NLO: "generate p p > t t~ [QCD]"
\uparrow As accurate at p p>t t~j
- But if you do "generate pp>t $\mathrm{t} \sim \mathrm{j}$ [QCD]"

Improve Precision

- Pt of the second jet
- Need matching/merging method
- generate pp>t~
* add process p p $>\mathrm{tt} \mathrm{j}$
- add process pp>tt~jj
- Use MLM or CKKW-L scheme (or any variation)
\Rightarrow You can also use matching/merging at NLO
- FxFx or UNLOPS
- generate p p>t t~ [QCD]
- add process p p>t $\mathrm{t} \sim \mathrm{j}$ [QCD]
- add process p p >tt~ji [QCD]

tt@LO

ttj@LO

PT distribution (MLM 0+lj)

tt@NLO

ttj

MG5aMC tutorial II BSM

Eleni Vryonodou, Cen Zhang, Ilaria Brivio And O. Mattelaer

Exercise I: Restrict Model

- Run the "export command" in your shell!
- import model EWDim6
\Rightarrow This downloads it on disk. (and change model to that one for the diagram generation)
- This model contains 8 dimension operator
- We want to RESTRICT the model to only keep one (Owww)
- Such that Feynman diagram corresponding to other operator are NOT generated
- Makes more optimal code!

Exercise I: Restrict Model

- Go to models/EWdim6 directory
- Run the script
- Python write_param_card.py
- cp param_card.dat restrict_owww.dat
\Rightarrow The owww part can be changed to ANY string you want [but default and full].
- Edit that file
\Rightarrow Put the c mass and b mass to zero
- Put all the dim6 operator at 0 but CWWWL2
- Put CWWWL2 to 9.999999e-I
- Go back to MG5_aMC
= Import model EWdim6-owww

Restrict Model

- When importing the model with the flag

MG5_aMC>import model EWdim6-owww
INFO: model loaded from PYTHONPATH: /Users/omattelaer/Desktop/UFOMODEL/EWdim6
INFO: Restrict model EWdim6 with file ../../../Desktop/UFOMODEL/EWdim6/restrict_owww.dat
INFO: Run "set stdout_level DEBUG" before import for more information.
INFO: Change particles name to pass to MG5 convention
Pass the definition of ' j ' and ' p ' to 5 flavour scheme.
Kept definitions of multiparticles l- / vl / l+ / vl~ unchanged
Defined multiparticle $a l l=g u c d s b u \sim c \sim d \sim s \sim b \sim a$ ve vm vt e-ve vm vir vt~ e+t t~ z MG5_aMC>
\Rightarrow MG5 mode pass to 5 flavour
\Rightarrow Less Feynman diagram generated
\#
\#\# INFORMATION FOR DIMG
\# Block dim6
$11.000000 \mathrm{e}+00$ \# CWWWL2
\# \#\# INFORMATION FOR MASS
\#
Block mass
$61.720000 \mathrm{e}+02$ \# MT
13 1.056600e-01 \# MM
15 1.777000e+00 \# MTA
23 9.118760e+01 \# MZ
25 1.250000e+02 \# set of param :1*MH, 1*MP

Restrict Model

- What's happening

1. All coupling are evaluated for that param_card
2. All vertex associated to zero coupling (exactly or very small) are removed from the model
3. All zero/one value of the param_card are frozen to such value (use 0.00000 le- $99,9.999999 \mathrm{e}$-I to avoid that)
4. If two parameters are equal (or opposite) in the same block

- Remove one of the two parameters
\downarrow Freeze the second one accordingly

5. If a file default_ $X X X$.dat exists use that one as default param_card. Otherwise use the restrict_XXX.dat itself

- can be used for benchmark

6. restrict_default.dat is automatically loaded by MG5aMC

- Use import model EWdim6-full to bypass it

Exercise II: Validate Model

- Validate a Model/Process is always nice !!
- You will sound like a MG5 expert
- Import model EW-dim6
- check P p > zha

