NLO QCD predictions
The need for higher precision

- derive exclusion bounds from a given measurement
 - non-observation of a given hypothesis, e.g. heavy Higgs, BSM model
 - crucial to know the corresponding production cross sections precisely
 - derive limits on particle masses, model parameters
- counting experiments to extract certain parameters, couplings
 - at hadron colliders α_S corrections indispensable, need one-loop QCD

Stop mass bounds from Tevatron

[from the early days, T. Plehn private communication]

Higgs coupling extraction

- $\sigma(gg \to h \to \gamma\gamma) \sim \frac{\Gamma_g \Gamma_\gamma}{\Gamma}$
- $\sigma(gg \to h \to WW^*) \sim \frac{\Gamma_g \Gamma_W}{\Gamma}$
- $\sigma(qq \to qqh, h \to \tau\tau) \sim \frac{\Gamma_W \Gamma_\tau}{\Gamma}$
 - ...
 - $\Gamma_i \sim g_{ih}, \Gamma_g \sim g_{tt}$
 - theoretical uncertainties dominate
 - systematics reduced for σ ratios
Hard Processes at Next-to-Leading Order QCD

Anatomy of NLO QCD calculations

\[|\mathcal{M}|^2 = |\mathcal{M}_B|^2 + \alpha_S \left(|\mathcal{M}_R|^2 + 2\Re(\mathcal{M}_B\mathcal{M}_V^\dagger) \right) \]

\[\gamma^{\ast/2\vartheta} \quad \gamma^{\ast/2\vartheta} \quad \gamma^{\ast/2\vartheta} \]
\[|\mathcal{M}|^2 = |\mathcal{M}_B|^2 + \alpha_S \left(|\mathcal{M}_R|^2 + 2\Re(\mathcal{M}_B \mathcal{M}_V^\dagger) \right) \]

\[\sigma_{2\rightarrow n}^{NLO} = \int_n d^{(4)}\sigma^B + \int_{n+1}^{n} d^{(d)}\sigma^R + \int_n d^{(d)}\sigma^V \]

\[\alpha_S \text{ real & virtual corrections} \]
Hard Processes at Next-to-Leading Order QCD

Anatomy of NLO QCD calculations

\[|\mathcal{M}|^2 = |\mathcal{M}_B|^2 + \alpha_S \left(|\mathcal{M}_R|^2 + 2\Re(\mathcal{M}_B\mathcal{M}_V^\dagger) \right) \]

\[\sigma_{2\to n}^{NLO} = \int_n d^{(4)}\sigma_B + \int_{n+1} d^{(d)}\sigma_R + \int_n d^{(d)}\sigma_V \]

- real-emission \(\sigma^R \)
 - \(\sim \) IR divergence for soft/collinear emission
- (UV renormalized) virtual-corrections \(\sigma^V \)
 - \(\sim \) IR divergent when propagator goes on-shell
- divergences manifest in dimensional regularisation, \(d = 4 - 2\epsilon \)
 - \(\sim \) occurrence of single & double poles, i.e. \(1/\epsilon, 1/\epsilon^2 \)
- for IR safe observables poles cancel, the sum is finite [Kinoshita '62; Lee, Nauenberg '64]
Infrared & Collinear safe observables

- interested in observable-independent formulation

\[\mathcal{O}^B = \int |M_B^{(n)}|^2 \, d\Phi_n \Theta^{(n)}(\mathcal{O}, \{p_n\}) \]

\[\mathcal{O}^R = \int |M_R^{(n+1)}|^2 \, d\Phi_{n+1} \Theta^{(n+1)}(\mathcal{O}, \{p_{n+1}\}) \]

\[\mathcal{O}^V = \int 2\Re(M_B M_V^\dagger) \, d\Phi_n \Theta^{(n)}(\mathcal{O}, \{p_n\}) \]

with \(d\Phi_{n/n+1} \) the \(n/n + 1 \) particle phase space, \(\Theta^{(n/n+1)} \) obs. measure function
Infrared & Collinear safe observables

