MG5aMC tutorial

Eleni Vryonodou, Cen Zhang, Ilaria Brivio And O. Mattelaer

Avoid internet !

- We are many on the room.
 - External network is bounded to be slow
- Setup Madgraph to use the local network
 - export MG5aMC_WWW="http://192.168.XXX.YYY:8000"
 - This requires version 2.6.5
- Need to download MG5aMC
 - <u>http://192.168.XXX.YYY:8000</u>/MG5
- For PDF:
 - → <u>http://192.168.XXX.YYY:8000</u>/PDF

Ex. I: Install MadGraph 5!

- <u>http://192.168.000.000:8000</u>/MG5/
- untar it (tar -xzpvf MG5_XXX.tgz)
- launch it (\$./bin/mg5_amc)

• learn it!

- Type tutorial and follow instructions
- install external package
 - install pythia8
 - install MadAnalysis5
- Be sure that you have run export cmd in that shell
 - export MG5aMC_WWW="http://192.168.XXX.YYY:8000"

Where to find help (after the school)?

- Type tutorial
- Use the command "help" / "help XXX"
 - "help" tell you the next command that you need to do.
- Launchpad:
 - <u>https://answers.launchpad.net/madgraph5</u>
 - FAQ: <u>https://answers.launchpad.net/madgraph5/+faqs</u>

Ex. II : Order

Solution I : Syntax

- What's the meaning of the order QED/QCD
 - By default MG5 takes the lowest order in QED!

INFO: Trying coupling order WEIGHTED<=2: WEIGTHED IS 2*QED+QCD

- $\Rightarrow pp > tt \sim IS the same as pp > tt \sim QED=0$
- pp > t t~ QED<=2 has additional diagrams (photon/z exchange)</p>

 $\frac{555 \pm 0.84}{555 \pm 0.84}$

$$p p > t t \sim QED=2$$

Cross section (pb)

555.8 ± 0.91

No significant QED contribution

Number computed here with cteq6l1 PDF set (old default)

Tutorial for VBS School

Solution I Syntax

MG5aMC

Tutorial for VBS School

Ex III: What are those cards?

• Read the Cards and identify what they do

- ➡ param_card
- ➡ run_card:
- To see such cards run:
 - ➡ Generate p p > t t~
 - Output
 - ➡ Launch
 - Type enter to the first question
 - Now you can type I or 2 to see the files

Exercise III: Cards Meaning

• How do you change

- top mass
- ➡ top width
- ➡ W mass
- ➡ beam energy
- pt cut on the lepton

Ex III: What are those cards? (Solution)

- Read the Cards and identify what they do
 - param_card: model parameters
 - Note aS is not typically not read from the param_card but from the PDF set chosen (if any)
 - run_card: beam/run parameters and cuts
 - https://answers.launchpad.net/madgraph5/+faq/2014

Exercise II: Cards Meaning (Solution)

- How do you change
 - ➡ top mass
 - Set mt 180 # or edit param_card
 - ➡ top width
 - Set wt 2.1 # or edit param_card
 - ➡ W mass
 - Set mZ 80 # or change GF/aEW !! MW is not free!
 - beam energy
 - set ebeam 7000 # or change run_card
 - pt cut on the lepton
 - set ptl 20 # or change run_card

Ex. IV: Syntax

- Generate the cross-section and the distribution (invariant mass) for
 - ⇒ p p > e+ e-
 - ⇒ p p > z , z > e+ e-
 - \rightarrow pp > z > e+ e-
 - ⇒ p p > e+ e- \$ z
 - ⇒ p p > e+ e- / z

Hint :To plot automatically distributions: mg5> install MadAnalysis5

• Use the invariant mass distribution to determine the meaning of each syntax.

p p > e+ e- /z

p p >z , z > e+ e-

p p > e+ e- \$ z

Tutorial for WBS School

p p > e + e - /z

p p >z , z > e+ e-

p p > e+ e- \$ z

Tutorial for 3VBS School

 $p p > e^+ e^- /z$

p p > e+ e- \$ z

180 200

 $|M^* - M| < BW_{cut} * \Gamma$

- The Physical distribution is (very close to) exact sum of the two other one.
- The "\$" forbids the Z to be onshell but the photon invariant mass can be at MZ (i.e. on shell substraction).
- The "/" is to be avoid if possible since this leads to violation of gauge invariance.

