QCD jets & PDFs
The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of hadronic particles
- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons’ directions

Counting jets
- near perfect two-jet event
- almost all energy contained in two cones
The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of particles
- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons’ directions

Counting jets
- hard emissions can induce more jets
- jet counting not obvious, is this a three- or four-jet event?
Defining jets

Jet definition (addendum): jet number shouldn’t depend upon just a soft/collinear emission

\(\sim\) Infrared & collinear safety

Infrared & Collinear safe jet definitions

crucial for comparing theory with experimental results
Jet algorithms

Jet definition

- group together particles into a common jets [jet algorithm]
- typical parameter is R, distance in $y - \phi$ space, determines angular reach
- combine momenta of jet constituents to yield jet momentum [recombination scheme]

Two generic types of jet algorithms are commonly used:

- cone algorithms
 - widely used in the past at the Tevatron
 - jets have regular/circular shapes
 - some suffer from IR or collinear unsafety

- sequential recombination algorithms
 - widely used at LEP [Durham k_T algorithm]
 - jet can have irregular shapes
 - default at the LHC experiments [anti-k_T algorithm]
Sequential recombination algorithms

A generic jet finding algorithm

1. compute a distance measure y_{ij} for each pair of final-state particles
2. determine all distance measures wrt the beam y_{iB}
3. determine the minimum of all y_{ij}'s and y_{iB}'s
 - if y_{ij} is smallest, combine particles ij, sum four-momenta
 - if y_{iB} is smallest, remove particle i, call it a jet
4. go back to step one, until all particles are clustered into jets

in analyses one typically uses

- jets with inter-jet distances $y_{ij} > y_{cut}$ [exclusive mode]
- jets with inter-jet distances $y_{ij} > y_{cut} \& E > E_{cut}$ [inclusive mode]

different algorithms use different measures: y_{ij} & y_{iB}
Sequential recombination algorithms: the k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for $a \rightarrow ij$

$$dS \sim \frac{2\alpha_s C_A}{\pi F} \frac{dE_i}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}},$$

using $\min(E_i, E_j)$ we can avoid specifying which of i and j is soft

The k_T-algorithm distance measure

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

\sim in the collinear limit: $y_{ij} \approx \min(E_i^2, E_j^2)\theta_{ij}^2 / Q^2$

\sim relative transverse momentum, normalized to total energy

\sim soft/collinear particles get clustered first
Sequential recombination algorithms: the anti-k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for $a \rightarrow ij$

\[
dS \approx \frac{2\alpha_s C_i}{\pi} \frac{dE_i}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}},
\]

using $\min(E_i, E_j)$ we can avoid specifying which of i and j is soft

The anti-k_T-algorithm distance measure

\[
y_{ij} = 2Q^2 \min(E_i^{-2}, E_j^{-2})(1 - \cos \theta_{ij})
\]

\Rightarrow jet-finding starts out with hard objects
\Rightarrow softer particles get clustered into hard jets later on
\Rightarrow produces nicely regular shaped jets
\Rightarrow default in current LHC physics analyses
Jet algorithms at work: k_T jets at LEP

Jet algorithms at work: k_T jets at LEP

Jet algorithms at work: anti-k_T jets at LHC
Jet algorithms at work: anti-k_T jets at LHC

The V+jets processes
- background to many BSM searches
- wide range of kinematics
 \rightarrow multi-scale QCD problem

N_{jets}: jet multiplicity

$\sigma(Z/\gamma^* \rightarrow l^+l^-) + \text{jets}$

- ATLAS Preliminary
- 13 TeV, 3.16 fb$^{-1}$
- anti-k_T jets, $R = 0.4$
- $p_T^{\text{jet}} > 30$ GeV, $|y^{\text{jet}}| < 2.5$

BH+SH: NLO QCD MEs
SHERPA: 0,1,2j MEPS@NLO + 3,4j MEPS@LO
FxFx: 0,1,2j NLO MEs + shower

N_{jets}: jet multiplicity
Jet algorithms at work: anti-k_T jets at LHC

The $V+jets$ processes
- background to many BSM searches
- wide range of kinematics

\rightarrow multi-scale QCD problem

H_T: scalar sum of jet p_T's

[ATLAS-CONF-2016-046]
Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the short distance structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons
Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the short distance structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons

Starting point: the naïve parton model

- quarks deeply bound inside proton
- binding forces responsible for confinement due to soft gluons $\mathcal{O} \simeq \Lambda_{\text{QCD}}$
- the exchange of hard gluons would break the proton apart [recoil]
Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the short distance structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons

Starting point: the naïve parton model

- quarks deeply bound inside proton
- binding forces responsible for confinement due to soft gluons $\mathcal{O} \approx \Lambda_{\text{QCD}}$
- the exchange of hard gluons would break the proton apart [recoil]

$Q^2 \equiv -q^2$
Processes with incoming hadrons: factorization

hadronic cross section in the naïve parton model

\[
\sigma(s) = \sum_{ij} \int dx_1 f_{i/p}(x_1) \int dx_2 f_{j/p}(x_2) \hat{\sigma}_{ij} \to x(x_1x_2s)
\]

factorized cross section

- assume partons move collinear with the protons: \(p_i = x_i P_i \)
- partonic cms energy: \(\hat{s} = x_1x_2s \)
- \(f_{i/p} \) Parton-Distribution-Functions parametrize number densities of quarks inside protons
Parton-Distribution-Functions: sum rules

- $|p\rangle = |u \ u \ d\rangle$, the valence quark distributions

\[\sim \int_0^1 dx \left(f_{u/p}(x) - f_{\bar{u}/p}(x) \right) = 2 \quad \& \quad \int_0^1 dx \left(f_{d/p}(x) - f_{\bar{d}/p}(x) \right) = 1 \]

- fraction of proton's momentum carried by quarks

\[\sum_q \int_0^1 dx \ x f_{q/p}(x) \approx 0.5 \]

- well, we kind of forgot the gluons, carry ≈ 0.5 of protons' momentum

- gluons appear in splitting processes $q \rightarrow qg$

- let's better check impact of higher-order QCD corrections
most fluctuations inside the proton happen at times $t_{\text{had}} \sim 1/\Lambda_{\text{QCD}}$
Factorization revised

most fluctuations inside the proton happen at times $t_{\text{had}} \sim 1/\Lambda_{QCD}$

- a hard interaction (e.g. γ^* in DIS) probes much shorter times $t_{\text{hard}} \sim 1/Q$
- hard probes take instantaneous snapshots of hadron structure
- PDFs are scale dependent objects: $f_{i/p}(x) \rightarrow f_{i/p}(x, Q^2)$
Factorization revised: the factorization scale

consider soft & collinear emissions from an initial-state quark

\[\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2} \]

where we assume \(\sigma_h \) involves momentum transfer \(Q \gg k_t \)

\[\sigma_{V+h}(p) \simeq -\sigma_h(p) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2} \]

total cross section receives contributions from both

\[\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_s C_F}{\pi} \int_0^{Q^2} \frac{dk_t^2}{k_t^2} \int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)] \]

regulate the singularity in the \(k_t \) integral by \(\mu_F \), the factorization scale
absorb the singularity into redefined, scale dependent, PDFs
Factorization revised: the factorization scale

define renormalised distribution function, e.g. $f_q(x, \mu_F^2)$

$$f_q(x, \mu_F^2) = f^0_q(x) + \frac{\alpha_s}{2\pi} \int_0^1 \frac{dz}{z} f^0_q(x/z) \left[P_{q\leftarrow q}(z) \ln \left(\frac{\mu_F^2}{\mu_0^2} \right) + C_q(z) + \ldots \right]$$

$$+ \frac{\alpha_s}{2\pi} \int_0^1 \frac{dz}{z} f^0_g(x/z) \left[P_{q\leftarrow g}(z) \ln \left(\frac{\mu_F^2}{\mu_0^2} \right) + C_g(z) + \ldots \right]$$

- “bare” PDFs $f^0_{q/g}(x)$ defined at input scale μ_0^2
- emissions with $k_t \lesssim \mu_F$ implicitly included in PDFs
- emissions with $k_t \gtrsim \mu_F$ described by the hard process
- typically we identify μ_F^2 with the inherent process scale Q^2

Factorization into hard and soft component (resummed in PDFs)

$$\sigma_{pp\rightarrow X_{\text{part}}}(s; \mu_R^2, \mu_F^2) \equiv \sum_{ij} \int d^4x_1 d^4x_2 \ f_{i/p}(x_1, \mu_F^2) f_{j/p}(x_2, \mu_F^2) \ d\hat{s}_{ij} \cdot x_{\text{part}}(\hat{s}; \{ pX \}, \mu_R^2, \mu_F^2)$$
Scale evolution of the PDFs

- change of PDFs wrt μ_F^2 covered by perturbative QCD
 \sim DGLAP evolution equations

$$\mu_F^2 \frac{\partial f_i(x, \mu_F^2)}{\partial \mu_F^2} = \sum_j \int_x^1 \frac{dz}{z} P_{i \leftarrow j}(z) f_j(x/z, \mu_F^2)$$