- interested in observable-independent formulation

\[
O^B = \int |M^B_n|^2 \, d\Phi_n \Theta^{(n)}(O, \{p_n\})
\]

\[
O^R = \int |M^R_{n+1}|^2 \, d\Phi_{n+1} \Theta^{(n+1)}(O, \{p_{n+1}\})
\]

\[
O^V = \int 2\Re(M^B V^\dagger) \, d\Phi_n \Theta^{(n)}(O, \{p_n\})
\]

with \(d\Phi_{n/n+1}\) the \(n/n+1\) particle phase space, \(\Theta^{(n/n+1)}\) obs. measure function

- formal requirements on the measurement function:

\[
\Theta^{(n+1)}(p_1, \ldots, p_i = \lambda q, \ldots, p_{n+1}) \rightarrow \Theta^{(n)}(p_1, \ldots, p_{n+1})
\]

for \(\lambda \rightarrow 0\)
soft limit

\[
\Theta^{(n+1)}(p_1, \ldots, p_i, \ldots, p_j, \ldots, p_{n+1}) \rightarrow \Theta^{(n)}(p_1, \ldots, p, \ldots, p_{n+1})
\]

for \(p_i \rightarrow zp, \; p_j = (1 - z)p\)
collinear limit

simply remove (soft) parton \(i\), or replace collinear pair \(\{p_i, p_j\}\) by \(p = p_i + p_j\)

\(\leadsto\) definition of infrared & collinear safe observables
Anatomy of NLO QCD calculations cont’d

\[\sigma_{2 \to n}^{NLO} = \int_n d^4 \sigma^B + \int_{n+1} d^d \sigma^R + \int_n d^d \sigma^V \]

- finite corrections for IR safe observables
- analytical integration with cuts in \(d \)-dim infeasible for high-multi final states
- we are interested in fully-differential answer, use of MC integration methods
- however, both terms \(\sigma^R \) & \(\sigma^V \) exhibit divergences, i.e. are unbound
- \(\sigma^R \) in \((n + 1)\)-particle phase space, \(\sigma^V \) in \(n\)-particle phase space
Anatomy of NLO QCD calculations cont’d

\[\sigma_{2 \rightarrow n}^{NLO} = \int_n d^{(4)}\sigma^B + \int_{n+1} d^{(d)}\sigma^R + \int_n d^{(d)}\sigma^V \]

- finite corrections for IR safe observables
- analytical integration with cuts in d-dim infeasible for high-multi final states
- we are interested in fully-differential answer, use of MC integration methods
- however, both terms σ^R & σ^V exhibit divergences, i.e. are unbound
 - σ^R in $(n+1)$-particle phase space, σ^V in n-particle phase space

Subtraction methods

- attempt to devise local *subtraction term* such that both integrals are separately finite and can be performed as ordinary multi-dimensional phase-space integrals

 - based on universality of QCD IR divergences
 - aim for IR regularisation at integrand level
Subtraction methods cont’d

- subtraction terms provide local approximation for the real-emission process

\[\int_{n+1} d^{(d)} \sigma^A = \int_n \int_1 d^{(d)} \sigma^A \]

\[\rightarrow \text{captures soft & collinear limits of amplitudes [1/\epsilon and 1/\epsilon^2 poles]} \]

\[\rightarrow \text{analytically integrable (d-dim) over one-parton emission phase space} \]
Subtraction methods cont’d

- Subtraction terms provide local approximation for the real-emission process

\[\int_{n+1} d(d) \sigma^A = \int_n \int_1 d(d) \sigma^A \]

\[\rightarrow \text{ captures soft & collinear limits of amplitudes } [1/\epsilon \text{ and } 1/\epsilon^2 \text{ poles}] \]

\[\rightarrow \text{ analytically integrable } (d\text{-dim}) \text{ over one-parton emission phase space} \]

- Add & subtract from NLO differential cross section

\[\sigma_{2\rightarrow n}^{NLO} = \int_{n+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_n \left[d^{(4)} \sigma^B + \int_{\text{loop}} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]_{\epsilon=0} \]
Subtraction methods cont’d

- Subtraction terms provide local approximation for the real-emission process

\[\int_{n+1} d^{(d)} \sigma^A = \int_n \int_1 d^{(d)} \sigma^A \]

\[\leftrightarrow \text{ captures soft & collinear limits of amplitudes } [1/\epsilon \text{ and } 1/\epsilon^2 \text{ poles}] \]

\[\leftrightarrow \text{ analytically integrable (d-dim) over one-parton emission phase space} \]