Tutorial for 4VBS School

WARNING

- NEXT SLIDE is generated with bw_cut =5
- This is TOO SMALL to have a physical meaning (15 the default value used in previous plot is better)
- This was done to illustrate more in detail how the "\$" syntax works.

See previous slide warning $P P > e + e - / Z_{(red curve)}$

(blue curve)

See previous slide warning p p > e + e - / Z adding p p > e + e - \$ Z

5 times width area

MG5aMC

• Z onshell veto

 In veto area only photon contribution

5 times width area

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak

5 times width area 15 times width area

See previous slide warning $p p > e + e - / Z_{(red curve)}$ adding $p p > e + e - \$ Z_{(blue curve)}$

5 times width area

- 15 times width area
- >15 times width area

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak
 - very off-shell Z, the difference between the curve is due to interference which are need to be KEPT in simulation.

See previous slide warning $p p > e + e - / Z_{(red curve)}$ adding $p p > e + e - \$ Z_{(blue curve)}$

5 times width area

15 times width area

>15 times width area

MG5aMC

The "\$" can be use to split the sample in BG/SG area

Tutorial for WBS School

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak
 - very off-shell Z, the difference between the curve is due to interference which are need to be KEPT in simulation.

• Syntax Like

- $\Rightarrow pp > z > e+ e-$ (ask one S-channel z)
- $\Rightarrow pp > e+ e- / z$ (forbids any z)
- $\Rightarrow p p > e+ e-$
- ARE NOT GAUGE INVARIANT !
- forgets diagram interference.
- can provides un-physical distributions.

• Syntax Like

- $\Rightarrow p p > z > e+ e-$ (ask one S-channel z)
- $\Rightarrow pp > e+ e- / z$ (forbids any z)
- $\Rightarrow p p > e+ e-$
- ARE NOT GAUGE INVARIANT !
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

• Syntax Like

- $\Rightarrow pp > z > e+ e-$ (ask one S-channel z)
- $\Rightarrow pp > e+ e- / z$ (forbids any z)
- $\Rightarrow p p > e+ e-$
- ARE NOT GAUGE INVARIANT !
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

• Syntax like

- p p > z, z > e+ e (on-shell z decaying)
- p p > e+ e- (forbids s-channel z to be on-shell)
- Are linked to cut $|M^* M| < BW_{cut} * \Gamma$
- Are more safer to use
- Prefer those syntax to the previous slides one

Exercise V

- Generate top pair production at LO,
- Do the fully leptonic decay of the top pair
- Shower event with pythia8
- Plot the pt distribution of the first jet
- How to improve the simulation
 - Of the cross-section
 - Of the pt of the first/second jet

Two methods for the decay

- Generate p p > t t~, (t > w+ b, w+ > e+ ve), (t~ > w- b~, w-> e- ve~)
- output
- launch
 - Ask for Pythia8 and MA5 (rest keep on OFF)
 - set mpi OFF # This is for speed issue for the tuto
- Generate p p > t t~
- Output; Launch
 - Ask for MadSpin and Pythia8 and MA5
 - set mpi OFF # This is for speed issue for the tuto
 - → decay t > w+b, w+ > e+ve
 - ➡ decay t~ > w- b~, w- > e- ve~

Two methods for the decay

- Generate p p > t t~, (t > w+ b, w+ > e+ ve), (t~ > w- b~, w-> e- ve~)
- Full phase-space integration
 - Does not rely on the Branching ratio
 - Rely on the full width
 - cut-off to avoid be too much off-shell
- Generate $p p > t t \sim + Madspin$
 - Rely on the Branching ratio
 - Keep the full spin-correlation
 - Keep off-shell effects: cut-off to avoid be too much off-shell

Improve Precision

cross-section

- Need to go to NLO
 - No decay chain syntax (only MadSpin option)
 - \$ generate p p > t t~ [QCD]
- To generate events we need to know which Parton-Shower, you will use!!
 - Events generated for that specific PS
 - Using another will break NLO accuracy
- MadSpin decay is based on LO and NWA.