- based on \textit{regularised} splitting functions, finite in the limit $z \to 1$
 employ plus-prescription

$$\left[g(z) \right]_+ \equiv g(z) - \delta(1 - z) \int_0^1 dy \ g(y)$$

$$\int_0^1 dz \ \left[g(z) \right]_+ f(z) = \int_0^1 dz \ g(z) (f(z) - f(1))$$
Scale evolution of the PDFs

coupled system of integro-differential equations for the parton content

\[
\begin{align*}
\frac{t}{\alpha_s(t)} \frac{\partial f_q(x, t)}{\partial t} &= \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dz}{z} [P_{q\leftarrow q}(z)f_q(x/z, t) + P_{q\leftarrow g}(z)f_g(x/z, t)] \\
\frac{t}{\alpha_s(t)} \frac{\partial f_g(x, t)}{\partial t} &= \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dz}{z} [P_{g\leftarrow q}(z)f_q(x/z, t) + P_{g\leftarrow g}(z)f_g(x/z, t)]
\end{align*}
\]
PDFs for the LHC

$Q = 10 \text{ GeV}$

$Q = 1 \text{ TeV}$

- current PDF sets extracted from DIS, $p\bar{p}$, pp & fixed target data
- more and more LHC data gets included in fits
- much, much more to come over the next years
NLO QCD: state of the art
NLO QCD: state of the art

Fully automated differential NLO calculations

\[\sigma_{2 \rightarrow n}^{NLO} = \int_{n+1} \left[d^{(4)}\sigma^R - d^{(4)}\sigma^A \right] + \int_n \left[d^{(4)}\sigma^B + \int_{\text{loop}} d^{(d)}\sigma^V + \int_1 d^{(d)}\sigma^A \right] \epsilon=0 \]

Monte-Carlo codes

- all the tree-level bits
- subtraction of singularities
- efficient phase-space integration

One-Loop codes

- Loop amplitudes, i.e. \(2\Re(M_B M_V^\dagger) \)
- Loop integration
- \(\sim 1/\epsilon, 1/\epsilon^2 \) coefficients & finite terms

some recent NLO calculations:

2009 \(W + 3\text{jets}, t\bar{t} + 1\text{jet} \)
2010 \(W + 4\text{jets}, Z + 3\text{jets} \)
2011 \(Z + 4\text{jets}, t\bar{t} + 2\text{jets}, 4\text{jets} \)
2012 \(\gamma + 3\text{jets} \)
2013 \(W + 5\text{jets}, 5\text{jets} \)
2014 \(\gamma\gamma + 3\text{jets} \)

OL tools & names:

- BlackHat: Bern et al.
- HelacNLO: Bevilacqua et al.
- OpenLoops: Pozzorini et al.
- GoSam: Cullen et al.
- NJET: Biedermann et al.
- Recola: Denner et al.
NLO QCD: state of the art – $W + 5j$ets

$W + 5j$ @ NLO: The challenge

- one-loop corrections

- real emission corrections

first evaluation

- **BlackHat**+**Sherpa**: Bern et al. [Phys. Rev. D 88 (2013) 1, 014025]
 - **BlackHat**: on-shell methods for one-loop amplitudes [arXiv:0808.0941]
 - **Sherpa**: dipole subtraction, real-emission, phase space, steering
 ↔ fully differential partonic event generator with NLO accuracy
consider anti-\(k_t\) jets with \(p_T^{\text{jet}} > 25\) GeV \& \(R=0.5\)

<table>
<thead>
<tr>
<th>process</th>
<th>(W^- - \text{LO})</th>
<th>(W^- - \text{NLO})</th>
<th>(W^+ - \text{LO})</th>
<th>(W^+ - \text{NLO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>xsec [pb]</td>
<td>(1.076(0.003)^{+0.985}_{-0.480})</td>
<td>(0.77(0.02)^{+0.07}_{-0.19})</td>
<td>(2.005(0.006)^{+1.815}_{-0.888})</td>
<td>(1.45(0.04)^{+0.12}_{-0.34})</td>
</tr>
</tbody>
</table>

central scale
\[\mu_R = \mu_F = \mu = \hat{H}_T'/2 \]

scale variations
\[\mu/2, \mu/\sqrt{2}, \mu, \sqrt{2}\mu, 2\mu \]
Beyond NLO QCD
NNLO QCD precision