- Add & subtract from NLO differential cross section

\[\sigma_{2\rightarrow n}^{NLO} = \int_{n+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_n \left[d^{(4)} \sigma^B + \int_{\text{loop}} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right] \]

\[\epsilon = 0; \text{ separately finite phase-space integrals (4-dim)} \]

\[\rightarrow \text{ can be performed by means of MC integration} \]

\[\rightarrow \text{ no ambiguous or unphysical cut-offs/scales get introduced} \]

- Catani & Seymour presented general expression for $d^{(d)}\sigma^A$
 (known as the dipole factorisation formula)
- constructed from Born process using universal dipole terms

\[
\int_{n+1} d^{(d)}\sigma^A = \sum_{\text{dipoles}} \int_n d^{(d)}\sigma^B \otimes \int_1 d^{(d)} V_{\text{dipole}} = \int_m \left[d^{(d)}\sigma^B \otimes I \right]
\]

spin- & color correlations \leftrightarrow \hspace{1cm} \leftrightarrow universal dipole terms

- sum over dipoles contains all real-emission soft/collinear divergences
- suited for any process with massless partons (0, 1, 2 initial-state hadrons)
Dipole subtraction method cont’d

- Subtraction method for arbitrary observables (IRC safe)

\[O^B = \int |M_B^{(n)}|^2 \, d\Phi_n \Theta^{(n)}(O, \{p_n\}) \]

\[O^{RS} = \int d\Phi_{n+1} \left[|M_R^{(n+1)}(\{p_n\})|^2 \Theta^{(n+1)}(O, \{p_{n+1}\}) \right. \]

\[\left. - \sum_{i \neq j \neq k} D_{ij,k}(\{p_n\}) \Theta^{(n)}(O, p_1, .., \tilde{p}_{ij}, \tilde{p}_k, .., p_{n+1}) \right] \]

\[O^{VI} = \int d\Phi_n \left[2\Re(M_B M_V^\dagger) + \int_1 [d\tilde{p}] D_{ij,k} \right] \Theta^{(n)}(O, \{p_n\}) \]

- \[[d\tilde{p}] \] phase-space element of one-parton

- Such, differential & integrated subtraction terms cancel exactly
 \[\rightarrow \text{requires mapping of } (n+1) \rightarrow n \text{ configuration} \]

- Need to distinguish different dipole types
Dipole subtraction method cont’d

- Dipoles involve three partons, splitting particles i, j and spectator k
- Distinguish initial- & final-state splitter/spectator
- All contributions known, suitable for automated evaluation

FF

$$V_{ij,k}$$

- p_i, i
- p_j, j
- p_k, k

FI

$$V_{ij}^a$$

- p_i, i
- p_j, j
- p_a, a

IF

- a, p_a
- p_i, i
- p_k, k
- V_{ai}^k

II

- a, p_a
- p_i, i
- p_k, k
- $V_{ai,b}^{ai}$
- b, p_b
Example: $e^+ e^- \rightarrow q\bar{q}$ @ NLO QCD

- most simple scattering process
- sensitive to QCD colour charges & strong coupling α_s
- first non-trivial contribution to jet sub-structure
 \sim stringent test of QCD dynamics
Example: $e^+ e^- \rightarrow q \bar{q} @ NLO$ QCD

- most simple scattering process
- sensitive to QCD colour charges & strong coupling α_S
- first non-trivial contribution to jet sub-structure
 \sim stringent test of QCD dynamics

Born-level contribution: $(e^+ e^- \rightarrow) \gamma^* \rightarrow q \bar{q}$

$$M_{q\bar{q}} = \frac{ie \gamma_\mu}{p_1} \frac{ie \gamma_\mu}{p_2}$$

$$= \bar{u}_a(p_1) i e_q \gamma_\mu \delta_{ab} v_b(p_2)$$

$$\sigma^B_{q\bar{q}} = \sigma^{LO}_{q\bar{q}} \propto |M_{q\bar{q}}|^2 = \frac{4\pi \alpha^2}{3Q^2} e_q^2 N_c$$