Improve Precision

- Pt of the first jet
 - ➡ Add the jet at LO:
 - generate p p > t t~ j
 - Valid for hard jet only!
 - ➡ Going to NLO: "generate p p > t t~ [QCD]"
 - As accurate at p p > t t~ j
 - But if you do "generate p p > t t~ j [QCD]"

Improve Precision

- Pt of the second jet
 - Need matching/merging method
 - generate p p > t t~
 - add process p p > t t~ j
 - add process p p > t t~ j j
 - → Use MLM or CKKW-L scheme (or any variation)
 - You can also use matching/merging at NLO
 - FxFx or UNLOPS
 - generate p p > t t~ [QCD]
 - add process p p > t t~ j [QCD]
 - add process p p > t t~ j j [QCD]

Tutorial for VBS School

PT distribution (MLM 0+1j)

Tutorial for VBS School

MG5aMC tutorial II BSM

Eleni Vryonodou, Cen Zhang, Ilaria Brivio And O. Mattelaer

Exercise I: Restrict Model

- Run the "export command" in your shell!
- import model EWDim6
 - This downloads it on disk. (and change model to that one for the diagram generation)
 - This model contains 8 dimension operator
- We want to **RESTRICT** the model to only keep one (Owww)
- Such that Feynman diagram corresponding to other operator are **NOT** generated
 - Makes more optimal code !

Exercise I: Restrict Model

- Go to models/EWdim6 directory
- Run the script
 - Python write_param_card.py
- cp param_card.dat restrict_owww.dat
 - The owww part can be changed to ANY string you want [but default and full].
- Edit that file
 - Put the c mass and b mass to zero
 - Put all the dim6 operator at 0 but CWWWL2
 - ➡ Put CWWWL2 to 9.999999e-1
- Go back to MG5_aMC
 - Import model EWdim6-owww

Restrict Model

• When importing the model with the flag

MG5_aMC>import model EWdim6-owww INF0: model loaded from PYTHONPATH: /Users/omattelaer/Desktop/UFOMODEL/EWdim6 INF0: Restrict model EWdim6 with file ../../../Desktop/UFOMODEL/EWdim6/restrict_owww.dat . INF0: Run "set stdout_level DEBUG" before import for more information. INF0: Change particles name to pass to MG5 convention **Pass the definition of 'j' and 'p' to 5 flavour scheme**. Kept definitions of multiparticles l- / vl / l+ / vl~ unchanged Defined multiparticle all = g u c d s b u~ c~ d~ s~ b~ a ve vm vt e- ve~ vm~ vt~ e+ t t~ z MG5_aMC>

➡ MG5 mode pass to 5 flavour

Less Feynman diagram generated

Block dim6

1 1.000000e+00 # CWWWL2

Block mass

- 6 1.720000e+02 # MT
- 13 1.056600e-01 # MM
- 15 1.777000e+00 # MTA
- 23 9.118760e+01 # MZ
- 25 1.250000e+02 # set of param :1*MH, 1*MP

- Less parameter in the param_card
 - No b/c mass option
 - One Dim6 operator
 - No CKM block

Restrict Model

- What's happening
 - 1. All coupling are evaluated for that param_card
 - 2. All vertex associated to zero coupling (exactly or very small) are **removed** from the model
 - 3. All zero/one value of the param_card are frozen to such value (use 0.000001e-99,9.999999e-1 to avoid that)
 - 4. If two parameters are equal (or opposite) in the same block
 - Remove one of the two parameters
 - Freeze the second one accordingly
 - 5. If a file default_XXX.dat exists use that one as default param_card. Otherwise use the restrict_XXX.dat itself
 - can be used for benchmark
 - 6. restrict_default.dat is automatically loaded by MG5aMC
 - Use import model EWdim6-full to bypass it

Exercise II: Validate Model

- Validate a Model/Process is always nice !!
 - You will sound like a MG5 expert
- Import model EW-dim6
- check p p > z h a