Lorentz invariance results:			
Process Min element	Max element	Relative diff.	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.0245789272e-01}$	$3.0245789272 \mathrm{e}-01$	0.0000000000e+00	Passed
u u~ > z h a 4.1915242516e-03	4.1915242516e-03	$2.0693229620 \mathrm{e}-15$	Passed
d d~ > z h a 1.2414404109e-03	$1.2414404109 \mathrm{e}-03$	$2.6200262928 \mathrm{e}-15$	Passed
Summary: 3/3 passed, 0/3 failed			
Not checked processes: c c~ > z h a, s s~ > z ha			
Process matrix	BRS	ratio	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.4921781373e-01}$	4.9684750757e-42	1.4227438809e-41	Passed
u u~ > z h a 4.9543423043e-03	8.8574527892e-34	1.7878160703e-31	Passed
d d~ > z h a 2.8216312492e-03	$2.0405124807 e-34$	7.2316766455e-32	Passed
Summary: $3 / 3$ passed, 0/3 failed			
Process permutation results:			
Process Min element	Max element	Relative diff.	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.7207324869e-01}$	$3.7207324869 \mathrm{e}-01$	1.4919414773e-16	Passed
u u~ > z h a 1.2564293427e-02	1.2564293427e-02	$2.7613546055 \mathrm{e}-16$	Passed
d d~ > z h a 1.3180098875e-02	$1.3180098875 \mathrm{e}-02$	1.3161687879e-16	Passed
Summary: $3 / 3$ passed, 0/3 failed			

Exercise III: Width

- Compute P p > w+ w-b b~
\Rightarrow Change the top quark width
\Rightarrow How the cross-section changes (and why)
- compute P P > $\mathrm{t} \mathrm{t} \sim, \mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim$
\Rightarrow Change the top quark width
- How the cross-section changes (and why)
- compute p p>tt~+Madspin decay
- Change the top quark width (but keep BR to I)
\Rightarrow How the cross-section changes (and why)

Exercise III: Width

- Compute P p > w+ w-b b~
\Rightarrow Cross-section as I/ Gamma
- compute P p > t t~, $\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim$
- Cross-section as I/Gamma
- compute p p>tt~+Madspin decay
\Rightarrow Constant (use the Branching ratio information)
- If MadSpin does not re-compute the width
- The width is consider as a free parameter in the computation.
\Rightarrow Need to be provided correctly for the cross-section/ shape

Exercise III: Width - Part II

- Compare
- generate p $\mathrm{p}>\mathrm{w}+\mathrm{j}$
- generate $\mathrm{p} p>\mathrm{w}+\mathrm{j}, \mathrm{w}+>\mathrm{e}$ ve
- Compare
- generate p p>e+ vej
- generate $\mathrm{p} p>\mathrm{w}+\mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
- Redo the comparison when modifying the run_card parameter "cut_decays"

Width Solution

Goal - understanding decay-chain handling

generate p p > w +j
output; launch
generate $\mathrm{p} p>\mathrm{w}+\mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$ output; launch
generate $p \mathrm{p}>\mathrm{e}+\mathrm{ve} \mathrm{j}$ output; launch

Wrong width	Correct width	+cut_decays=T
$21437 \mathrm{pb} * \mathrm{BR}$ 2304 pb	$21437 \mathrm{pb} * \mathrm{BR}$ 2304 pb	21437 pb *BR 2304 pb
32514 pb	2329 pb	1588 pb
33095 pb	1606 pb	1606 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Exercise III: Width - Part II

- Compare
\Rightarrow generate P p > $\mathrm{w}^{+}{ }^{\mathrm{j}}$
\Rightarrow generate P p > $\mathrm{w}^{+} \mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
- Compare
\Rightarrow generate P p > e+ ve j
\Rightarrow generate p p > w+ $j, w^{+}>e^{+}$ve
- They are not good default for cut_decays parameter. Some people expect that parameter to be True by default and some other to be False

Width:Trick

- Width are consider as free parameter
- Not really True
- We can compute them automatically !!
- "set wt Auto" \# or inside the param_card
- Tree-Level computation
- Not valid for the Higgs (but for heft model)
\Rightarrow Include 3 body decay (bypass them if not relevant)
- Check it for the top/W/Z
- 2 body computation can be done analytically
- Fasten the computation (need recent UFO model)

Exercise IV: Interference

Example

Exercise

- Use your EWDIM6 model
- Compute cross-section without the square part

Exercise V:Automation

- 2 Goals:
- How to do a parameter scan
- How to avoid the cli (command line interface

Parameter scan

Parameter scan:

- compute the cross-section for a couple of mass generate pp>gogo
- for that you can enter for the go mass:
set mgo scan:[100,200, 300]
set mgo scan:[100*i for i in range(1,4)] Any python syntax is valid!!
Width -> no problem
set mgo scan:[100,200, 300]
set wgo Auto Recomputed for each benchmark