where $Q^2 = (p_1 + p_2)^2$
real-emission correction, i.e. \((e^+ e^- \rightarrow \gamma^* \rightarrow q\bar{q}g) \)

\[
M_{q\bar{q}g} = i e \gamma_\mu \frac{k,\epsilon}{p_1} + i e \gamma_\mu \frac{k,\epsilon}{p_2}
\]

\[
= -\bar{u}_a(p_1) i g_s \gamma^A t_{ab} \frac{i(\not{p_1} + \not{k})}{(p_1 + k)^2} i e_q \gamma_\mu \not{v}_b(p_2) + \bar{u}_a(p_1) i e_q \gamma_\mu \frac{i(\not{p_2} + \not{k})}{(p_2 + k)^2} i g_s \gamma^A t_{ab} \not{v}_b(p_2)
\]
Example: $e^+ e^- \rightarrow q \bar{q} \oplus$ NLO QCD

real-emission correction, i.e. $(e^+ e^- \rightarrow \gamma^*) \rightarrow q \bar{q}g$

$$M_{q \bar{q}g} = -\bar{u}_a(p_1)ig_s \epsilon^{\mu} t^A_{ab} \left(\frac{i(p_1 + k)}{(p_1 + k)^2}\right) ie_q \gamma_\mu \nu_b(p_2) + \bar{u}_a(p_1)ie_q \gamma_\mu \left(\frac{i(p_2 + k)}{(p_2 + k)^2}\right) ig_s \epsilon^{\mu} \nu_{Ab}(p_2)$$

defining $Q^2 = (p_1 + p_2 + k)^2 = s$ and $x_i = 2p_i \cdot Q / Q^2$, we find

$$|M_{q \bar{q}g}|^2 = C_F \frac{8\pi \alpha_s}{Q^2} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} |M_{q \bar{q}}|^2 \sim \text{singular when } x_{1/2} \rightarrow 1$$

associated phase-space element

$$d\Phi^{(3)} = \frac{Q^2}{16\pi^2} dx_1 dx_2 \ \Theta(1 - x_1)\Theta(1 - x_2)\Theta(x_1 + x_2 - 1)$$
Example: $e^+ e^- \rightarrow q\bar{q} \oplus$ NLO QCD

eal-emission subtraction term there are two FF dipoles contributing

$$D_{13,2}(p_1, p_2, k) = \frac{1}{2p_1 k} V_{qg,\bar{q}} |M_{q\bar{q}}|^2$$

$$D_{23,1}(p_1, p_2, k) = \frac{1}{2p_2 k} V_{\bar{q}g,q} |M_{q\bar{q}}|^2$$

corresponding subtracted real-emission cross section ($d = 4$)

$$\sigma_{q\bar{q}g}^{RS} = \int_3 \left[d\sigma_{\epsilon=0}^R - d\sigma_{\epsilon=0}^A \right] \left(\tilde{p}_{ij} + \tilde{p}_k = Q, \tilde{p}_k = \frac{1}{x_k} p_k, \tilde{p}_{ij} = Q - \frac{1}{x_k} p_k \right)$$

$$= |M_{q\bar{q}}|^2 \frac{C_F \alpha_s}{2\pi} \int_0^1 dx_1 \, dx_2 \, \Theta(x_1 + x_2 - 1) \left\{ \right.$$

$$\left. \left[\frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)} \right] \Theta^{(3)}(p_1, p_2, p_3) \right.$$\vspace{-4ex}

$$\left. - \left[\frac{1}{1-x_2} \left(\frac{2}{2-x_1-x_2} - (1+x_1) \right) + \frac{1-x_1}{x_2} \right] \Theta^{(2)}(\tilde{p}_{13}, \tilde{p}_2) \right.$$\vspace{-4ex}

$$\left. - \left[\frac{1}{1-x_1} \left(\frac{2}{2-x_1-x_2} - (1+x_2) \right) + \frac{1-x_2}{x_1} \right] \Theta^{(2)}(\tilde{p}_{23}, \tilde{p}_1) \right\}$$