Lorentz invariance results:					
Process	Min element	Max element	Relative diff.	Result	
g g > z h a	3.0245789272e-01	3.0245789272e-01	0.000000000e+00	Passed	
u u~ > z h a	4.1915242516e-03	4.1915242516e-03	2.0693229620e-15	Passed	
d d~ > z h a	1.2414404109e-03	1.2414404109e-03	2.6200262928e-15	Passed	
Summary: 3/3 passed, 0/3 failed					
Not checked processes: $c c > z h a$, $s s > z h a$					
Gauge results:					
Process	matrix	BRS	ratio	Result	
g g > z h a	3.4921781373e-01	4.9684750757e-42	1.4227438809e-41	Passed	
u u~ > z h a	4.9543423043e-03	8.8574527892e-34	1.7878160703e-31	Passed	
d d~ > z h a	2.8216312492e-03	2.0405124807e-34	7.2316766455e-32	Passed	
Summary: 3/3 pass	sed, 0/3 failed				
Process permutation results:					
Process	Min element	Max element	Relative diff.	Result	
g g > z h a	3.7207324869e-01	3.7207324869e-01	1.4919414773e-16	Passed	
u u~ > z h a	1.2564293427e-02	1.2564293427e-02	2.7613546055e-16	Passed	
d d~ > z h a	1.3180098875e-02	1.3180098875e-02	1.3161687879e-16	Passed	
Summary: 3/3 pass	sed, 0/3 failed				

• Lorentz

- Very sensitive to gauge
- Gauge
 - Epsilon replaced
- MG5 consistency
 - Change num method

MG5aMC

Tutorial for VBS School

Exercise III: Width

- Compute $p p > w+ w- b b \sim$
 - Change the top quark width
 - How the cross-section changes (and why)
- compute p p > t t~, t > w+ b, t~ > w- b~
 - Change the top quark width
 - How the cross-section changes (and why)
- compute $p p > t t \sim + Madspin decay$
 - Change the top quark width (but keep BR to I)
 - How the cross-section changes (and why)

Exercise III: Width

- Compute p p > w+ w- b b~
 - Cross-section as I/ Gamma
- compute p p > t t~, t > w+ b, t~ > w- b~
 - Cross-section as I/Gamma
- compute $p p > t t \sim + Madspin decay$
 - Constant (use the Branching ratio information)
 - If MadSpin does not re-compute the width
- The width is consider as a free parameter in the computation.
 - Need to be provided correctly for the cross-section/ shape

Exercise III: Width - Part II

Width Solution

Goal • understanding decay-chain handling

	Wrong width	Correct width	+cut_decays=T
generate p p > w+ j output; launch	21437 pb * BR 2304 pb	21437 pb * BR 2304 pb	21437 pb * BR 2304 pb
generate p p > w+ j, w+ > e+ ve output; launch	32514 pb	2329 pb	1588 pb
generate p p > e+ ve j output; launch	33095 pb	1606 pb	1606 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Exercise III: Width - Part II

- generate p p > w+ j
- \Rightarrow generate p p > w+ j, w+ > e+ ve
- Compare
 - generate p p > e+ ve j
 - \Rightarrow generate p p > w+ j, w+ > e+ ve

 They are not good default for cut_decays parameter. Some people expect that parameter to be True by default and some other to be False

Width:Trick

- Width are consider as free parameter
 - Not really True
- We can compute them automatically !!
 - "set wt Auto" # or inside the param_card
 - Tree-Level computation
 - Not valid for the Higgs (but for heft model)
 - Include 3 body decay (bypass them if not relevant)
- Check it for the top/W/Z
- 2 body computation can be done analytically
 - Fasten the computation (need recent UFO model)

Exercise IV: Interference

Exercise

- Use your EWDIM6 model
- Compute cross-section without the square part

Exercise V: Automation

- 2 Goals:
 - How to do a parameter scan
 - How to avoid the cli (command line interface

Parameter scan

• One additional output file scan_XX.dat

#run_name	mass#1000021	cross
run_01	5.000000e+01	1.004913e+06
run_02	1.000000e+02	5.471439e+04
run_03	1.500000e+02	8.679740e+03

Tutorial for VBS School

More than one parameter

Tutorial for VBS School

Automation

scripting

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE

import model EWdim6 generate p p > z h ouput TUTO launch set nevents 5000 set LHC 13 launch set LHC 14

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

EFT related trick!