Output

- One additional output file scan_XX.dat

run_name	mass\#1000021	cross
run_01	$5.000000 \mathrm{e}+01$	$1.004913 \mathrm{e}+06$
run_02	$1.000000 \mathrm{e}+02$	$5.471439 \mathrm{e}+04$
run_03	$1.500000 \mathrm{e}+02$	$8.679740 \mathrm{e}+03$

More than one parameter

2D scan

- No correlation
set mgo scan:[100,200, 300]
set mneu1 scan:[100*i for i in range(1,4)]

1D scan

- No correlation
set mgo scan1:[100,200, 300]
set mneu1 scan1:[100*i for i in range(1,4)]

EFT operator scan
set dim6 1 scan1:[1 if $i==0$ else 0 for i in range(3)]
set dim6 2 scan1:[1 if $i==1$ else 0 for i in range(3)]
set dim6 3 scan1:[1 if $i==2$ else 0 for i in range(3)]

Automation

scripting

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE
import model EWdim6 generate p p $>z h$ ouput TUTO launch

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

EFT related trick!

- If you specify one coupling order
\Rightarrow Generate p p $>\mathrm{t}$ t~QED<=2
\Rightarrow All other coupling will be assume to be infinite
- Some model restrict EFT operator to one
- So their maximum will be one
- This can be changed with
- set default_unset_couplings 0
- (before the generate command)
- Useful for EFT model when they have plenty of coupling order

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Goal - Handling model
Import - type: import model MC4BSM

- Automatic switch to $4 / 5$ flavor computation according to the mass of the b quark
- MGaMC renames sm/susy particles such that their names are identical for any model. This can be avoid by import model MC4BSM -modelname

Check - type: $\begin{aligned} & \text { define } b s m=u v \text { uv~ ev ev } \sim \text { p1 p2 } \\ & \text { check } p \mathrm{p}>\mathrm{bsm} \text { bsm }\end{aligned}$

- checks internal validity of the BSM part and consistency of the model (lorentz/gauge)

Goal • understanding decay-chain handling

Exercise

- Compare the cross-section for

$$
\begin{aligned}
& \text { define evdec = bsm / ev ev~ } \\
& \text { generate p p > ev ev~ } \\
& \text { output; launch }
\end{aligned}
$$

$$
\begin{array}{|l|l}
\hline \text { generate p p > ev ev } \sim \text {, ev }>\text { evdec all } & \text { This is called the } \\
\text { output; launch }
\end{array}
$$

```
generate p p > ev > evdec all ev~
```

output; launch

- Use Automatic width computation (for all 3 cases)
set width wev Auto To enter at the time of the edition of the cards
- Change the "cut_decays" parameter set cut_decays T

Goal • understanding decay-chain handling

define bsm = bsm / ev ev~ generate p p > ev ev~ output; launch	Default	Correct width	+cut_decays=T
	19.7 pb	19.6 pb	19.7 pb
te p p > ev ev~, ev > bsm all launch	0.1 pb	19.3 pb	11.8 pb
erate p p > ev > bsm all ev~ put; launch	0.07 pb	11.9 pb	11.9 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Goal - present the various way to compute the width

- Check with MG the width computed with FR:

FR Number

- generate uv > all all; output; launch
- generate ev > all all; output; launch
- generate pl > all all; output; launch
- generate p2 > all all; output; launch
0.0706 GeV
0.00497 GeV

0 GeV
0.0224 GeV

- Compare with compute_widths bsm
- Why the width of uv is zero here? unction called when width on Auto
- Muv $=400 \mathrm{GeV} \quad \mathrm{Mev}=50 \mathrm{GeV} \lambda=0.1$
- $\mathrm{ml}=\mathrm{IGeV} \quad \mathrm{m} 2=100 \mathrm{GeV} \mathrm{ml} 2=0.5 \mathrm{GeV}$

Goal - script and scan

Parameter scan:

- compute the cross-section for a couple of mass generate p p>evev~
- for that you can enter for the ev mass:
set mev scan:[100,200, 300]
set mev scan:[100*i for i in range(1,4)] Any python syntax is valid!!

scripting/ other scan:

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE

Goal - script and scan

Parameter scan:

- compute the cross-section for a couple of mass generate pp>evev~
- for that you can enter for the ev mass:
set mev scan:[100,200, 300]
set mev scan:[100*i for i in range(1,4)] Any python syntax is valid!!