\(\sim\) finite as $x_{1/2} \rightarrow 1$ (implying $\Theta^{(3)} \rightarrow \Theta^{(2)}$)
Example: $e^+e^- \rightarrow q\bar{q} \oplus$ NLO QCD

virtual correction & integrated dipole contribution ($d = 4 - 2\epsilon$)

\[
V \supset \begin{array}{c}
\begin{array}{c}
-\text{i}e\gamma_{\mu}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{x}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{i}e\gamma_{\mu}
\end{array}
\end{array}
\]

\[
|\mathcal{M}^{(d)}_{q\bar{q}}|_{\text{(1-loop)}}^{2 \over \overline{\text{MS}}} = |\mathcal{M}^{(d)}_{q\bar{q}}|^{2} \frac{C_F \alpha_s}{2\pi} \frac{1}{\Gamma(1 - \epsilon)} \left(\frac{4\pi\mu^2}{Q^2} \right)^{\epsilon} \left\{ -\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + \mathcal{O}(\epsilon) \right\}
\]
Example: \(e^+ e^- \rightarrow q\bar{q} \) @ NLO QCD

virtual correction & integrated dipole contribution \((d = 4 - 2\epsilon)\)

\[
V \supset \begin{array}{c}
-\text{i}e \gamma_\mu \\
\end{array} \begin{array}{c}
x \\
\end{array} \begin{array}{c}
\text{i}e \gamma_\mu \\
\end{array}
\]

\[
|\mathcal{M}_{q\bar{q}}^{(d)}|_{(1-\text{loop})}^{2} \overset{\overline{\text{MS}}}{=} |\mathcal{M}_{q\bar{q}}^{(d)}|^{2} \cdot \frac{C_F \alpha_s}{2\pi} \cdot \frac{1}{\Gamma(1 - \epsilon)} \cdot \left(\frac{4\pi \mu^2}{Q^2} \right)^{\epsilon} \left\{ -\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + O(\epsilon) \right\}
\]

integrated dipole kernels

\[
I(\epsilon) = \frac{C_F \alpha_s}{2\pi} \cdot \frac{1}{\Gamma(1 - \epsilon)} \cdot \left(\frac{4\pi \mu^2}{Q^2} \right)^{\epsilon} \left\{ \frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 10 - \pi^2 + O(\epsilon) \right\}
\]
Example: $e^+ e^- \to q \bar{q} \ @ \text{NLO QCD}$

Virtual correction & integrated dipole contribution ($d = 4 - 2\epsilon$)

\[
V \supset \begin{array}{c}
-\frac{ie\gamma_\mu}{x} \\
\frac{ie\gamma_\mu}{x}
\end{array}
\]

\[
|\mathcal{M}_{q\bar{q}}^{(d)}|_{1\text{-loop}}^2 \equiv |\mathcal{M}_{q\bar{q}}^{(d)}|^2 = \frac{C_F \alpha_s}{2\pi} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi \mu^2}{Q^2}\right)^\epsilon \left\{ -\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + O(\epsilon) \right\}
\]

Integrated dipole kernels

\[
I(\epsilon) = \frac{C_F \alpha_s}{2\pi} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi \mu^2}{Q^2}\right)^\epsilon \left\{ \frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 10 - \pi^2 + O(\epsilon) \right\}
\]

Combining both contributions yields

\[
\sigma_{q\bar{q}}^{VI} = \int_2 \left[d\sigma_{q\bar{q}}^{V} + \int_1 d\sigma_{q\bar{q}}^{A} \right]_{\epsilon=0} = |\mathcal{M}_{q\bar{q}}|^2 \frac{C_F \alpha_s}{\pi} \int dy_{12} \delta(1 - y_{12}) \Theta^{(2)}(p_1, p_2)
\]

where $y_{12} = 2p_1 \cdot p_2 / Q^2$
Example: $e^+ e^- \rightarrow q \bar{q} \oplus$ NLO QCD

total scattering cross section

measurement functions given by $\Theta^{(3)} = \Theta^{(2)} = 1$

$$\sigma_{q\bar{q}}^{NLO} = \int_3 d\sigma_{q\bar{q}g}^{RS} + \int_2 [d\sigma_{q\bar{q}}^{B} + d\sigma_{q\bar{q}}^{VI}] = \sigma_{q\bar{q}}^{LO} \left(1 + \frac{3}{4} C_F \frac{\alpha_s}{\pi}\right) + \mathcal{O}(\alpha_s^2)$$