The anatomy of NNLO QCD calculations

- terms contributing at NNLO

\[
\int \! d\Phi_{ij \to X} \sum \text{2 Re}\left\{ \begin{array}{c}
\includegraphics[width=1cm]{diagram1}
\end{array} \right\} + \sum_{k, l \in \{q, g\}} \int \! d\Phi_{ij \to X + kl} \begin{array}{c}
\includegraphics[width=1cm]{diagram2}
\end{array}
\]

\[2^{\text{nd}} \text{ order quantum corrections}\]

\[2^{\text{nd}} \text{ order radiative corrections}\]

\[+ \sum_{k \in \{q, g\}} \int \! d\Phi_{ij \to X + k} \sum \text{2 Re}\left\{ \begin{array}{c}
\includegraphics[width=1cm]{diagram3}
\end{array} \right\} \]

\[\text{quantum } \times \text{ radiative corrections}\]

\[\leftrightarrow \text{ two-loop corrections known for more and more processes now}
pp \to V, VV, VH, t\bar{t}, Hj, Zj, jj, \ldots\]

\[\leftrightarrow \text{ fully general local infrared subtraction schemes in the making}\]

NNLO QCD precision

Fully differential $ZZ \rightarrow 4l$ production at NNLO QCD

- based on q_T subtraction
- implementation in **Matrix** code
NNLO QCD precision

Fully differential $ZZ \rightarrow 4l$ production at NNLO QCD

<table>
<thead>
<tr>
<th>channel</th>
<th>σ_{LO} [fb]</th>
<th>σ_{NLO} [fb]</th>
<th>σ_{NNLO} [fb]</th>
<th>σ_{ATLAS} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^-\mu^+\mu^-$</td>
<td>8.188(1)$^{+2.4%}_{-3.2%}$</td>
<td>11.30(0)$^{+2.5%}_{-2.0%}$</td>
<td>12.92(1)$^{+2.8%}_{-2.2%}$</td>
<td>12.4$^{+0.7\text{(stat)}}^{-0.5\text{(syst)}}^{+0.3\text{(lumi)}}$</td>
</tr>
<tr>
<td>$e^+e^-e^+e^-$</td>
<td>4.654(0)$^{+2.3%}_{-3.1%}$</td>
<td>6.410(2)$^{+2.5%}_{-2.0%}$</td>
<td>7.310(8)$^{+2.7%}_{-2.1%}$</td>
<td>5.9$^{+0.8\text{(stat)}}^{-0.4\text{(syst)}}^{\pm0.1\text{(lumi)}}$</td>
</tr>
<tr>
<td>$\mu^+\mu^-\mu^+\mu^-$</td>
<td>3.565(0)$^{+2.6%}_{-3.5%}$</td>
<td>4.969(5)$^{+2.5%}_{-2.0%}$</td>
<td>5.688(6)$^{+2.9%}_{-2.2%}$</td>
<td>4.9$^{+0.6\text{(stat)}}^{+0.3\text{(syst)}}^{\pm0.1\text{(lumi)}}$</td>
</tr>
<tr>
<td>$e^+e^-\nu\nu$</td>
<td>5.558(0)$^{+0.1%}_{-0.5%}$</td>
<td>4.806(1)$^{+3.5%}_{-3.9%}$</td>
<td>5.083(8)$^{+1.9%}_{-0.6%}$</td>
<td>5.0$^{+0.8\text{(stat)}}^{-0.4\text{(syst)}}^{\pm0.1\text{(lumi)}}$</td>
</tr>
<tr>
<td>$\mu^+\mu^-\nu\nu$</td>
<td>5.558(0)$^{+0.1%}_{-0.5%}$</td>
<td>4.770(4)$^{+3.6%}_{-4.0%}$</td>
<td>5.035(9)$^{+1.8%}_{-0.5%}$</td>
<td>4.7$^{+0.7\text{(stat)}}^{+0.5\text{(syst)}}^{\pm0.1\text{(lumi)}}$</td>
</tr>
<tr>
<td>total rate</td>
<td>4982(0)$^{+1.9%}_{-2.7%}$</td>
<td>6754(2)$^{+2.4%}_{-2.0%}$</td>
<td>7690(5)$^{+2.7%}_{-2.1%}$</td>
<td>7300$^{+400\text{(stat)}}^{-300\text{(syst)}}^{+200\text{(lumi)}}$</td>
</tr>
</tbody>
</table>

[ATLAS data 8 TeV: Aaboud et al. JHEP 1701 (2017) 099]
Fully differential $ZZ \rightarrow 4\ell$ production at NNLO QCD

[ATLAS data 8 TeV: Aaboud et al. JHEP 1701 (2017) 099]