Comment:

- ONLY for param_card entry!! Use scripting for other type of parameters (run_card,...)
- synchronized scan can be done via
set mev scan1:[100,200, 300] set muv scan1:[200,300,400]

Three value will be computed!!

scripting/ other scan:

- write in a file (./MYFILE)
import model MC4BSM generate p p > ev ev~ ouput TUTO launch
set nevents 5000 set LHC 13 launch set LHC 14

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

Goal - Learn MadSpin for Onshell Decay
What is MadSpin

- Program to decay on-shell particles
- Use the NWA and the Branching-ratio
- keep full spin-correlation
- keep off-shell effect (up to cut-off)
- keep unweighted event

Exercise

- generate all decay from ev pair production via MadSpin (and compare with decay-chain syntax)

Goal - Learn MadSpin for Onshell Decay

How to

The following switches determine which programs are run:

\| 1. Choose the shower/hadronization program:	shower $=0$ FF
I 2. Choose the detector simulation program:	detector = OFF
I 3. Run an analysis package on the events generated:	analysis = MADANALYSIS_5
I 4. Decay particles with the MadSpin module:	madspin $=0 \mathrm{FF}$
I 5. Add weights to events for different model hypothesis:	reweight = OFF

When you see this text, type madspin=ON

- Then edit the madspin_card and include decay ev $>$ all all
- You are done

Note

- Also valid for NLO processes
- sometimes faster/slower than decay-chain

Goal - Learn loop-induced syntax

Ex. - Compare Large stop limit and full loop

import model heft generate $\mathrm{g} \mathrm{g}>\mathrm{h}$ output; launch	import model sm generate $\mathrm{g} \mathrm{g}>\mathrm{h}$ [QCD] output; launch

import model sm-no_b_mass generate g $\mathrm{g}>\mathrm{h}$ [QCD] output; launch

Note

- Interface fully identical to LO one
- No decay-chain/MadSpin allowed

Goal • Learn NLO syntax

Ex. - Run the pair-production at NLO

import model MC4BSM
generate p p > ev ev~ [QCD]
output; launch

Note

- Interface close but different to LO one
- different options
- different cuts
- No decay-chain but MadSpin allowed
- Need dedicated model (not all model valid@NLO)

NLO
Durham

```
The following switches determine which operations are executed:
    1 ~ P e r t u r b a t i v e ~ o r d e r ~ o f ~ t h e ~ c a l c u l a t i o n :
                                    order=NLO
    2 Fixed order (no event generation and no MC@[N]LO matching):
    3 Shower the generated events:
    4 \text { Decay particles with the MadSpin module:}
    fixed_order=0FF
        shower=0N
        madspin=0FF
    5 Add weights to the events based on changing model parameters:
        reweight=0FF
        Either type the switch number (1 to 5) to change its default setting,
        or set any switch explicitly (e.g. type 'order=LO' at the prompt)
        Type '0', 'auto', 'done' or just press enter when you are done.
    [0, 1, 2, 3, 4, 5, auto, done, order=L0, ... ][60s to answer]
```

order=LO / order=NLO

- Use this switch to compute K-factor with the exact same settings

fixed_order=ON / fixed_order=OFF

- if ON, we perform a pure NLO computation of the cross-section - no event generation-
- if OFF, we run NLO+PS, with the MC counter-term for a given parton shower -with event generation

Exercise XI: Matching

I. Generate p p > w+ with 0 jets, $0, \mathrm{I}$ jets and $0, \mathrm{I}, 2$ jets (Each on different computers - use the most powerful computer for $0,1,2$ jets)
a. Generate 20,000 events for a couple of different xqcut values.
b. Compare the distributions (before and after Pythia) and cross sections (before and after Pythia) between the different processes, and between the different xqcut values.
c. Summarize: How many jets do we need to simulate? What is a good xqcut value? How are the distributions affected?

- generate the diagram with
- generate
\Rightarrow add process
- output
- launch
\Rightarrow ask to run pythia
- In run_card: put icckw=I
- set the value for xqcut
\Rightarrow In pythia_card set a value for qcut
- Qcut is the matching scale (the separation between the shower and the matrix element)
- xqcut should be strictly lower (by at least $10-15 \mathrm{GeV}$) than qcut