- If you specify one coupling order
 - Generate $p p > t t \sim QED \leq 2$
 - All other coupling will be assume to be infinite
 - Some model restrict EFT operator to one
 - So their maximum will be one
- This can be changed with
 - set default_unset_couplings 0
 - (before the generate command)
- Useful for EFT model when they have plenty of coupling order

UCLouvain

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

 checks internal validity of the BSM part and consistency of the model (lorentz/gauge)

Decay-Chain Solution

Goal • understanding decay-chain handling

	Default	Correct width	+cut_decays=T
define bsm = bsm / ev ev~ generate p p > ev ev~ output; launch	19.7 pb	19.6 pb	19.7 pb
generate p p > ev ev~, ev > bsm all output; launch	0.1 pb	19.3 pb	11.8 pb
generate p p > ev > bsm all ev~ output; launch	0.07 pb	11.9 pb	11.9 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Why the width of uv is zero here Function called when width on Auto

niversity

0 GeV

ExVII: Automation

Goal • script and scan

Parameter scan:

- compute the cross-section for a couple of mass
 generate p p > ev ev~
- for that you can enter for the ev mass:

```
set mev scan:[100,200, 300]
```

set mev scan:[100*i for i in range(1,4)] Any python syntax is valid!!

scripting/ other scan:

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE

import model MC4BSM generate p p > ev ev~ ouput TUTO launch set nevents 5000 set LHC 13 launch set LHC 14

Automation

Goal • script and scan

Parameter scan:

- compute the cross-section for a couple of mass generate p p > ev ev~
- for that you can enter for the ev mass:

```
set mev scan:[100,200, 300]
```

set mev scan:[100*i for i in range(1,4)] Any python syntax is valid!!

Comment:

- ONLY for param_card entry!! Use scripting for other type of parameters (run_card,...)
- synchronized scan can be done via

set mev scan1:[100,200, 300] set muv scan1:[200,300,400]

Three value will be computed!!

Automation

scripting/ other scan:

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE

import model MC4BSM generate p p > ev ev~ ouput TUTO launch set nevents 5000 set LHC 13 launch set LHC 14

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

Exercise

 generate all decay from ev pair production via MadSpin (and compare with decay-chain syntax)

Exercise VIII: MadSpin

Note

- Interface fully identical to LO one
- No decay-chain/MadSpin allowed

Goal • Learn NLO syntax

Ex. • Run the	pair-production	at NLO
---------------	-----------------	--------

import model MC4BSM generate p p > ev ev~ [QCD] output; launch

Note

- Interface close but different to LO one
 - different options
 - different cuts
- No decay-chain but MadSpin allowed
- Need dedicated model (not all model valid@NLO)

The following switches determine which operations are executed: 1 Perturbative order of the calculation: order=NLO 2 Fixed order (no event generation and no MC@[N]LO matching): fixed_order=OFF 3 Shower the generated events: shower=ON 4 Decay particles with the MadSpin module: madspin=OFF 5 Add weights to the events based on changing model parameters: reweight=OFF Either type the switch number (1 to 5) to change its default setting, or set any switch explicitly (e.g. type 'order=LO' at the prompt) Type '0', 'auto', 'done' or just press enter when you are done. [0, 1, 2, 3, 4, 5, auto, done, order=L0, ...][60s to answer]

order=LO / order=NLO

Use this switch to compute K-factor with the exact same settings

fixed_order=ON / fixed_order=OFF

- if ON, we perform a pure NLO computation of the cross-section — no event generation—
- if OFF, we run NLO+PS, with the MC counter-term for a given parton shower —with event generation

Exercise XI: Matching

- I. Generate p p > w+ with 0 jets, 0, 1 jets and 0, 1, 2 jets (Each on different computers - use the most powerful computer for 0, 1, 2 jets)
 - a. Generate 20,000 events for a couple of different xqcut values.
 - b. Compare the distributions (before and after Pythia) and cross sections (before and after Pythia) between the different processes, and between the different xqcut values.
 - c. Summarize: How many jets do we need to simulate? What is a good xqcut value? How are the distributions affected?

- generate the diagram with
 - ➡ generate
 - add process
- output
- launch
 - ➡ ask to run pythia
 - In run_card: put icckw=I
 - set the value for xqcut
 - In pythia_card set a value for qcut
- Qcut is the matching scale (the separation between the shower and the matrix element)
- xqcut should be strictly lower (by at least 10-15GeV) than qcut