Discussion:

- fully inclusive total cross section [IR safe]
- \sim real & virtual IR singularities properly cancelled
- yields modest, finite correction
- dependent on strong-coupling parameter and its running
The emerging picture

- corrections to σ_{tot} dominated by hard, large-angle gluons
- soft gluons play no role for σ_{tot}
 - collision characterised by $t_{\text{hard}} \sim 1/Q$
 - soft-gluons emitted on long time scales $t_{\text{soft}} \sim 1/(E\theta^2)$
 - cannot influence cross section
 - transition to hadrons occurs on long time scales $t_{\text{had}} \sim 1/\Lambda_{\text{QCD}}$
 - can thus be ignored

- with proper choice for scale of α_s, $\mu^2 = Q^2$, perturbation theory works well

$\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(\begin{array}{c}
1 \\
\text{LO} \quad +1.045 \frac{\alpha_s(Q^2)}{\pi} \\
\text{NLO} \quad +0.94 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 \\
\text{NNLO} \quad -15 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^3 \\
\text{NNNLO} \quad + \cdots
\end{array} \right)$

[coefficients given for $Q^2 = M_Z^2$, including EW corrections]

Total cross sections are inclusive quantities, inclusive in the number of additional QCD partons!
The scale ambiguity

- fixed-order prediction depends on (arbitrary) renormalisation scale μ
- estimate theory uncertainty through scale variations, e.g. $\frac{Q}{2} < \mu < 2Q$
 \sim provides estimate of uncalculated higher-order terms

$$
\sigma_{tot}^{\text{NLO}}(\mu^2) = \sigma_{q\bar{q}} \left(1 + C_1 \alpha_s(\mu^2) \right) \\
\text{with } \alpha_s(\mu^2) = \alpha_s(Q^2) - 2b_0 \alpha_s^2(Q^2) \ln \left(\frac{\mu}{Q} \right) + \mathcal{O}(\alpha_s^3) \\
= \sigma_{q\bar{q}} \left(1 + C_1 \alpha_s(Q^2) - 2C_1 b_0 \alpha_s^2(Q^2) \ln \left(\frac{\mu}{Q} \right) + \mathcal{O}(\alpha_s^3) \right)
$$

compare to

$$
\sigma_{tot}^{\text{NNLO}}(\mu^2) = \sigma_{q\bar{q}} \left(1 + C_1 \alpha_s(\mu^2) + C_2(\mu^2) \alpha_s^2(\mu^2) \right) \\
\text{with } C_2(\mu^2) = C_2(Q^2) + 2C_1 b_0 \alpha_s^2(Q^2) \ln \left(\frac{\mu}{Q} \right)
$$
The scale ambiguity

\[\frac{\sigma_{ee \rightarrow \text{hadrons}}}{\sigma_{ee \rightarrow \text{qq}}} = \frac{\mu_R}{Q} \]

- Use scale variations to estimate theory uncertainty
- Probe residual dependence on (uncalculated) higher orders
NLO QCD: brief summary

Motivations

- accurate cross-section estimates
- real-emission kinematics corrections
- reduced systematic uncertainties [scale dependences]
NLO QCD: brief summary

Motivations
- accurate cross-section estimates
- real-emission kinematics corrections
- reduced systematic uncertainties

Anatomy

\[\hat{\sigma}_{ij \to X} = \int d\Phi_{ij \to X} \left[\sum \text{lowest order term} + \sum 2 \text{Re} \{ \text{quantum corrections} \} \right] \]

\[+ \sum_{k \in \{q,g\}} \int d\Phi_{i,j \to X+k} \sum \text{radiative corrections} \]

\[\leftrightarrow \text{subtraction of infrared singularities in real- & virtual corrections} \]

\[\leftrightarrow \text{dedicated one-loop amplitude codes: BLACKHAT, OPENLOOPS/COLLIER, RECOLA, ...} \]
Interlude: QCD jets & PDFs
The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of hadronic particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons’ directions

Counting jets

- near perfect two-jet event
- almost all energy contained in two cones
The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons’ directions

Counting jets

→ hard emissions can induce more jets
→ jet counting not obvious, is this a three- or four-jet event?
Defining jets

Jet definition (addendum): jet number shouldn’t depend upon just a soft/collinear emission

→ Infrared & collinear safety

Infrared & Collinear safe jet definitions
crucial for comparing theory with experimental results
Jet algorithms

Jet definition

- group together particles into a common jets [jet algorithm]
- typical parameter is R, distance in $y-\phi$ space, determines angular reach
- combine momenta of jet constituents to yield jet momentum [recombination scheme]

Two generic types of jet algorithms are commonly used:

- cone algorithms
 - widely used in the past at the Tevatron
 - jets have regular/circular shapes
 - some suffer from IR or collinear unsafety

- sequential recombination algorithms
 - widely used at LEP [Durham k_T algorithm]
 - jet can have irregular shapes
 - default at the LHC experiments [anti-k_T algorithm]
Sequential recombination algorithms

A generic jet finding algorithm

1. Compute a distance measure y_{ij} for each pair of final-state particles.
2. Determine all distance measures wrt the beam y_{iB}.
3. Determine the minimum of all y_{ij}'s and y_{iB}'s:
 - If y_{ij} is smallest, **combine** particles ij, sum four-momenta.
 - If y_{iB} is smallest, **remove** particle i, call it a jet.
4. Go back to step one, until all particles are clustered into jets.

In analyses one typically uses

- Jets with inter-jet distances $y_{ij} > y_{\text{cut}}$ [exclusive mode].
- Jets with inter-jet distances $y_{ij} > y_{\text{cut}}$ & $E > E_{\text{cut}}$ [inclusive mode].

Different algorithms use different measures: y_{ij} & y_{iB}.
Sequential recombination algorithms: the k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for $a \rightarrow ij$

$$dS \sim \frac{2\alpha_s C_A/F}{\pi} \frac{dE_i}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}},$$

using $\min(E_i, E_j)$ we can avoid specifying which of i and j is soft

The k_T-algorithm distance measure

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

\sim in the collinear limit: $y_{ij} \sim \min(E_i^2 E_j^2) \theta_{ij}^2 / Q^2$

\sim relative transverse momentum, normalized to total energy

\sim soft/collinear particles get clustered first
Sequential recombination algorithms: the anti-k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for $a \rightarrow ij$

$$dS \sim \frac{2\alpha_s C_i}{\pi} \frac{dE_i}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}},$$

using $\min(E_i, E_j)$ we can avoid specifying which of i and j is soft

The anti-k_T-algorithm distance measure

$$y_{ij} = 2Q^2 \min(E_i^{-2}, E_j^{-2})(1 - \cos \theta_{ij})$$

\sim jet-finding starts out with hard objects
\sim softer particles get clustered into hard jets later on
\sim produces nicely regular shaped jets
\sim default in current LHC physics analyses
Jet algorithms at work: k_T jets at LEP

Jet algorithms at work: k_T jets at LEP

Jet algorithms at work: anti-\(k_T\) jets at LHC

anti-\(k_T\) inclusive jets at LHC

\[
\int d\sigma/dy \ dy \left[\text{pb}/\text{GeV} \right]
\]

- \(\text{anti-}k_t\) jets, \(R=0.4\)
- \(|y| < 0.3 \times 10^1\)
- \(0.3 \leq |y| < 0.8 \times 10^3\)
- \(0.8 \leq |y| < 1.2 \times 10^4\)
- \(1.2 \leq |y| < 2.1 \times 10^5\)
- \(2.1 \leq |y| < 2.8 \times 10^5\)
- \(2.8 \leq |y| < 3.6 \times 10^5\)
- \(3.6 \leq |y| < 4.4 \times 10^5\)

\[\sigma = \text{NLOJET} \times \text{ATLAS}\]

Systematic uncertainties

Non-pert. corr.
Jet algorithms at work: anti-k_T jets at LHC

The V+jets processes
- background to many BSM searches
- wide range of kinematics
- multi-scale QCD problem

N_{jets}: jet multiplicity

[ATLAS-CONF-2016-046]
Jet algorithms at work: anti-k_T jets at LHC

The $V+\text{jets}$ processes
- background to many BSM searches
- wide range of kinematics
 \rightarrow multi-scale QCD problem

H_T: scalar sum of jet p_T's

[ATLAS-CONF-2016-046]